A tour of Prism

3

Following a tour is the easiest way to learn Prism.

View a movie

Watch and listen to a ten minute introductory movie from Prism's Welcome dialog. Or view it <u>on the web</u>.

Welcome to Graph	ad Prism	X
PRI/M	Version 5	50
Learn to use Prism Open a file New table & graph: XV		
Column Grouped Contingency Survival	A brief tour of GraphPad Prism (turn on your speakers)	
Clone from: Opened project Recent project Sared example Shared example	Do you prefer to read, rather than watch and laters? View a printed version of this tour, including edite detail.	н
	Cancel	٦.

Read a step-by-step tour

The written tour includes more details than the movie, with lots of screen shots. Print the tour so you can try every step using Prism.

Start the tour

How to print

1. Click Print at the top of this help viewer.

2. Choose "Print selected heading with all subtopics".

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

Tour overview

To print this tour:

Go to the main tour page, and then click Print on the help viewer toolbar.

What is GraphPad Prism?

GraphPad Prism is a powerful combination of biostatistics, curve fitting (nonlinear regression) and scientific graphing in one comprehensive program. This tour will highlight key features of the program and provide the basic training you'll need to get started. Use it as inspiration, not a rigid method. We've worked hard to make Prism easy and intuitive to use. Explore Prism yourself -- try things, make a few mistakes. If you get stuck, search this help file for tips and answers, about the <u>Prism program</u> itself, or about <u>statistical principles</u> you might not understand. We're sure you'll be up to speed in no time.

🕏 Gra	phPad	l Pr	ism -	[Pro	jeo	:t1:Exp	onential	decay	1									-7 🗙
File	Edit V	kew	Insert	Chane	70	Arrange	Window Help											- 8 ×
Prism	Fle		Sheet	0	da	Cleboard	Analysis	0	hange	Arrange	Draw	'witte		Text	1	Export	Print	Send
- C.	🗋 • 😥	2	021	• 0	×-	X 🖻 👕	KK	💽 L.	15 🛞		1	VG 🖾 🔇			× <u>A</u> +	12	3	🙉 - 🚱
A.	99	×	₩New -		2.	00-	🚍 Analyze 🛅	N 14	🗹- 💑	· 👘 ·	-	Τ ΙΙ α	ΑĂ	$I \square X^2 X_2 \parallel$	日本王・	1 5	8	8 🗷
E Fami	ly.	()		٦Ĥ				2				4				1	1	
D Data	with Res	ults.																-
a 📄 C	ponenti	al de	icay															
81	Nonli	n fit	of Expor	× 1														
	- 🗹 Equi	vtion		4					Diss	ociati	on c	f a2 rec	epto	rs				
	Tabl	e of	results					12000				-						
0050	Tables							12000	1					🔶 Co	ntrol			
into ont	and the second							10000	4					- Tre	pated			
Return	noject inte Jes								L					- 110	area			
in Grad	hs			6				8000	- 73-									
-120	ponenti	ial de	scay						13.									
D Layo	uts							0000	1									
Float	ting Notes							4000	- i	-								
8 🙆 0	ata with r	xones							1	N.	6							
* 2	Exponen	ntial (Secay	0				2000	1 7		-	-						
												-	_					
								U	<u>.</u>	2	0	40	1	60				
									•	2		40		00				
											Mir	nutes						
				7			Г				T	Control		Treated	1			
							1	95% Co	nfidence	Intervals					1			
							[YO			92	53 to 1073	2	8362 to 10825	1			
							[PLA	TEAU		25	4.3 to 1720)	825.3 to 1482				
							[K			0.0	06569 to 0.	1128	0.2341 to 0.3743				
				1				Har	Life		6.1	42 to 10.5	5	1.852 to 2.960				
							L	Spa	1		82	11 to 9800		7259 t0 9621	1			
<			0		<													>
			•	٩	Grap	h1d1 🕨			Deponentia	il decay	~							0.0

If you'd like to sit back and watch

If you prefer, you can watch an animated presentation of this tour. Launch Prism and from the Welcome dialog, select "Learn to use Prism."

Learn by doing -- Take a quick tour to learn the basics

In the next few pages, you'll get a quick tour of GraphPad Prism version 5. If you're new to Prism, it's a good way to get oriented. If you've used an earlier version of Prism, it is a great introduction to some of the new features.

Learn now to begin a new project.	Learn how to	begin a new	project.
-----------------------------------	--------------	-------------	----------

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

1. Start a new project

Begin by choosing a graph type

The first thing you need to do to begin a new graph is to choose a basic type of graph you'd like to make, and to tell Prism how you want error bars on your graph to be calculated. From your choices, Prism will create a custom data table specifically formatted for your data.

Graph and data table types

Prism offers five basic types of graph (and data table) -- <u>XY graphs</u>, <u>Column graphs</u>, <u>Grouped</u> <u>graphs</u>, <u>Contingency tables</u>, and <u>Survival plots</u>. Each type of graph has its own tab on the Welcome dialog. In the main window, you'll see small pictures of the various types of graphs for each category. In the screenshot below, for example, you'll see the choices possible for an XY

graph -- you might want to plot only points, points with a connecting line, or vertical bars instead of points. Pick the tab for the basic type of graph and then click on the picture that most closely resembles how you want your finished graph to look. Below the graph pictures, choose whether you have already calculated your error values, or whether you want Prism to calculate error bars from your data.

Welcome to Graph	Pad Prism	X
SPRIJ M		Version 5.0
Learn to use Prism Open a file	Available analyses • Linear regression • Nonlinear regression • Correlation (Pearson or Spearman) Organization of data table Sample data	
Column	Start with an empty data table Use sample data Exponential · One phase decay Choose a graph	V
Grouped Contingency Survival	Selected graph: Points only Subcolumns for replicates or error values × error bar: Enter × error values to plot horizontal error bars	
Clone from: Opened project Recent project Saved example	Y: Eviter and plot a single Y value for each point Enter 3 replicate values in side-by-side subcolumns and plot Mean and Error V SEM Enter and plot error values already calculated elsewhere Enter: Mean, SD, N	
Shared example	Cancel	Create

Starting off, it is more important to pick the correct category of data table than it is to choose a specific thumbnail. Because all the graphs in each category use data tables formatted in the same way, it's easy to change which thumbnail you'd like your graph to look like. It's less easy to change from one basic type of data table and graph to another -- say from an XY graph to a grouped column chart.

Try it yourself

- 1. Launch Prism and from the Welcome dialog, click on the tab to make an XY graph
- 2. For this tour, choose to use Prism's sample data and select for "Exponential One phase decay."

Now table 8 graph:	Sample data						
New table & graph.	Start with an empty data table						
XY	 Use sample data 	Exponential - One phase decay					
Column	Choose a graph	How is an XY table organized? Linear regression Interpolate from stand					
Grouped		Linear regression Compare slopes Correlation					
Contingency		Binding Saturation binding stotal and p					

**We'll use sample data to help you explore Prism in this tour. When you start your own

data tables, you'll want to choose a graph thumbnail and how you want subcolumns for your error bars to be formatted.

Next Step

In the next step, we'll learn how to enter data in a Prism data table.

Learn how to enter or import data.

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

2. Enter or import data

Prism's formatted data tables

From your choices on the Welcome dialog, Prism will create a <u>data table</u> that is formatted specifically for your data. In the <u>previous step</u>, you told Prism to make a data table for an XY graph with triplicate data values. Prism, therefore, has created a data table with one column for X values and data columns that are each divided into three subcolumns for your triplicates.

Try it yourself

1. By selecting the sample data in Step 1, your data table should look like the one below (with subcolumns for triplicate data). Note that it's OK to have some empty cells. Prism knows how to handle missing data points. You can always click on the "Table format" button in the upper left corner to change the type of table or number of subcolumns.

able forma		×		A			в	
×	Y	Minutes		Control			Treated	
	×	x	A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3
1	Title	1.0	8887	7366	9612	6532	7905	7907
2	Title	2.0	8329		8850	5352	5841	6277
3	Title	3.0	7907	8810	8669	5177	4082	3157
4	Title	4.0	7413	8481	6489	3608		4226
5	Title	5.0	7081	7178	5716	2559	3697	2816
6	Title	6.0	6249	6492		1671	3053	2891
7	Title	8.0	5442	6172	6409	2264	1658	1879
8	Title	10.0	4020	3758	4138	1905	1302	1406
9	Title	14.0	4559	3146	2547	2994	1338	739
10	Title	20.0	3033	1587	2754	1444		760
11	Title	25.0	2105	1707	2152	281	484	765
12	Title	30.0	1005	2156	1185	1103	1517	833
13	Title	50.0	820	1513	1591	1918	1128	1293

2. Note also, that the sample data has a floating note attached that explains how this specific data set is organized and what you'll need to analyze it. You can minimize the note by clicking on the upper-right corner. (Floating notes are a new feature in Prism 5. You can add your own notes to any Prism sheet.)

Analysis	Change	Inport	Draw	Write	6	Text		Export	Pres
Analyze	월 달 지- 때 파 이 10		 	48 0 Τ Π α	A A B	IUx²x₂	 ■ ■ ■ = =	1	3
×		A	21						
Minutes		Control	How	the data a	re arrange	đ			
x	A:Y1	AY2	The X	column re	cords time.	The respons	se at each tir	ne poin	tis
1.0	8887		enter	ed in triplic	ate for Cont	rol and Trea	ated conditio	ns. Son	ne cell
2.0	8329		are b	lank to den	ote missing	data.			
3.0	7907		To fit	an expon	ential deca	y curve			
4.0	7413		1. Clk	ck Analyze.					
5.0	7081		2. Ch	oose nonlir	tear regress	sion from the	list of analy	ses for	XY da
6.0	6249		4. On	the Nonlin	ear regress	on dialog, cl	hoose the cl	assic ed	ustion
8.0	5442		"One	phase exp	onential dec	ay". Everyo	hing else on	the dial	log ma
10.0	4020		left to	the defaul	t choices.				
14.0	4559		V1*1		EV T	600	TVP	4	
20.0	3033		1587		2754	1444			
25.0	2105		1707		2152	201	48-	8	
30.0	1005		2156		1185	1103	1513	r	
50.0	820		1513	1	1591	1918	112	1	1

You can also enter or Import data

In the future, you probably won't want to start with sample data. You can either enter your data directly into the Prism data table, <u>import</u> it from an Excel or text file, or <u>copy and paste</u> from an Excel spreadsheet. To import data, click on the "Import" button on the Prism toolbar and browse to the file you'd like to import. As part of the import or copy and paste process, you can filter data, transpose columns to rows, or specify which rows and columns to import and which to skip. If you are using Prism for Windows, you also can choose whether to import data values only, or to <u>embed or link</u> to the original data source.

Next step

Once you've entered your data in the data table, Prism will automatically create your graph.

Learn about Prism's automatic graphing

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

3. Automatic graphing

Instant graphs

Once you enter your data, Prism automatically creates your graph using the default fonts, line thicknesses, error bar formats, and <u>color scheme</u> as set in Prism's <u>Preferences</u> section.

Try it yourself

1. Click on the graph name in the Prism <u>Navigator</u> tree on the left side of the Prism window to go to your new graph. Note that both the data table and the related graph have the same name ("Exponential decay" if you used the sample data in Step 1) and are both shown in bold when either is selected. When you change the name of a data table, the graph's name, and the name of any other related sheets will also change to match.

Note: In this case, our error bars are standard error bars because that is the default setting in our <u>preferences</u> dialog. To plot standard deviation or individual replicates instead, doubleclick on a symbol to bring up the <u>Format Graph</u> dialog.

🖲 Gra	phPad	Pris	m - (P	roje	ct1:Exp	onential	lecay]									7	×
🛃 File	Edit V	kew D	nsert Ch	ange	Arrange 1	Window Help											- 0	×
Prism		2 0 X *	ent Prove New -	()- ()- ()-	X Colored	Analysis		14 S	Arrange	€ ©	via ≊i Q. TII ⊂	м Ал	B 1	Text	N N P P Ξ •	Deport	()- () ()- ()	2 2 2
	Jamby Dependent	Results rential rs ential	decay	4		Title	10000 8000 6000 2000 0			onen E . Mit	tial dec	ay • Cc • Tr 1	ontrol eated 6	0		P		
•	Θ																	

2. Use the Zoom tools in the lower right corner to size your graph to make it easier to work on. Note that the Zoom buttons change the view on your screen. It doesn't change the actual size of your graph when you print or export it. You can use the <u>Resize button</u> to actually make your graph larger or smaller.

Next step

Learn about analyzing data with Prism

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

4. Analyze your data

Making analysis choices

Prism lets you perform a variety of statistical tests and analyses, as well as curve-fitting, transforming and normalizing your data.

Try it yourself

1. While viewing either the data table or graph, click on the "Analyze" button on the Prism toolbar.

🚍 Analyze

2. Select the type of <u>analysis</u> you would like to perform. For this tour we'll ask Prism to fit a curve to our data. In the first Analyze Data dialog, choose "Nonlinear regression (curve fit)" from the list of XY analyses as shown below, and press OK.By default, Prism will apply

the analysis to all the data sets on your data table as shown in the right pane of the window (In this case, Control and Treated). If you like, you can uncheck any data sets you don't want to analyze.

Analyze Data	X
Built-in analysis Which analysis? Transform, Normalize	Analyze which data sets?
Transform Normalize Prune rows Remove baseline and column math Transpose X and Y	B:Treated
XY analyses Nonlinear regression (curve ht) Linear regression Fit spline/LOWESS	
Smooth, differentiate or integrate curve Area under curve Deming (Model II) linear regression Column statistics Bow means (Intellis	
Correlation Column analyses Grouped analyses Contingenery table analyses	
Survival analyses Simulate and generate Recently used	
	Select All Deselect All
	Help Cancel OK

3. After you choose an analysis, Prism shows a Parameters dialog where you choose the details of that analysis. The Parameters dialog for nonlinear regression includes many options, but you don't have to learn these right away. The only choice you need to make in order to get started with curve fitting is to choose an equation. For this tour, select a one-phase exponential decay model and accept the default setting by pressing OK.

arameters: Nonlinear Regressi	on			
Fit Compare Constrain Weights Initial values	Range	Output	Diagnostics	
Choose an equation				
hefeesithu meese Maishedere			200	
iog(agonist) vs. response variable slope			^	New *
Dese reconce - Stimulation				
Dose-response - Inhibition				Details
Dose-response - Special				
Binding - Saturation				
Binding - Competitive				
Binding - Kinetics				
Enzyme kinetics				
Exponential				
One phase decay				
Plateau followed by one phase decay				
Two phase decay				
Three phase decay				
One-phase association				
Plateau followed by one phase association				
Two phase association				
Exponential growth equation			~	
If you have subtracted off the nonspecific signal, co	nstrain Pl	ateau to a	a constant valu	ie of 0.0
One phase decay			 Learn abox 	It this equation
Fitting method				
Least squares (ordinary) (it O Bobust (it)	Automa	tic outlier	elimination	
Internalate	1.13101110			
Interpolate unknowns from standard curve. Confid	ence inte	wat Nor	ne 🗸	
	Le	am	Cancel	OK

If you're unsure about a particular equation, click on the Learn more about link to read about an equation before you select it.

4. Prism will place your results in a new Analysis Results table. Click on the "Table of Results" sheet in the Prism Navigator to view the results of the curve fit.

File Edit View Insert Ch	ange	Arrange Window Help										- 8
him File Sheet	Undo	Claboard Analysis	Interpret	Change	Draw	write		Text		Export	Frint	Send
🕵 🗋 😥 🖉 🖉 🖉 🖉 🖉	64.	XNELLE	3			NG @ Q	~		$\times \Delta$		3	2.1
New - × ∻New -	12.	🚺 🗋 🔹 💷 Analyze 🛅	LON.	af 🖬 18	•	TΠα	A' A' B	I ∐ X² X	「長い」 田・	1 State	63	0
Family		Nonlin fit		A			0	c	D	0		
Data with Results		Table of results		Cont	ról	Tre	ated	Title	Title	TØ	0	1
Exponential decay	- 4	1		Y			Y	Y	Y	Y		
B 2 Nonlin fit of Expone	1	One-phase decay Fit Y0,	Plateau and K ()	rat								
Equation	2	Best ft values										
Table of results	3	YO		9992		9593						
0050 100	4	PLATEAU		987.0		1154						
Department index 1	5	К		0.08927		0.3042						
Reader	6	Half Life		7.765		2.278						
Graphs	7	Span		9005		8440						
2 Exponential decay	8	Std. Emor										
Layouts	9	YO		363.7		605.5						
	10	PLATEAU		360.3		161.5						
	11	К		0.01159		0.03446						
	12	95% Confidence Intervals										
	13	YO		9253 to 107	32	8362 to 1	0825					
	14	PLATEAU		254.3 to 172	0	825.3 to 1	482					
	15	К		0.06569 to 0	1128	0.2341 to	0.3743					
	16	Half Life		6.142 to 10.	55	1.852 to 2	2.960					
	17	Span		8211 to 980	0	7259 to 9	621					
	10	Goodness of Fit										
	19	Degrees of Freedom		34		34						_
	20	R*		0.9401		0.9195						-
	21	Absolute Sum of Square	s	1.689e+007		1.256e+0	07					-
	22	Syx		704.8		607.7						_
	23	Constraints										_
	24	к		K > 0.0		K×0.0						
	25	Number of points										-
2	1											-

5. Click Analysis checklist, the only button in the Interpret section of the toolbar, to read about the test you used and to learn about interpreting your results.

6. Finally, click on your graph's name in the Navigator tree to see the new curves plotted on your graph. Remember, Prism links related data tables, graphs, and analyses. If your data

changes, your graphs and analyses will update automatically.

Nex t step

Learn how to customize your graph

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

5. Customiz e your graph

Format your graph any way you like.

Prism makes it easy to customize any part of your graph. Double-click on any data point to change <u>symbol size</u>, <u>shape or color</u>. Right-click to <u>change only that symbol</u>. Use the formatting tools on the Prism toolbar to <u>change the background color or apply a color scheme</u>. Add <u>arrows</u>, <u>circles</u>, <u>boxes and text</u>, <u>including Greek letters and formulas</u>. You can even <u>copy blocks of text</u> from an analysis results sheet and paste it onto your graph. Because Prism links related sheets, if your data changes, the points on your graph, and the pasted analysis results information will both update.

Try it yoursel f

- 1. Double-click on any symbol in the top data set and change the color of the symbols to blue. You can change the symbol shape if you like.
- 2. Change the color of the other data set symbols to red.
- 3. Double-click on each curve and change their colors to match.

- 4. Click on the graph title ("Exponential decay") and edit it.
- 5. Use the Insert Greek button in the Write toolbar to add a Greek letter and the subscript button in the text toolbar to format the title.

pow Help						
Analysis	Change	Arrange	Draw	Write	Tex	t f
.k	🛄 🕑 👪 :	۵- 🛛		√a 🖾 🚯	14 🐱 Arial	<u> </u>
Analyze 🛗	* 🖪 🖬 -	&-	•	ΤΠα	A A B I U ×	(° <mark>(X₂)</mark> î ⊫ ≡ 1
	2	3		4	5	
						1
						1
						1
						3
	D i	issociati	on o	f α ₂ rec	eptors	4
1	5000n					
					-	 Control
	and the second s			A		

6. Double-click on the Y axis of your graph to open the Format Axis dialog. Uncheck the box

to "Automatically determine the range and interval," and change the axis maximum limit to 12,000 and the major tick interval to 2000.

7. Click the Color 💑 button in the Change toolbar to change the graph background to light blue.

8. Then, copy a section of your analysis results table and paste it onto your graph. Remember, if your data changes this pasted table will update as well.

Next Step

Learn how to print or export your graph

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

6. Print or export

Use the Export button

<u>Export</u> graphs or layouts as wmf, emf, pdf, eps, tif, jpg, png, bmp, or pcx formats for publication or to import into other programs.

Use the Send buttons

Send graphs or layouts by <u>email</u> or to an FTP server. Send them to <u>Word</u> or <u>PowerPoint</u> with a single click.

Use the Print buttons

<u>Print</u> one or more graph, or layout, or any of the sheets in your Prism project file. The top button brings up the Print dialog; the bottom button prints only the current sheet.

Try it yourself

Click on the send to PowerPoint button with to create a new PowerPoint slide.

Microsoft PowerPoint - [Pres	entation1]	
Ele Edit View Insert Format To	ols Slige Show Window Help Adoge PDF	Type a question for help 💌 🗙
000000000000000000000000000000000000000	6 💌 🖾 👘 👘 👘 👘 🖉	🛛 🗏 📰 🗄 🗛 🕼 🛕 • 🕼 Design 🕲 New Side 🚏
Snagtt 🖭 Window 💌		
19 12 10 -		
	$\frac{1}{2}$	°
Draw • AutoShapes • \ > 0 0		<u></u>
Side 1 of 1	Default Design English (U.S.)	Miceoft PowerPoint - (Presentation)

Note that Prism changed the background of the PowerPoint slide to match the background color in Prism.

Next step

Learn how to clone a graph

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

7. Repeating work by cloning

Cloning

The Welcome dialog also lets you <u>clone</u> any graph that you've already made. You can clone a graph from an open project, a recently-used project, or a graph that you've saved as an example. Cloning copies all the features of a graph, but lets you replace the data and other parts that you'd like to change.

Try it yourself

- 1. To add a new data table, graph, and analysis to your existing project, click the New button in the Sheet section of the toolbar and choose "New data table and graph."
- 2. Click on the tab for Cloning a graph from an opened project. You also can clone from recently-used projects, or saved example files.

New Data Table an	d Graph		X
New table & graph: XY Column Grouped Contingency Survival Clone from: Opened project Recent project Saved example Shared example	Project1		
	e, e,	Cancel	Clone

- 3. Select your sample graph and click the Clone button in the lower right corner.
- 4. You will then get to choose which parts of the graph to include on your new cloned graph. The default is to delete the Y values, but keep X values and column titles. At this step, you could also change your subcolumn format if you have more or fewer replicates than you had on the original graph. You can also rename your new graph. For this tour, call "Clone of exponential decay graph."

5. Let's make another change. Click on the Subcolumn Format tab and choose to have only one Y value for each X. Prism will then create a new data table with the same X column, but with only a single column for Control and for Treated.

Clone Example	X
Example Data Subcolumn Format T subcolumn for replicates or error bars T subcolumn for replicates or error bars	
X error bars Enter X error values to plot horizontal error bars	
Help (<< Back OK	

6. Enter the new values as below.

Table format:		x	A	
×	۲	Minutes	Control	Tt
- 4	×	X	Y	
1	Title	1.0	9100	
2	Title	2.0		-1
3	Title	3.0		-
4	Title	4.0		
5	Title	5.0	6400	
6	Title	6.0	6300	
7	Title	8.0	4100	
8	Title	10.0		
9	Title	14.0	3277	- 1
10	Title	20.0	2444	-
11	Title	25.0		-1
12	Title	30.0	2099	
13	Title	50.0	1987	-1
	A	an an a shifth down and	where a state in succession	

7. Then click on the name of your new graph in the Prism Navigator. Prism has recreated a new graph and curve from the new data. All the graph's formatting -- colors, fonts, etc. -- matches the original. Even the embedded table of results have been recreated.

Prism	<i>Fle</i>]•₿	2 @ 2 1	• Col •	X D	Analysis		Change Change	۰.	Arrange	Craw	vice and a			Test	$\sim \Delta$	Export	Print	ŝ
24	99.	× ÷New•	17-	00.	= Analyze 👔	1	16 16	- 🌲-	.		TI	A A	BI	∐ ײ ×	2 IÊ IÊ Î	· 169	8	2
	amily was with if Exponent Exponent Come of Come of	Results ntai decay nnin fit of Exp iquation idole of result in fit of Clor iquation idole of result in fit of Clor iquation idole of result in nto 1 fit of the result in fit of the interval in the in in in in in in in in in in		P	P.	1200 1000 800 600 400 200	00- 00- 00- 00- 00- 00- 00- 00- 00- 00-	Disso	20	on of	a2 rea	ceptor	rs 6	- - (Control	t.		
			6			95% C Y0 PLA K Half Tau Spa	TEAU LIfe	nce Inte	invals	8810 1114 0.081 3.811 5.498 6889	to 11717 to 2709 94 to 0.1 to 8.460 to 12.20 to 9815	819						
•		•	 <!--</td--><td>ph2ol2 🕨</td><td></td><td>2</td><td>] Clon</td><td>e of exp</td><td>onential</td><td>د ۲</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td>	ph2ol2 🕨		2] Clon	e of exp	onential	د ۲				1				

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

8. Change a graph to match another

You can use the <u>Prism Magic</u> (Make Graphs Consistent) tool to make one or more graphs look like another one.

Try it yourself

First let's make some changes to the first graph you were working on.

1. Select your original graph in the Navigator tree (Exponential decay), and use the Color Scheme button in the Prism toolbar to change the color scheme of this graph. For this tour, choose the color scheme called "Stained glass."

2. Then double-click on the Y axis to open the Format Axis dialog and change the Maximum range to 10,000.

Prism Magic

Now, let's see how Magic can make other graphs match this one.

1. Select your second graph (Clone of exponential decay) in the Navigator tree. This is the

graph we're going to change.

2. Click on the Magic button (The magic wand) on the Prism toolbar

This will open the Magic dialog. Click on the thumbnail of the graph you have just modified to select it as the example graph to match.

3. Click the Next button and choose which aspects of the example graph you would like to apply to your current graph. Preview how the change will look in the lower-right pane.

4. Click OK to apply the changes.

Next step

Learn how to combine graphs and other objects in a layout

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

9. Combine graphs in a layout

Collect several graphs in a Layout.

Use a Prism <u>Layout</u> to assemble multiple graphs on a single page.

Try it yourself

After you've made a few graphs, you can combine them in a layout.

1. Click the New button on the Prism toolbar and choose New Layout.

2. Then select the number and arrangement of graphs you want. For this tour, choose a page with two graphs, one above the other.

Create New Layout 🛛 🔀
Add one more graph to the page Array of graphs: across by 2 v down Standard arrangement
Page options Orientation: Portrait Landscape Background color: Include master title on top of page
Help Cancel OK

- 3. Drag and drop graphs from the Graphs section of the Prism Navigator onto the layout. Or <u>browse</u> to find graphs in other files.
- 4. Use the <u>Draw</u> and <u>Write</u> toolbars to add text and arrows or pictures to your layout. Use the <u>Arrange</u> toolbar to size and align multiple graphs.

Learn about Prism's automatic linking

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

10. Automatic linking and updating

Automatic linking and updating

Prism keeps track of everything you have done and remembers all logical links between data tables, info sheets, results tables, graphs, and layouts.

- If you edit data, Prism automatically recomputes linked <u>analyses</u> and redraws linked graphs. When data changes, all analysis results are recomputed. You or your colleagues can always see exactly what you have done to get your analysis results.
- If you edit <u>Info</u> constants, Prism automatically recomputes linked analyses, and recreates graphs and layouts where those info constants are used.
- If you edit a graph, Prism automatically redraws linked page layouts.

Try it yourself

Go to the results sheet for Exponential decay. Click on the upper-left corner to bring back the parameters dialog. You can check the choices you made or change them.

File Edit View Insert Ch	ange	Arrange Window Help								- 0
hism File Sheet	Und	Cipboard Analysis	Interpret Ch	ange Draw	wite		Text		Export Print	Send
. □· ∅ ∠ ⊕ ≥ ≠ □· ∅ ∠ ⊕ ≥ ≠ × ÷	5 2	- X 12 12 12 12 12 12 12 12 12 12 12 12 12	S	् स्र 💆	TIC	A A B	[∐ x² x₂		1	2-6 53 5
nilv	~	Nonlin fit	A .	8	c	0	E	F	G	н
a with Results	1	Table of results	Control	Treated	Title	Title	Title	Title	Title	Title
Exponential decay	4		Y	Y	Y	Y	Y	Y	Y	۷
Nonlin fit of Exponentia	1	One phase decay		1						
- D Equation	2	Dest-fit volues								
Table of results	3	YO	9992	9593						_
Clone of exponential decay	4	PLATEAU	907.0	1154						
…NonIn fit of Clone of expo	5	×	0.08927	0.3042						
-12 Equation		Holf Life	7.765	2.278						
Table of results	7	teu	11.20	3.287						
ta Tables		Span	9005	0440						
0		Std. Error								
Project info 1	10	YO	363.7	605.5						
suits	11	PLATEAU	360.3	161.5						
iphs	12	к	0.01159	0.03445						
Exponential decay	13	Span	390.6	580.8						
Clone of exponential decay	14	95% Confidence intervals								
lours	15	YO	9253 to 10732	8362 to 10825		_	-			
Layout 1	16	PLATEAU	254.3 to 1720	025.3 to 1402						
Data with police	17	×	0.0656910.01128	0.2341 to 0.374	3	_				
0000 1100 10000	18	Half Life	6.1421010.55	1.85210.2.960						
	19	Tau	8.861 to 15.22	2.67210 4.271		_	_			
	20	Span	8211 to 9800	7259 to 9621		_				
	21	Goodness of Fit		1			-			
	22	Degrees of Freedom	34	34	_					
	23	R ⁰	0.9401	0.9196	_	_	-			
	24	Absolute Sum of Squares	1.609e+007	1.256e+007		_				
	26	Syx	704.8	607.7	_	_				
	26	Constraints								
	27	×	K>00	K > 0.0						
2	<									>

Next step

Add notes and learn about other useful tools

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.

11. Adding notes and other helpful tools

Prism gives you several useful tools to help organize your work and collaborate with others.

Prism Gallery

Click on the main heading for any category in the Navigator to display the <u>Gallery</u> of all the sheets in that section. Select sheets for <u>exporting</u>, <u>printing</u>, <u>sending to PowerPoint</u>, formatting with <u>Magic</u>, etc.

🖏 Gra	phPad	Pris	m - [P	roject1:Exp	onential d	ecay)										- X
🛃 File	Edit V	kew Ir	sert Cha	ange Arrange I	Mindow Help											- 0 ×
Prism	Fie	1	heet	Undo Cipboard	Analysis	0	hange	Anange	Craw	'withe		Text		Export	Print	Send
<u>-</u>	🗋 • 📂	23	2%-	Q+ X ≧ 🗑	KK	🔊 🛄	15 🛞			ଏକ କ୍ଷା 🚱	×		$\sim \Delta^*$	-22	3	🙉 - 🚱
24		×*	None -	1-2 · O O ·	🚍 Analyze 🛅	N B	🖬 - 🌲 -	100	□ •	TΠα	AAB.	I ∐ X² X₂	追助王・		6	💽 😿
	amily uta with Expon Depon	Results onlin fi Equato Table o fexpo color fabor of expo color fabor color fabo	decay it of Exp n fresults nential d of Clon n fresults decay nential d	Esponential of		Cove		500								
-				Graph 1 of 2 🕨	0=0		Deponential	decay	~			1 of 2 she	ets selected			0.0
ACT 1019									_			1				

Info sheets

Use Prism's <u>Info sheets</u> to keep track of the details of a project. Info sheets can be links to a specific data table or they can apply to an entire project. The main section of an Info sheet is for structured information, with the left column for constant names and the right column for values. Values entered as constants can be "<u>hooked</u>" and used as constraints in nonlinear regression or when transforming, and even as axis limits or to specify custom tick locations.

Constant	Value	Notes
Experiment Date	Mar-3-2006	
Experiment ID	007	
Notebook ID	2006-C	
Project	Omega	
Experimenter	Bond, James	
Protocol	Shaken, not stirred	
Protein Conc.	0.345	
Lot number	345-45	

Ping Pong

Use Prism's Ping Pong button (bottom toolbar) to toggle back and forth between the last two sheets you've worked on. It's much faster than using the Navigator.

Floating notes

Use the <u>Floating Note</u> tool to add notes to any sheet. You can have different colored notes and you can even insert hyperlinks. Floating notes won't show when you print or export sheets.

Audio notes

Use the <u>Audio Note</u> tool ^C to record voice messages. When you are finished recording, you can click on the speaker symbol on the sheet to replay the message. (The speaker symbol won't show on printed or exported sheets.)

Highlighting

Use the <u>Highlight</u> tool to mark sheets in the Navigator that you want to go back to, or that you want your colleagues to look at.

Copyright (c) 2007 GraphPad Software Inc. All rights reserved.