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1 Learn about analyses with Prism

The Prism user's guide explains the general principles of analyzing data
with Prism including how to normalize or transform data, and how to
simulate data.  

2 How to cite these pages

When citing one of these pages, reference the name of the page, the date
you accessed it and the URL. All the pages in the statistics and curve
fitting guides were written by GraphPad's founder, Harvey Motulsky. 

Use this example as a guide to cite a single page:

H. J. Motulsky, "Advice: When to plot SD vs. SEM", GraphPad
Statistics Guide.  Accessed 5 March 2016.  
http://www.graphpad.com/guides/prism/7/statistics/index.htm?
statwhentoplotsdvssem.htm

Note that the URL for each page in these guides is shown at the bottom of
the page. Don't use the URL you see in the browser toolbar, as that may
be generic and not apply just to the page you are looking at.

Use this example as a guide to citing the entire statistics guide:

H. J. Motulsky, GraphPad Statistics Guide.  Accessed 5 March 2016. 
http://www.graphpad.com/guides/prism/7/statistics/index.htm

3 PRINCIPLES OF STATISTICS

The first half of this Guide reviews general principles of statistics, and is
not at all specific to GraphPad Prism. It includes discussions of some
important issues that many statistical text books barely mention,
including:

· The problem of multiple comparisons   and the many ways you can
get trapped by multiple comparisons .

· Testing for equivalence

111

18

137

http://www.graphpad.com/guides/prism/7/user-guide/index.htm?what_analyze_means_in_prism.htm
http://www.graphpad.com/guides/prism/7/user-guide/index.htm?what_analyze_means_in_prism.htm
http://www.graphpad.com/guides/prism/7/user-guide/index.htm?using_normalizing_transposing_prunin.htm
http://www.graphpad.com/guides/prism/7/user-guide/index.htm?simulating_data.htm
http://www.graphpad.com/guides/prism/7/statistics/index.htm?statwhentoplotsdvssem.htm
http://www.graphpad.com/guides/prism/7/statistics/index.htm?statwhentoplotsdvssem.htm
http://www.graphpad.com/guides/prism/7/statistics/index.htm
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· The danger of using outlier tests with lognormal distributions  and
the problem of masking  which can make it harder to find two
outliers than to find one. 

· Why it doesn't make sense to automate the decision  to use a
nonparametric test or not.

· The distinction between SD and SEM , and when to display each . 

· The advantages of reporting confidence intervals . 

· The most common misunderstanding about P values , and other
misunderstandings .

· Why you can't peek at the results and add more subjects if the
results are not quite significant yet.

· A simple analogy to understand statistical power .

· A set of analysis checklists . Each checklist lists questions you
should ask yourself before accepting the results of a statistical
analysis.

The second half of the guide  explains how to analyze data with Prism.
Even so, much of the content explains the alternative analyses and helps
you interpret the results. These sections will prove useful no matter which
statistical program you use.

3.1 The big picture

3.1.1 When do you need statistical calculations?

Statistical thinking will one day be as necessary for efficient citizenship as
the ability to read and write.

H. G. Wells 

When analyzing data, your goal is simple: You wish to make the strongest
possible conclusion from limited amounts of data. To do this, you need to
overcome two problems:

· Important findings can be obscured by biological variability and
experimental imprecision. This makes it difficult to distinguish real
differences from random variation.

151

157

142

49 50

62

69

69

87

92

163

190



GraphPad Statistics Guide12

© 1995-2016 GraphPad Software, Inc.

· The human brain excels at finding patterns, even in random data. Our
natural inclination (especially with our own data) is to conclude that
differences are real and to minimize the contribution of random
variability. Statistical rigor prevents you from making this mistake.

Statistical analyses are necessary when observed differences are small
compared to experimental imprecision and biological variability. 

Some scientists ask fundamental questions using clean experimental
systems with no biological variability and little experimental error. If this
describes your work, you can heed these aphorisms:

· If you need statistics to analyze your experiment, then you've done
the wrong experiment.

· If your results speak for themselves, don't interrupt!

Other scientists work in fields where they look for relatively small
differences in the face of large amounts of variability. In these fields,
statistical methods are essential.

3.1.2 The essential concepts of statistics

If you know twelve concepts about a given topic you will look like an
expert to people who only know two or three.

Scott Adams, creator of Dilbert

When learning statistics, it is easy to get bogged down in the details, and
lose track of the big picture. Here are the twelve most important concepts
in statistical inference.

Statistics lets you make general conclusions from limited data.

The whole point of inferential statistics is to extrapolate from limited data
to make a general conclusion. "Descriptive statistics" simply describes
data without reaching any general conclusions. But the challenging and
difficult aspects of statistics are all about reaching general conclusions
from limited data. 

Statistics is not intuitive. 

The word ‘intuitive’ has two meanings. One meaning is “easy to use and
understand.” That was my goal when I wrote Intuitive Biostatistics. The

http://www.dilbert.com/blog/entry/rule_of_twelve
http://www.dilbert.com/strips/
http://www.intuitivebiostatistics.com
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other meaning of 'intuitive' is “instinctive, or acting on what one feels to
be true even without reason.” Using this definition, statistical reasoning is
far from intuitive. When thinking about data, intuition often leads us
astray. People frequently see patterns in random data and often jump to
unwarranted conclusions. Statistical rigor is needed to make valid
conclusions from data. 

Statistical conclusions are always presented in terms of probability. 

"Statistics means never having to say you are certain."   If a statistical
conclusion ever seems certain, you probably are misunderstanding
something. The whole point of statistics is to quantify uncertainty. 

All statistical tests are based on assumptions.

Every statistical inference is based on a list of assumptions. Don't try to
interpret any statistical results until after you have reviewed that list. An
assumption behind every statistical calculation is that the data were
randomly sampled, or at least representative of, a larger population of
values that could have been collected. If your data are not representative
of a larger set of data you could have collected (but didn't), then
statistical inference makes no sense.

Decisions about how to analyze data should be made in advance.

Analyzing data requires many decisions.  Parametric or nonparametric
test? Eliminate outliers or not? Transform the data first? Normalize to
external control values? Adjust for covariates? Use weighting factors in
regression? All these decisions (and more) should be part of experimental
design. When decisions about statistical analysis are made after
inspecting the data, it is too easy for statistical analysis to become a
high-tech Ouja board -- a method to produce preordained results, rather
an objective method of analyzing data. The new name for this is p-
hacking.

A confidence interval quantifies precision, and is easy to interpret.

Say you've computed the mean of a set of values you've collected,or the
proportion of subjects where some event happened. Those values
describe the sample you've analyzed. But what about the overall
population you sampled from? The true population mean (or proportion)
might be higher, or it might be lower. The calculation of a 95% confidence
interval takes into account sample size and scatter.  Given a set of
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assumptions,  you can be 95% sure that the confidence interval includes
the true population value (which you could only know for sure by
collecting an infinite amount of data). Of course, there is nothing special
about 95% except tradition. Confidence intervals can be computed for
any degree of desired confidence. Almost all results -- proportions,
relative risks, odds ratios, means, differences between means, slopes,
rate constants... -- should be accompanied with a confidence interval. 

A P value tests a null hypothesis, and is hard to understand at first.

The logic of a P value seems strange at first. When testing whether two
groups differ (different mean, different proportion, etc.), first hypothesize
that the two populations are, in fact, identical. This is called the null
hypothesis. Then ask: If the null hypothesis were true, how unlikely
would it be to randomly obtain samples where the difference is as large
(or even larger) than actually observed? If the P value is large, your data
are consistent with the null hypothesis. If the P value is small, there is
only a small chance that random chance would have created as large a
difference as actually observed. This makes you question whether the null
hypothesis is true. If you can't identify the null hypothesis, you cannot
interpret the P value.

"Statistically significant" does not mean the effect is large or scientifically
important.

If the P value is less than 0.05 (an arbitrary, but well accepted
threshold), the results are deemed to be statistically significant. That
phrase sounds so definitive. But all it means is that, by chance alone, the
difference (or association or correlation..) you observed (or one even
larger) would happen less than 5% of the time. That's it. A tiny effect that
is scientifically or clinically trivial can be statistically significant (especially
with large samples). That conclusion can also be wrong, as you'll reach a
conclusion that results are statistically significant 5% of the time just by
chance. 

"Not significantly different" does not mean the effect is absent, small or
scientifically irrelevant.

If a difference is not statistically significant, you can conclude that the
observed results are not inconsistent with the null hypothesis. Note the
double negative. You cannot conclude that the null hypothesis is true. It
is quite possible that the null hypothesis is false, and that there really is a
difference between the populations. This is especially a problem with
small sample sizes.  It makes sense to define a result as being
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statistically significant or not statistically significant when you need to
make a decision based on this one result. Otherwise, the concept of
statistical significance adds little to data analysis.

Multiple comparisons make it hard to interpret statistical results.

When many hypotheses are tested at once, the problem of multiple
comparisons makes it very easy to be fooled. If 5% of tests will be
"statistically significant" by chance, you expect lots of statistically
significant results if you test many hypotheses. Special methods can be
used to reduce the problem of  finding false, but statistically significant,
results, but these methods also make it harder to find true effects.
Multiple comparisons can be insidious. It is only possible to correctly
interpret statistical analyses when all analyses are planned, and all
planned analyses are conducted and reported. However, these simple
rules are widely broken. 

Correlation does not mean causation.

A statistically significant correlation or association between two variables
may indicate that one variable causes the other. But it may just mean
that both are influenced by a third variable. Or it may be a coincidence.

Published statistics tend to be optimistic.

By the time you read a paper, a great deal of selection has occurred.
When experiments are successful, scientists continue the project. Lots of
other projects get abandoned.When the project is done, scientists are
more likely to write up projects that lead to remarkable results, or to
keep analyzing the data in various ways to extract a "statistically
significant" conclusion. Finally, journals are more likely to publish
“positive” studies. If the null hypothesis were true, you would expect a
statistically significant result in 5% of experiments. But those 5% are
more likely to get published than the other 95%.

3.1.3 Extrapolating from 'sample' to 'population'

The basic idea of statistics is simple:

You want to use limited amounts of data to make general conclusions.
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To do this, statisticians have developed methods based on a simple
model: Assume that an infinitely large population of values exists and
that your data (your 'sample') was randomly selected from this
population. Analyze your sample and use the rules of probability to make
inferences about the overall population. 

This model is an accurate description of some situations. For example,
quality control samples really are randomly selected from a large
population. Clinical trials do not enroll a randomly selected sample of
patients, but it is usually reasonable to extrapolate from the sample you
studied to the larger population of similar patients.

In a typical experiment, you don't really sample from a population, but
you do want to extrapolate from your data to a more general conclusion.
The concepts of sample and population can still be used if you define the
sample to be the data you collected and the population to be the data you
would have collected if you had repeated the experiment an infinite
number of times.

The problem is that the statistical inferences can only apply to the
population from which your samples were obtained, but you often want to
make conclusions that extrapolate even beyond that large population. For
example, you perform an experiment in the lab three times. All the
experiments used the same cell preparation, the same buffers, and the
same equipment. Statistical inferences let you make conclusions about
what would probably happen if you repeated the experiment many more
times with that same cell preparation, those same buffers, and the same
equipment. 

You probably want to extrapolate further to what would happen if
someone else repeated the experiment with a different source of cells,
freshly made buffer, and different instruments. Unfortunately, statistical
calculations can't help with this further extrapolation. You must use
scientific judgment and common sense to make inferences that go beyond
the limitations of statistics. 

3.1.4 Why statistics can be hard to learn

Three factors make statistics hard to learn for some.
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Probability vs. statistics

The whole idea of statistics is to start with a limited amount of data and
make a general conclusion (stated in terms of probabilities). In other
words, you use the data in your sample to make general conclusions
about the population from which the data were drawn. 

Probability theory goes the other way. You start with knowledge about the
general situation, and then compute the probability of various outcomes.
The details are messy, but the logic is pretty simple.

Statistical calculations rest on probability theory, but the logic of
probability is opposite to the logic of statistics. Probability goes from
general to specific, while statistics goes from specific to general. Applying
the mathematics of probability to statistical analyses requires reasoning
that can sometimes seem convoluted.

Statistics uses ordinary words in unusual ways

All fields have technical terms with specific meanings. In many cases,
statistics uses words that you already know, but give them specific
meaning. "Significance", "hypothesis", "confidence", "error", "normal" are
all common words that statistics uses in very specialized ways. Until you
learn the statistical meaning of these terms, you can be very confused
when reading statistics books or talking to statisticians. The problem isn't
that you don't understand a technical term. The problem is that you think
you know what the term means, but are wrong. As you read these help
screens be sure to pay attention to familiar terms that have special
meanings in statistics. 

When I use a word, it means just what I choose it to mean —
neither more nor less.

Humpty Dumpty (amateur statistician) in Through the Looking Glass

Statistics is on the interface of math and science

Statistics is a branch of math, so to truly understand the basis of
statistics you need to delve into the mathematical details. However, you
don't need to know much math to use statistics effectively and to
correctly interpret the results. Many statistics books tell you more about
the mathematical basis of statistics than you need to know to use
statistical methods effectively. The focus here is on selecting statistical
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methods and making sense of the results, so this presentation uses very
little math. If you are a math whiz who thinks in terms of equations, you'll
want to learn statistics from a mathematical book. 

Parts of this page are excerpted from Chapter 2 of Motulsky, H.J. (2010). 
Intuitive Biostatistics, 2nd edition. Oxford University Press. ISBN=978-0-
19-973006-3.

3.1.5 Don't be a P-hacker

Overview

Vickers  told this story (1):

Statistician: "Oh, so you have already calculated the P value?"

Surgeon: "Yes, I used multinomial logistic regression."

Statistician: "Really? How did you come up with that?"

Surgeon: "Well, I tried each analysis on the SPSS drop-down menus,
and that was the one that gave the smallest P value".

Basic rules of statistics

For statistical analyses to be interpretable at face value, it is essential
that these three statements be true:

· All analyses were planned.

· All planned analyses were conducted exactly as planned and then
reported.

· You take into account all the analyses when interpreting the results. 

These simple and sensible rules are commonly violated in many ways as
explained below.

http://www.intuitivebiostatistics.com
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Multiple ways to preprocess the data

Before the data are analyzed, some decisions get made. Which values
should be deleted because they are so high or so low that they are
considered to be mistakes? Whether and how to normalize? Whether and
how to transform the data? 

Sequential Analyses (ad hoc sample size determination)

To properly interpret a P value, the experimental protocol has to be set in
advance. Usually this means choosing a sample size, collecting data, and
then analyzing it.

But what if the results aren’t quite statistically significant? It is tempting
to run the experiment a few more times (or add a few more subjects),
and then analyze the data again, with the larger sample size. If the
results still aren’t “significant”, then do the experiment a few more times
(or add more subjects) and reanalyze once again.

When data are analyzed in this way, it is impossible to interpret the
results. This informal sequential approach should not be used.

If the null hypothesis of no difference is in fact true, the chance of
obtaining a “statistically significant” result using that informal sequential
approach is far higher than 5%. In fact, if you carry on that approach long
enough, then every single experiment will eventually reach a “significant”
conclusion, even if the null hypothesis is true. Of course, “long enough”
might be very long indeed and exceed your budget or even your lifespan.

The problem is that the experiment continues when the result is not
“significant”, but stops when the result is “significant”. If the experiment
was continued after reaching “significance”, adding more data might then
result in a “not significant” conclusion. But you’d never know this,
because the experiment would have been terminated once “significance”
was reached. If you keep running the experiment when you don’t like the
results, but stop the experiment when you like the results, the results are
impossible to interpret.

Statisticians have developed rigorous ways to handle sequential data
analysis. These methods use much more stringent criteria to define
“significance” to account for the sequential analyses. Without these
special methods, you can’t interpret the results unless the sample size is
set in advance
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Multiple Subgroups

Analyzing multiple subgroups of data is a form of multiple comparisons.
When a treatment works in some subgroups but not others, analyses of
subgroups becomes a form of multiple comparisons and it is easy to be
fooled.

A simulated study by Lee  and coworkers points out the problem. They
pretended to compare survival following two “treatments” for coronary
artery disease. They studied a group of real patients with coronary artery
disease who they randomly divided into two groups. In a real study, they
would give the two groups different treatments, and compare survival. In
this simulated study, they treated the subjects identically but analyzed
the data as if the two random groups actually represented two distinct
treatments. As expected, the survival of the two groups was
indistinguishable (2).

They then divided the patients into six groups depending on whether they
had disease in one, two, or three coronary arteries, and depending on
whether the heart ventricle contracted normally or not. Since these are
variables that are expected to affect survival of the patients, it made
sense to evaluate the response to “treatment” separately in each of the
six subgroups. Whereas they found no substantial difference in five of the
subgroups, they found a striking result among the sickest patients. The
patients with three-vessel disease who also had impaired ventricular
contraction had much better survival under treatment B than treatment
A. The difference between the two survival curves was statistically
significant with a P value less than 0.025.

If this were an actual study, it would be tempting to conclude that
treatment B is superior for the sickest patients, and to recommend
treatment B to those patients in the future. But this was not a real study,
and the two “treatments” reflected only random assignment of patients.
The two treatments were identical, so the observed difference was
absolutely positively due to chance.

It is not surprising that the authors found one low P value out of six
comparisons. There is a 26% chance that one of six independent
comparisons will have a P value less than 0.05, even if all null hypotheses
are true.

If all the subgroup comparisons are defined in advance, it is possible to
correct for many comparisons – either as part of the analysis or informally
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while interpreting the results. But when this kind of subgroup analysis is
not defined in advance, it becomes a form of “data torture”.

Multiple Predictions

In 2000, the Intergovernmental Panel on Climate Change made
predictions about future climate. Pielke asked what seemed like a
straightforward question: How accurate were those predictions over the
next seven years? That’s not long enough to seriously assess predictions
of global warming, but it is a necessary first step. Answering this question
proved to be impossible. The problems are that the report contained
numerous predictions, and didn’t specify which sources of climate data
should be used. Did the predictions come true? The answer depends on
the choice of which prediction to test and which data set you test it
against -- “a feast for cherry pickers” (3)

You can only evaluate the accuracy of predictions or diagnoses when the
prediction unambiguously stated what was being predicted and when it
would happen. 

Combining Groups

When comparing two groups, the groups must be defined as part of the
study design. If the groups are defined by the data, many comparisons
are being made implicitly and ending the results cannot be interpreted.

Austin and Goldwasser demonstrated this problem(4). They looked at the
incidence of hospitalization for heart failure in Ontario (Canada) in twelve
groups of patients defined by their astrological sign (based on their
birthday). People born under the sign of Pisces happened to have the
highest incidence of heart failure. They then did a simple statistics test to
compare the incidence of heart failure among people born under Pisces
with the incidence of heart failure among all others (born under all the
other eleven signs, combined into one group). Taken at face value, this
comparison showed that the difference in incidence rates is very unlikely
to be due to chance (the P value was 0.026). Pisces have a “statistically
significant” higher incidence of heart failure than do people born in the
other eleven signs.

The problem is that the investigators didn’t test really one hypothesis;
they tested twelve.  They only focused on Pisces after looking at the
incidence of heart failure for people born under all twelve astrological
signs. So it isn’t fair to compare that one group against the others,
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without considering the other eleven implicit comparisons. After
correcting for those multiple comparisons, there was no significant
association between astrological sign and heart failure.

Multiple regression, logistic regression, etc.

Fitting a multiple regression model provides even more opportunities to
try multiple analyses:

· Try including or excluding possible confounding variables.

· Try including or excluding interactions.

· Change the definition of the outcome variable.

· Transform the outcome or any of the independent variables to
logarithms or reciprocals or something else.

Unless these decisions were made in advance, the results of multiple
regression (or multiple logistic or proportional hazards regression) cannot
be interpreted at face value. 

Chapter 38 of Intuitive Biostatistics(8) explains this problem of
overfitting, as does Babyok (5). 

The garden of forking paths

In some cases, you first look at the data (and perhaps do a preliminary
analysis) and then decide what test to run next depending on those
values. Gelman calls this "the garden of forking paths" and states that it
is a form of multiple comparisons (10).

Publication Bias 

Editors prefer to publish papers that report results that are statistically
significant. Interpreting published results becomes problematic when
studies with “not significant” conclusions are abandoned, while the ones
with “statistically significant” results get published.  This means that the
chance of observing a ‘significant’ result in a published study can be much
greater than 5% even if the null hypotheses are all true.

Turner demonstrated this kind of selectivity -- called publication bias -- in
industry-sponsored investigations of the efficacy of antidepressant drugs
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(6). Between 1987 and 2004, the Food and Drug Administration (FDA)
reviewed 74 such studies, and categorized them as “positive”, “negative”
or “questionable”. The FDA reviewers found that 38 studies showed a
positive result (the antidepressant worked). All but one of these studies
was published. The FDA reviewers found that the remaining 36 studies
had negative or questionable results. Of these, 22 were not published, 11
were published with a ‘spin’ that made the results seem somewhat
positive, and only 3 of these negative studies were published with clear
negative findings.

The problem is a form of multiple comparisons. Many studies are done,
but only some are published, and these are selected because they show
"desired" results. 

Bottom line

Statistical analyses can be interpreted at face value only when all steps
are planned, all planned analyses are published, and all the results are
considered when reaching conclusions. These simple rules are violated in
many ways in common statistical practice.

If you try hard enough, eventually ‘statistically significant’ findings will
emerge from any reasonably complicated data set. This is called data
torture (6) or P-hacking (9).  When reviewing results, you often can't
even correct for the number of ways the data were analyzed since the
number of possible comparisons was not defined in advance, and is
almost unlimited. When results were analyzed many ways without a plan,
the results simply cannot be interpreted. At best, you can treat the
findings as an hypothesis to be tested in future studies with new data.
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3.1.6 How to report statistical results

The guidelines below are an opinionated guide about how to present data
and analyses. Of course, you also need to report details of experimental
design, including blinding and randomization. 
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Overall 

· Every statistical paper should report all methods (including those used
to process and analyze the data) completely enough so someone else
could reproduce the work exactly. 

· Every figure and table should present the data clearly (and not be
exaggerated in a way to emphasize your conclusion). 

· All the results should be reported completely enough that no one
wonders what you actually did. 

The analyses before the analyses

· Did you decide to normalize? Remove outliers? Transform to
logarithms? Smooth? Remove a baseline? Justify these decisions, and
report enough details so anyone could start with your data and get
exactly the same results. State whether these calculations were
preplanned or only decided upon after seeing the data.

· If outliers were eliminated, say how many there were, what criteria
you used to identify them, and whether these criteria were  chosen in
advance as part of the experimental design.

Sample size

· Report how you chose sample size .

· Explain exactly what was counted when reporting sample size. When
you say n=3, do you mean three different animals, three different
assays on tissue from one animal, one assay from tissue pooled from
three animals, three repeat counts in a gamma counter from a
preparation made from one run of an experiment...?

· State whether you choose sample size in advance , or adjusted
sample size in an ad hoc manner as you saw the results accumulate. 

· If the sample sizes of the groups are not equal, explain why.

Avoid P-hacking

· For each analysis (usually for each figure and table), state whether
every step in data analysis followed a preplanned protocol or not. If
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you only decided to remove outliers after seeing the data, say so. If
you only decided to use a nonparametric test after seeing the data,
say so. If you only decided to analyze the logarithms of the data after
viewing the data, say so. 

· If you don't show every analysis you did, at least describe and
enumerate them.

· If you started with one sample size and ended with another sample
size, explain exactly how you decided to add additional samples and/or
eliminate samples. State whether these decisions were based on a
preset protocol, or were decided during the course of the experiment.

Graphing data

· Present data clearly. Focus on letting the reader see the data, and not
only your conclusions. 

· When possible, graph the individual data, not a summary of the data.
If there are too many values to show in scatter plots, consider box-
and-whisker plots or frequency distributions.  

· If you choose to plot means with error bars, graph standard
deviation  error bars which show variability, rather than standard
error of the mean  error bars, which do not. 

Statistical methods 

· State the full name of the test. Don't say "t test", say "paired t test". 

· Identify the program of the program that did the calculations
(including detailed version number, which for GraphPad Prism might
be 7.01). 

· State all options you selected. Repeated measures? Correcting for
unequal variances? Robust regression? Constraining parameters?
Sharing parameters? Report enough detail so anyone could  start with
your data and get precisely the same results you got. 

Reporting effect size

· The most important result of most experiments is an effect size. How
big was the difference (or ratio or percent increase)? Or how strongly

40
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were two variables correlated? In almost all cases, you can summarize
this effect size with a single value and should report this effect with a
confidence interval, usually the 95% interval. This is by far the most
important finding to report in a paper and its abstract.

· Consider showing a graph of effect sizes (i.e. differences or ratios)
with 95% confidence intervals. 

Reporting P values 

· When possible, report the P value as a number with a few digits of
precision, not an inequality. For example say "the P value was 0.0234"
rather than "P < 0.05". 

· If there is any possible ambiguity, clearly state the null hypothesis the
P value tests. If you don't know the null hypothesis, then you shouldn't
report a P value (since every P value tests a null hypothesis)!

· When comparing two groups, state if the P value is one- or two-
sided  (which is the same as one- or two-tailed). If one-sided, state
that you predicted the direction of the effect before collecting data
(and recorded this prediction), and recorded that decision and
prediction. If you didn't make this decision and prediction before
collecting data, you should not report a one-sided P value.

 Reporting statistical hypothesis testing (significance) 

· Statistical hypothesis testing is used to make a firm decision based on
a single P value. One use is choosing between the fit of two alternative
models. If the P value is less than a preset threshold you pick one
model, otherwise the other. When doing this, state both models, the
method you are using to choose between them, the preset threshold P
value, and the model you chose. Perhaps also report the goodness of
fit of both models. 

·  When comparing groups, you don't always make a decision based on
the result. If you are making a crisp decision, report the threshold P
value, whether the computed P value was greater or less than the
threshold, and the accompanying decision. If you are not making a
decision, report the effect with its confidence interval, and perhaps a P
value. If you are not making a decision based on that P value, then it
doesn't really matter whether or not the P value was less than a

71
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threshold or not, and the whole idea of statistical hypothesis testing
isn't really useful.

· The word "significant" has two related meanings, so has caused lots of
confusion in science. The two bullet points above demonstrate that the
results of statistical hypothesis testing can (and in my opinion should)
be reported without using the word "significant". If you do choose to
use the word "significant" in this context, always precede it with
"statistically", so there is no confusion.  

· Never use the word "significant" when discussing the clinical or
physiological impact of a result. Instead use words like "large",
"substantial", and "clinically relevant". Using "significant" in this
context just leads to confusion.

Multiple comparisons

· Multiple comparisons must be handled thoughtfully, and all steps must
be documented. Note that the problem of multiple comparisons is
widespread , and isn't just an issue when doing follow-up tests after
ANOVA.

· State whether or not all comparisons were planned, and all planned
comparisons were reported. If you report unplanned comparisons or
omit some comparisons, the results must be identified as preliminary. 

· If you used any correction for multiple comparisons, explain the
details.

· If you report multiplicity adjusted P values, point out clearly that these
P values were adjusted.

Other guides to presenting statistical results
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3.1.7 Ordinal, interval and ratio variables

Many statistics books begin by defining the different kinds of variables
you might want to analyze. This scheme was developed by S. Stevens
and published in 1946.

Definitions

A categorical variable, also called a nominal variable, is for mutually
exclusive, but not ordered, categories. For example, your study might
compare five different genotypes. You can code the five genotypes with
numbers if you want, but the order is arbitrary and any calculations (for
example, computing an average) would be meaningless.

An ordinal variable, is one where the order matters but not the
difference between values. For example, you might ask patients to
express the amount of pain they are feeling on a scale of 1 to 10. A score
of 7 means more pain than a score of 5, and that is more than a score of
3. But the difference between the 7 and the 5 may not be the same as
that between 5 and 3. The values simply express an order. Another
example would be movie ratings, from * to *****.

An interval variable is a one where the difference between two values is
meaningful. The difference between a temperature of 100 degrees and 90
degrees is the same difference as between 90 degrees and 80 degrees.

A ratio variable, has all the properties of an interval variable, but also
has a clear definition of 0.0. When the variable equals 0.0, there is none
of that variable. Variables like height, weight, enzyme activity are ratio
variables. Temperature, expressed in F or C, is not a ratio variable. A
temperature of 0.0 on either of those scales does not mean 'no heat.
However, temperature in Kelvin is a ratio variable, as 0.0 Kelvin really
does mean 'no heat'. Another counter example is pH. It is not a ratio
variable, as pH=0 just means 1 molar of H+. and the definition of molar is
fairly arbitrary. A pH of 0.0 does not mean 'no acidity' (quite the
opposite!). When working with ratio variables, but not interval variables,
you can look at the ratio of two measurements. A weight of 4 grams is
twice a weight of 2 grams, because weight is a ratio variable. A
temperature of 100 degrees C is not twice as hot as 50 degrees C,
because temperature C is not a ratio variable. A pH of 3 is not twice as
acidic as a pH of 6, because pH is not a ratio variable. 
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The categories are not as clear cut as they sound. What kind of variable is
color? In some experiments, different colors would be regarded as
nominal. But if color is quantified by wavelength, then color would be
considered a ratio variable. The classification scheme really is somewhat
fuzzy. 

What is OK to compute

OK to compute.... Nominal Ordinal Interval Ratio

frequency
distribution

Yes Yes Yes Yes

median and
percentiles

No Yes Yes Yes

sum or difference No No Yes Yes

mean, standard
deviation, standard
error of the mean

No No Yes Yes

ratio, or coefficient
of variation

No No No Yes

Does it matter?

It matters if you are taking an exam in statistics, because this is the kind
of concept that is easy to test for. 

Does it matter for data analysis? The concepts are mostly pretty obvious,
but putting names on different kinds of variables can help prevent
mistakes like taking the average of a group of postal (zip) codes, or
taking the ratio of two pH values. Beyond that, putting labels on the
different kinds of variables really doesn't really help you plan your
analyses or interpret the results.

3.1.8 The need for independent samples

Statistical tests are based on the assumption that each subject (or each
experimental unit) was sampled independently of the rest. Data are
independent when any random factor that causes a value to be too high
or too low affects only that one value. If a random factor (one that you
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didn't account for in the analysis of the data) can affect more than one
value, but not all of the values, then the data are not independent.

The concept of independence can be difficult to grasp. Consider the
following three situations.

· You are measuring blood pressure in animals. You have five animals in
each group, and measure the blood pressure three times in each
animal. You do not have 15 independent measurements. If one animal
has higher blood pressure than the rest, all three measurements in
that animal are likely to be high. You should average the three
measurements in each animal. Now you have five mean values that
are independent of each other.

· You have done a biochemical experiment three times, each time in
triplicate. You do not have nine independent values, as an error in
preparing the reagents for one experiment could affect all three
triplicates. If you average the triplicates, you do have three
independent mean values.

· You are doing a clinical study and recruit 10 patients from an inner-
city hospital and 10 more patients from a suburban clinic. You have
not independently sampled 20 subjects from one population. The data
from the 10 inner-city patients may be more similar to each other than
to the data from the suburban patients. You have sampled from two
populations and need to account for that in your analysis.

3.1.9 Intuitive Biostatistics (the book)

H.J. Motulsky, Intuitive Biostatistics, ISBN: 978-
0199946648, 3rd edition 2014

Table of contents

Excerpts

Reviews

http://www.intuitivebiostatistics.com
http://www.intuitivebiostatistics.com/contents/
http://www.intuitivebiostatistics.com/excerpts/
http://www.intuitivebiostatistics.com/reviews/


GraphPad Statistics Guide32

© 1995-2016 GraphPad Software, Inc.

Intuitive Biostatistics is a beautiful book that has much to teach
experimental biologists of all stripes. Unlike other statistics texts I have
seen, it includes extensive and carefully crafted discussions of the perils
of multiple comparisons, warnings about common and avoidable mistakes
in data analysis, a review of the assumptions that apply to various tests,
an emphasis on confidence intervals rather than P values, explanations as
to why the concept of statistical significance is rarely needed in scientific
work, and a clear explanation of nonlinear regression (commonly used in
labs; rarely explained in statistics books). 

In fact, I am so pleased with Intuitive Biostatistics that I decided to make
it the reference of choice for my postdoctoral associates and graduate
students, all of whom depend on statistics, and most of whom need a
closer awareness of precisely why. Motulsky has written thoughtfully, with
compelling logic and wit. He teaches by example what one may expect of
statistical methods and perhaps just as importantly, what one may not
expect of them. He is to be congratulated for this work, which will surely
be valuable and perhaps even transformative for many of the scientists
who read it. 

—Bruce Beutler, 2011 Nobel Laureate, Physiology or Medicine,    Director,
Center for the Genetics of Host Defense, UT Southwestern Medical Center

If you like the style of this guide, you'll also appreciate the introductory
text I wrote: Intuitive Biostatistics.

Overview

Intuitive Biostatistics is both an introduction and review of statistics.
Compared to other books, it has:

· Breadth rather than depth. It is a guidebook, not a cookbook.

· Words rather than math. It has few equations.

· Explanations rather than recipes. This book presents few details of
statistical methods and only a few tables required to complete the
calculations.

Who is it for?

I wrote Intuitive Biostatistics for three audiences:
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· Medical (and other) professionals who want to understand  the
statistical portions of journals they read. These readers don’t need to
analyze any data, but need to understand analyses published by others.
I’ve tried to explain the big picture, without getting bogged down in too
many details.

· Undergraduate and graduate students, post-docs and researchers who
will analyze data. This book explains general principles of data analysis,
but it won’t teach you how to do statistical calculations or how to use
any particular statistical program. It makes a great companion to the
more traditional statistics texts and to the documentation of statistical
software.

· Scientists who consult with statisticians. Statistics often seems like a
foreign language, and this text can serve as a phrase book to bridge the
gap  between scientists and statisticians. Sprinkled throughout the book
are “Lingo” sections that explain statistical terminology, and point out
when statistics gives ordinary words very specialized meanings (the
source of much confusion). 

3.1.10 Essential Biostatistics (the book)

  

H.J. Motulsky
Essential
Biostatistics, 
ISBN: 978-

Some ways in which this book is unique

· It doesn't explain how to calculate any
statistical tests. In fact, it only includes two
equations.

· Chapter 1 is a fun chapter that explains how
common sense can lead you astray and why we
therefore need to understand statistical
principles.

· Chapter 2 is a unique approach to appreciating
the complexities of probability.

· I introduce statistical thinking with Chapter 4,
which explains the confidence interval of a
proportion. This lets me explain the logic of
generalizing from sample to population using a
confidence interval before having to deal with
concepts about how to quantify the scatter. 
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0199365067
$20

See the table of
contents and two full
chapters at 
www.essentialbiostati
stics.com

· I explain comparing groups with confidence
intervals (Chapter 12) before explaining P
values (Chapter 13) and statistical significance
(Chapters 14 and 15). This way I could delay as
long as possible dealing with the confusing
concept of a P value and the overused word
“significant”.

· Chapter 16 explains how common Type I errors
are, and the difference between a significance
level and the false discovery rate.

· Chapter 19 explains all common statistical tests
as a series of tables.

· I include topics often omitted from introductory
texts, but that I consider to be essential,
including: multiple comparisons, the false
discovery rate, p-hacking, lognormal
distributions, geometric mean, normality tests,
outliers and nonlinear regression.

· Nearly every chapter has a Lingo section
explaining how statistical terminology can be
misunderstood.

· Nearly every chapter includes a Common
Mistakes section, and Chapter 25 explains more
general mistakes to avoid. 

"Essential Biostatistics distills the essence of university-level biostatistics
topics in accessible concise language that is engaging and thought-
provoking. Students and practitioners of biostatistics will find Intuitive
Biostatistics: The Essentials to be an excellent resource that provides
clarity on major statistical concepts and procedures while also
illuminating erroneous statistical conclusions many fall prey to. This text
would be an excellent companion to a traditional biostatistics book."
--Derek Webb, Bemidji State University

"The author does a great job explaining why we use statistics rather than
getting bogged down explaining how we calculate statistics. I find it
refreshing to step back from the calculations to see the larger context of

http://www.essentialbiostatistics.com
http://www.essentialbiostatistics.com
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why we use statistics in science."
--Dean W. Coble, Stephen F. Austin StateÂ University

"I really like the clear and humorous style, the wealth of examples, and
the discussions of the limits and pitfalls. This is a wonderful book."
--Naji Younes, George Washington University

"Motulsky seems to have done the impossible, again.  He has taken his
already great textbook and extracted the bare-bones necessary for the
reader to enjoy a lively, easy-to-read introduction to the concepts of
biostatistics.  In addition, Motulsky provides the reader with a discussion
of common mistakes and how to avoid them.  This is invaluable for a true
understanding of biostatistics.  Essential Biostatistics should be required
reading for all beginning biology or biostatistics students.  It provides
foundational material for interpreting statistical analysis."
--Philip Hejduk, University of Texas at Arlington

 

3.2 The Gaussian distribution

"Everybody believes in the [Gaussian distribution]:

the experimenters, because they think it can be

proved by mathematics; and the mathematicians,

because they believe it has been established by

observation."

W. Lippmann
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3.2.1 Importance of the Gaussian distribution

Statistical tests analyze a particular set of data to make more general
conclusions. There are several approaches to doing this, but the most
common is based on assuming that data in the population have a certain
distribution. The distribution used most commonly by far is the bell-
shaped Gaussian distribution, also called the Normal distribution. This
assumption underlies many statistical tests such as t tests and ANOVA, as
well as linear and nonlinear regression.

When reading in other books about the Gaussian distribution, two
statistical terms might be confusing because they sound like ordinary
words:

· In statistics, the word “normal” is another name for a Gaussian, bell-
shaped, distribution. In other contexts, of course, the word “normal”
has very different meanings (absence of disease or common).

· Statisticians refer to the scatter of points around the line or curve as
“error”. This is a different use of the word than is used ordinarily. In
statistics, the word “error” simply refers to deviation from the
average. The deviation is usually assumed to be due to biological
variability or experimental imprecision, rather than a mistake (the
usual use of the word “error”). 

3.2.2 Origin of the Gaussian distribution

The Gaussian distribution emerges when many independent random
factors act in an additive manner to create variability. This is best seen by
an example. 

Imagine a very simple “experiment”. You pipette some water and weigh
it. Your pipette is supposed to deliver 10 microliter of water, but in fact
delivers randomly between 9.5 and 10.5 microliters. If you pipette one
thousand times and create a frequency distribution histogram of the
results, it will look like the figure below.
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The average weight is 10 milligrams, the weight of 10 microliters of water
(at least on earth). The distribution is flat, with no hint of a Gaussian
distribution. 

Now let's make the experiment more complicated. We pipette twice and
weigh the result. On average, the weight will now be 20 milligrams. But
you expect the errors to cancel out some of the time. The figure below is
what you get.

Each pipetting step has a flat random error. Add them up, and the
distribution is not flat. For example, you'll get weights near 21 mg only if
both pipetting steps err substantially in the same direction, and that is
rare.
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Now let's extend this to ten pipetting steps, and look at the distribution of
the sums.

The distribution looks a lot like an ideal Gaussian distribution. Repeat the
experiment 15,000 times rather than 1,000 and you get even closer to a
Gaussian distribution.

This simulation demonstrates a principle that can also be mathematically
proven. Scatter will approximate a Gaussian distribution if your
experimental scatter has numerous sources that are additive and of
nearly equal weight, and the sample size is large.

The Gaussian distribution is a mathematical ideal. Few biological
distributions, if any, really follow the Gaussian distribution. The Gaussian
distribution extends from negative infinity to positive infinity. If the
weights in the example above really were to follow a Gaussian
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distribution, there would be some chance (albeit very small) that the
weight is negative. Since weights can't be negative, the distribution
cannot be exactly Gaussian. But it is close enough to Gaussian to make it
OK to use statistical methods (like t tests and regression) that assume a
Gaussian distribution.

3.2.3 The Central Limit Theorem of statistics

The Gaussian distribution plays a central role in statistics because of a
mathematical relationship known as the Central Limit Theorem. To
understand this theorem, follow this imaginary experiment:

1. Create a population with a known distribution (which does not have to
be Gaussian). 

2. Randomly pick many samples of equal size from that population.
Tabulate the means of these samples. 

3. Draw a histogram of the frequency distribution of the means.

The central limit theorem says that if your samples are large enough, the
distribution of means will follow a Gaussian distribution even if the
population is not Gaussian. Since most statistical tests (such as the t test
and ANOVA) are concerned only with differences between means, the
Central Limit Theorem lets these tests work well even when the
populations are not Gaussian. For this to be valid, the samples have to be
reasonably large. How large is that? It depends on how far the population
distribution differs from a Gaussian distribution. Assuming the population
doesn't have a really unusual distribution, a sample size of 10 or so is
generally enough to invoke the Central Limit Theorem.

To learn more about why the ideal Gaussian distribution is so useful, read
about the Central Limit Theorem in any statistics text. 

3.3 Standard Deviation and Standard Error of the Mean

Rather than show raw data, many scientists

present results as mean plus or minus the
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standard deviation (SD) or standard error (SEM).

This section helps you understand what these

values mean. 

3.3.1 Key concepts: SD

What is the SD?

The standard deviation (SD) quantifies variability or scatter, and it is
expressed in the same units as your data.

How to interpret the SD when the data are Gaussian

If the data are sampled from a Gaussian distribution, then you expect
68% of the values to lie within one SD of the mean and 95% to lie within
two SD of the mean. This figure shows 250 values sampled from a
Gaussian distribution. The shaded area covers plus or minus one SD from
the mean, and includes about two-thirds of the values. The dotted lines
are drawn at the mean plus or minus two standard deviations, and about
95% of the values lie within those limits.
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The graph that follows shows the relationship between the standard
deviation and a Gaussian distribution. The area under a probability
distribution represents the entire population, so the area under a portion
of a probability distribution represents a fraction of the population. In the
graph on the left, the green (shaded) portion extends from one SD below
the mean to one SD above the mean. The green area is about 68% of the
total area, so a bit more than two thirds of the values are in the interval
mean plus or minus one SD. The graph on the right shows that about
95% of values lie within two standard deviations of the mean.

How to interpret the SD when the data are not Gaussian

The figure below shows three sets of data, all with exactly the same mean
and SD. The sample on the left is approximately Gaussian. The other two
samples are far from Gaussian yet have precisely the same mean (100)
and standard deviation (35).
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This graph points out that interpreting the mean and SD the usual way
can be misleading if you assume the data are Gaussian, but that
assumption isn't true.

The SD can still be interpreted without assuming a Gaussian distribution.
The Chebyshev theorem states that even if data are not sampled from a
Gaussian distribution:

· At least 75% of the values must lie within two standard deviations of
the mean

· At least 89% of the values must be within three standard deviations

How to report standard deviations

Many people report a mean and a standard deviation something like this:
 "115±10 mmHg", with a footnote or statement in the Methods section
defining the second value as a standard deviation. 

Some (1,2) say that because the standard deviation is a single value that
quantifies scatter, it should not follow a plus/minus symbol but instead
should appear like this:  "115 mmHg  (SD 10)".

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
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1. Curran-Everett D, Benos D. Guidelines for reporting statistics in
journals published by the American Physiological Society. AJP -
Gastrointestinal and Liver Physiology. 2004 Aug 1;287(2):G307. 

2. Ludbrook J. The presentation of statistics in Clinical and Experimental
Pharmacology and Physiology. Clin Exp Pharmacol Physiol. 2008 Oct
1;35(10):1271–4; authorreply1274. 

3.3.2 Computing the SD

How is the SD calculated?

1. Compute the square of the difference between each value and the
sample mean. 

2. Add those values up.

3. Divide the sum by N-1. This is called the variance. 

4. Take the square root to obtain the Standard Deviation. 

Why n-1?

Why divide by n-1 rather than N in the third step above? In step 1, you
compute the difference between each value and the mean of those
values. You don't know the true mean of the population; all you know is
the mean of your sample. Except for the rare cases where the sample
mean happens to equal the population mean, the data will be closer to
the sample mean than it will be to the true population mean. So the value
you compute in step 2 will probably be a bit smaller (and can't be larger)
than what it would be if you used the true population mean in step 1. To
make up for this, we divide by n-1 rather than n. 

But why n-1? If you knew the sample mean, and all but one of the values,
you could calculate what that last value must be. Statisticians say there
are n-1 degrees of freedom. 

More about n vs. n-1.

http://www.graphpad.com/faq/viewfaq.cfm?faq=1383
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But I've seen equations with n, not n-1, in the denominator!

The n-1 equation is used in the common situation where you are
analyzing a sample of data and wish to make more general conclusions.
The SD computed this way (with N-1 in the denominator) is your best
guess for the value of the SD in the overall population. 

If you simply want to quantify the variation in a particular set of data, and
don't plan to extrapolate to make wider conclusions,  compute the SD
using N in the denominator. The resulting SD is the SD of those particular
values, but will most likely underestimate the SD of the population from
which those points were drawn.

The goal of science is always to generalize, so the equation with n in the
denominator should not be used when analyzing scientific data. The only
example I can think of where it might make sense to use n (not n-1) in
the denominator is in quantifying the variation among exam scores. But
much better would be to show a scatterplot of every score, or a frequency
distribution histogram. 

Prism always computes the SD using n-1. 

How many values do you need to compute a SD?

The SD quantifies scatter, so clearly you need more than one value! Is
two values enough? Many people believe it is not possible to compute a
SD from only two values. But that is wrong. The equation that calculates
the SD works just fine when you have only duplicate (n=2) data. 

Are the results valid? There is no mathematical reason to think otherwise,
but I answered the question with simulations. I simulated ten thousand
data sets with n=2 and each data point randomly chosen from a Gaussian
distribution. Since all statistical tests are actually based on the variance
(the square of the SD), I compared the variance computed from the
duplicate values with the true variance. The average of the 10,000
variances of simulated data was within 1% of the true variance from
which the data were simulated. This means that the SD computed from
duplicate data is a valid assessment of the scatter in your data. It is
equally likely to be too high or too low, but is likely to be pretty far from
the true SD . 

45
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Calculating the SD with Excel

Excel can compute the SD from a range of values using the STDEV()
function. For example, if you want to know the standard deviation of the
values in cells B1 through B10, use this formula in Excel:

=STDEV(B1:B10)

That function computes the SD using n-1 in the denominator. If you want
to compute the SD using N in the denominator (see above) use Excel's
STDEVP() function. 

Is the SD the same as the SEM?

No!

3.3.3 How accurately does  a SD quantify scatter?

The SD of a sample is not the same as the SD of the population

It is straightforward to calculate the standard deviation from a sample of
values. But how accurate is the standard deviation? Just by chance you
may have happened to obtain data that are closely bunched together,
making the SD low. Or you may have happened to obtain data that are
far more scattered than the overall population, making the SD high. The
SD of your sample may not equal, or even be close to, the SD of the
population.

The 95% CI of the SD

You can express the precision of any computed value as a 95%
confidence interval (CI). It's not done often, but it is certainly possible to
compute a CI for a SD. We'll discuss confidence intervals more in the next
section  which explains the CI of a mean. Here we are discussing the CI
of a SD, which is quite different. 

Interpreting the CI of the SD is straightforward. You must assume that
your data were randomly and independently  sampled from a
Gaussian  distribution. You compute the SD and its CI from that one
sample, and use it to make an inference about the SD of the entire
population. You can be 95% sure that the CI of the SD contains the true
overall standard deviation of the population.

49
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How wide is the CI of the SD? Of course the answer depends on sample
size (N), as shown in the table below.

N 95% CI of SD 

2 0.45*SD to 31.9*SD

3 0.52*SD to 6.29*SD 

5 0.60*SD to 2.87*SD 

10 0.69*SD to 1.83*SD 

25 0.78*SD to 1.39*SD 

50 0.84*SD to 1.25*SD 

100 0.88*SD to 1.16*SD 

500 0.94*SD to 1.07*SD 

1000 0.96*SD to 1.05*SD 

 

The standard deviation computed from the five values shown in the graph
above is 18.0. But the true standard deviation of the population from
which the values were sampled might be quite different. Since N=5, the
95% confidence interval extends from 10.8 (0.60*18.0) to 51.7
(2.87*18.0). When you compute a SD from only five values, the upper
95% confidence limit for the SD is almost five times the lower limit. 
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Most people are surprised that small samples define the SD so poorly.
Random sampling can have a huge impact with small data sets, resulting
in a calculated standard deviation quite far from the true population
standard deviation. 

Note that the confidence intervals are not symmetrical. Why? Since the
SD is always a positive number, the lower confidence limit can't be less
than zero. This means that the upper confidence interval usually extends
further above the sample SD than the lower limit extends below the
sample SD. With small samples, this asymmetry is quite noticeable.

If you want to compute these confidence intervals yourself, use these
Excel equations (N is sample size; alpha is 0.05 for 95% confidence, 0.01
for 99% confidence, etc.): 

Lower limit: =SD*SQRT((N-1)/CHIINV((alpha/2), N-1)) 

Upper limit: =SD*SQRT((N-1)/CHIINV(1-(alpha/2), N-1)) 

3.3.4 Key concepts: SEM

What is the SEM?

The standard error of the mean (SEM) quantifies the precision of the
mean. It is a measure of how far your sample mean is likely to be from
the true population mean. It is expressed in the same units as the data.

GraphPad Prism uses the abbreviation SEM, but some prefer (insist on)
the abbreviation SE (1, 2). 

Is the SEM larger or smaller than the SD?

The SEM is always smaller than the SD. With large samples, the SEM is
much smaller than the SD.

How do you interpret the SEM?

Although scientists often present data as mean and SEM, interpreting
what the SEM means is not straightforward. It is much easier to interpret
the 95% confidence interval, which is calculated from the SEM. 

With large samples (say greater than ten), you can use these rules-of-
thumb:
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The 67% confidence interval extends approximately one SEM in each
direction from the mean.

The 95% confidence interval extends approximately two SEMs from
the mean in each direction. 

The multipliers are not actually 1.0 and 2.0, but rather are values that
come from the t distribution and depend on sample size. With small
samples, and certainly when N is less than ten, those rules of thumb are
not very accurate. 

Is the SEM the same as the SD?

No!

Are all standard errors the standard error of a mean?

No. Statistical computations can compute a standard error for almost any
parameter computed from a sample of data. Prism can compute the
standard error of a slope in linear regression, and any parameter (i.e.
rate constants) from nonlinear regression. The abbreviation SE applies to
any standard error, including the standard error of the mean in many
journals. The abbreviation SEM always applies to the standard error of the
mean.

References

1. Curran-Everett D, Benos D. Guidelines for reporting statistics in
journals published by the American Physiological Society. AJP -
Gastrointestinal and Liver Physiology. 2004 Aug 1;287(2):G307. 

2. Ludbrook J. The presentation of statistics in Clinical and Experimental
Pharmacology and Physiology. Clin Exp Pharmacol Physiol. 2008 Oct
1;35(10):1271–4; authorreply1274. 

3.3.5 Computing the SEM

How is the SEM calculated?

49
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The SEM is calculated by dividing the SD by the square root of N. This
relationship is worth remembering, as it can help you interpret published
data. 

If the SEM is presented, but you want to know the SD, multiply the SEM
by the square root of N. 

Calculating the SEM with Excel

Excel does not have a function to compute the standard error of a mean.
It is easy enough to compute the SEM from the SD, using this formula. 

=STDEV()/SQRT(COUNT())

For example, if you want to compute the SEM of values in cells B1
through B10, use this formula:

=STDEV(B1:B10)/SQRT(COUNT(B1:B10))

The COUNT() function counts the number of numbers in the range. If you
are not worried about missing values, you can just enter N directly. In
that case, the formula becomes: 

=STDEV(B1:B10)/SQRT(10)

3.3.6 The SD and SEM are not the same

It is easy to be confused about the difference between the standard
deviation (SD) and the standard error of the mean (SEM). Here are the
key differences:

·  The SD quantifies scatter — how much the values vary from one
another.

·  The SEM quantifies how precisely you know the true mean of the
population. It takes into account both the value of the SD and the
sample size.

·  Both SD and SEM are in the same units -- the units of the data.

·  The SEM, by definition, is always smaller than the SD.
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· The SEM gets smaller as your samples get larger. This makes sense,
because the mean of a large sample is likely to be closer to the true
population mean than is the mean of a small sample. With a huge
sample, you'll know the value of the mean with a lot of precision even
if the data are very scattered.

· The SD does not change predictably as you acquire more data. The SD
you compute from a sample is the best possible estimate of the SD of
the overall population. As you collect more data, you'll assess the SD
of the population with more precision. But you can't predict whether
the SD from a larger sample will be bigger or smaller than the SD from
a small sample. (This is not strictly true. It is the variance -- the SD
squared -- that doesn't change predictably, but the change in SD is
trivial and much much smaller than the change in the SEM.)

Note that standard errors can be computed for almost any parameter you
compute from data, not just the mean. The phrase "the standard error" is
a bit ambiguous. The points above refer only to the standard error of the
mean.

3.3.7 Advice: When to plot SD vs. SEM

If you create a graph with error bars, or create a table with plus/minus
values, you need to decide whether to show the SD, the SEM, or
something else. 

Often, there are better alternatives to graphing the mean with SD or
SEM.

If you want to show the variation in your data

If each value represents a different individual, you probably want to show
the variation among values. Even if each value represents a different lab
experiment, it often makes sense to show the variation. 

If you are plotting a column graph fewer than 100 or so values per data
set, create a scatter plot that shows every value. What better way to
show the variation among values than to show every value? If your data
set has more than 100 or so values, a scatter plot becomes messy.
Alternatives are to show a box-and-whiskers plot, a frequency distribution
(histogram), or a cumulative frequency distribution.



PRINCIPLES OF STATISTICS 51

© 1995-2016 GraphPad Software, Inc.

If you are plotting XY data, especially with multiple treatment groups,
plotting every replicate can lead to a messy graph. It can be a good first
step, so you see your data fully. But then change to mean and error bar
when presenting the data. 

If you want to plot mean and error bar, the SD  quantifies variability
among replicates. So does a graph of median with interquartile range or
full range. When plotting a graph with error bars, be sure to explain how
the error bars were computed in the figure itself or in its legend.

If you want to show how precisely you have determined the mean

If your goal is to compare means with a t test or ANOVA, or to show how
closely our data come to the predictions of a model,  you may be more
interested in showing how precisely the data define the mean than in
showing the variability. In this case, the best approach is to plot the 95%
confidence interval of the mean (or perhaps a 90% or 99% confidence
interval).

What about the standard error of the mean (SEM)? Graphing the mean
with an SEM error bars is a commonly used method to show how well you
know the mean,  The only advantage of SEM error bars are that they are
shorter, but SEM error bars are harder to interpret than a  confidence
interval. Nonetheless, SEM error bars are the standard in many fields.

Whatever error bars you choose to show, be sure to state your choice.
Noticing whether or not the error bars overlap tells you less than you
might guess. 

If you want to create persuasive propaganda

If your goal is to emphasize small and unimportant differences in your
data, show your error bars as SEM,  and hope that your readers think
they are SD

If our goal is to cover-up large differences, show the error bars as the
standard deviations for the groups, and hope that your readers think they
are a standard errors.

This approach was advocated by Steve Simon in his excellent weblog. Of
course he meant it as a joke. If you don't understand the joke, review 
the differences between SD and SEM.

http://pmean.com/05/StandardError.html
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3.3.8 Alternatives to showing the SD or SEM

If you want to show the variation in your data

If each value represents a different individual, you probably want to show
the variation among values. Even if each value represents a different lab
experiment, it often makes sense to show the variation. 

With fewer than 100 or so values, create a scatter plot that shows every
value. What better way to show the variation among values than to show
every value? If your data set has more than 100 or so values, a scatter
plot becomes messy. Alternatives are to show a box-and-whiskers plot, a
frequency distribution (histogram), or a cumulative frequency
distribution.

What about plotting mean and SD? The SD does quantify variability, so
this is indeed one way to graph variability. But a SD is only one value, so
is a pretty limited way to show variation. A graph showing mean and SD
error bar is less informative than any of the other alternatives, but takes
no less space and is no easier to interpret. I see no advantage to plotting
a mean and SD rather than a column scatter graph, box-and-wiskers plot,
or a frequency distribution.

Of course, if you do decide to show SD error bars, be sure to say so in the
figure legend so no one will think it is a SEM.

If you want to show how precisely you have determined the mean

If your goal is to compare means with a t test or ANOVA, or to show how
closely our data come to the predictions of a model,  you may be more
interested in showing how precisely the data define the mean than in
showing the variability. In this case, the best approach is to plot the 95%
confidence interval of the mean (or perhaps a 90% or 99% confidence
interval).

What about the standard error of the mean (SEM)? Graphing the mean
with an SEM error bars is a commonly used method to show how well you
know the mean,  The only advantage of SEM error bars are that they are
shorter, but SEM error bars are harder to interpret than a  confidence
interval.

Whatever error bars you choose to show, be sure to state your choice.
Noticing whether or not the error bars overlap tells you less than you
might guess.
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3.4 The lognormal distribution and geometric mean and SD

Lognormal distributions are very common in

biology but very rare in statistics books.

3.4.1 The lognormal distribution

Key facts about the lognormal distribution

· A Gaussian distribution emerges when variation is caused by multiple
sources of scatter which add together . In contrast, a lognormal
distribution emerges when variation is caused by multiple sources of
scatter which are multiplicative. 

· All values in a lognormal distribution are positive. Negative values and
zeroes are not possible in a lognormal distribution.

· Lognormal distributions are common in biology. 

· The lognormal distribution is asymmetrical. Lots of values are very
similar, while a small fraction of the values are much larger. You can see
this in the left panel of the graph below. 
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· When plotted on a logarithmic axis, as shown on the right panel of the
graph above, the distribution is symmetrical.

· If you are not aware of lognormal distributions, you might be tempted
to remove the highest four values in the example above as outliers,
since they look  like they are not part of the overall distribution. If you
run the values through an outlier detection algorithm that assumes
sampling from a Gaussian distribution, outliers will probably be
identified (the highest four values in the example above.

· If you try to compare means with a t test or ANOVA, you are likely to
find that the P value is high and the confidence intervals are wide. T
tests and ANOVA assume that the values were sampled from a
Gaussian distribution. You will lose power if you try to use those
methods to compare means of data set sampled from a lognormal
distribution.

· The logarithm of all the values from a lognormal distribution is
Gaussian.

How to cope with lognormal distributions

Analyzing data from a lognormal distribution is easy. Simply transform
the data by taking the logarithm of each value. These logarithms are
expected to have a Gaussian distribution, so can be analyzed by t tests,
ANOVA, etc. 

3.4.2 The geometric mean and geometric SD factor

Key facts about the geometric mean

· Prism computes the geometric mean by computing the logarithm of all
values, then calculating the mean of the logarithms, and finally taking
the antilog. 

· Prism uses base 10 (common) logarithms, and then takes ten to the
power of the mean of the logarithms to get the geometric mean. Some
programs use natural logs and then use the exponential function to
convert back. 
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· Using logarithms and antilogarithms is equivalent to multiplying all the
values together and taking that product to the 1/n power, where n is
the number of values. You'll see this definition in some books. 

· The geometric mean cannot be computed if any values are zero or
negative.

· The geometric mean is in the same units as the data and the
arithmetic mean.

· The geometric mean is never larger than the arithmetic mean.

· If the data are sampled from a lognormal distribution , the geometric
mean is probably the best way to express the center of the
distribution. 

Geometric SD factor

Prism (new to Prism 7) reports a Geometric SD factor when you request a
geometric mean. It also can plot the geometric mean and its geometric
SD factor on some graphs. 

Key facts about the geometric SD factor:

· The term geometric SD is not commonly used. It was introduced by
Kirkwood (1).

· How the geometric SD is computed: First, transform all the values to
logarithms, compute the sample SD of those log values, and then take
the antilogarithm of that SD.  

· The geometric SD factor has no units. It is a unitless ratio. 

· You can't add the geometric SD to the geometric mean (or any other
value), and makes equally no sense to ever subtract the geometric SD
from the geometric mean. The geometric SD is a value you always
multiply or divide by. This is very different than a ordinary SD which
has the same units as the data, so can be added to or subtracted from
the mean.

· The range from (the geometric mean divided by the geometric SD
factor) to (the geometric mean multiplied by the geometric SD factor)
will contain about two thirds of the values if the data are sampled from
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a lognormal distribution. Similarly, the range from (the mean minus
the SD) to (the mean plus the SD) will contain about two thirds of the
values when data are sampled from a Gaussian distribution.  

· It is rare to see publications show the geometric SD. It is common to
see a result reported as "The mean is 3.2 ± 1.2 (SD)". However it is
currently rare to report that the geometric mean is 4.3 *¸ 1.14.
Instead of a "plus or minus" symbol, I entered a "times or divided by"
symbols. 

· While it seems odd to express an error as "multiplied or divided by", it
is really no stranger than "plus or minus". 

Example

The graph above plots 20 values sampled from a lognormal distribution.
The graph on the left shows you that the mean and geometrical mean are
very different. The middle graph plots the geometric mean with error bars
computed as the geometric mean times or divided by the geometric SD
factor. The graph shows the same thing with a logarithmic Y axis. Now
the distribution looks symmetrical, and the error bars seem to extend the
same distance in each direction. But the ends of the error bars are at the
same Y value in the middle and right graph. The right graph uses a
logarithmic axis. 

Reference

1. Kirkwood, TBL (1979). "Geometric means and measures of
dispersion". Biometrics 35: 908–9.

http://physiologie.envt.fr/spip/IMG/pdf/GSD_Kirkwood_TBL_-_dispersion_-_1979.pdf
http://physiologie.envt.fr/spip/IMG/pdf/GSD_Kirkwood_TBL_-_dispersion_-_1979.pdf
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3.5 Confidence intervals

How sure are you? That is a fundamental question

when analyzing data, and confidence intervals are

the way to answer it.

3.5.1 Key concepts: Confidence interval of a mean

What is the confidence interval of a mean?

The confidence interval (CI) of a mean tells you how precisely you have
determined the mean. 

For example, you measure weight in a small sample (N=5), and compute
the mean. That mean is very unlikely to equal the population mean. The
size of the likely discrepancy depends on the size and variability of the
sample. 

If your sample is small and variable, the sample mean is likely to be quite
far from the population mean. If your sample is large and has little
scatter, the sample mean will probably be very close to the population
mean. Statistical calculations combine sample size and variability
(standard deviation) to generate a CI for the population mean. As its
name suggests, the CI is a range of values.

What assumptions are made in interpreting a CI of a mean?

To interpret the confidence interval of the mean, you must assume that
all the values were independently  and randomly sampled from a
population whose values are distributed according to a Gaussian
distribution. If you accept those assumptions, there is a 95% chance that
the 95% CI contains the true population mean. In other words, if you
generate many 95% CIs from many samples, you can expect the 95% CI
to include the true population mean in 95% of the cases, and not to
include the population mean value in the other 5%. 
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How is it possible that the CI of a mean does not include the true mean

The upper panel below shows ten sets of data (N=5), randomly drawn
from a Gaussian distribution with a mean of 100 and a standard deviation
of 35. The lower panel shows the 95% CI of the mean for each sample. 

Because these are simulated data, we know the exact value of the true
population mean (100), so can ask whether or not each confidence
interval includes that true population mean. In the data set second from
the right in the graphs above, the 95% confidence interval does not
include the true mean of 100 (dotted line). 

When analyzing data, you don't know the population mean, so can't know
whether a particular confidence interval contains the true population
mean or not. All you know is that there is a 95% chance that the
confidence interval includes the population mean, and a 5% chance that it
does not.
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How is the confidence interval of a mean computed?

The confidence interval of a mean is centered on the sample mean, and
extends symmetrically in both directions. That distance equals the SE of
the mean times a constant from the t distribution. The value of that
constant depends only on sample size (N) as shown below.

N Multiplier 

2 12.706

3  4.303

5  2.776

10  2.262

25  2.064

50  2.010

100  1.984

500  1.965

N  =TINV(0.05,N-1)

The samples shown in the graph above had five values. So the lower
confidence limit from one of those samples is computed as the mean
minus 2.776 times the SEM, and the upper confidence limit is computed
as the mean plus 2.776 times the SEM. 

The last line in the table above shows you the equation to use to compute
the multiplier in Excel. The newer syntax is =T.INV.2T(0.005, N-1).

A common rule-of-thumb is that the 95% confidence interval is computed
from the mean plus or minus two SEMs. With large samples, that rule is
very accurate. With small samples, the CI of a mean is much wider than
suggested by that rule-of-thumb.
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3.5.2 Interpreting a confidence interval of a mean

A confidence interval does not quantify variability

A 95% confidence interval is a range of values that you can be 95%
certain contains the true mean of the population. This is not the same as
a range that contains 95% of the values. The graph below emphasizes
this distinction. 

The graph shows three samples (of different size) all sampled from the
same population. 

With the small sample on the left, the 95% confidence interval is similar
to the range of the data. But only a tiny fraction of the values in the large
sample on the right lie within the confidence interval. This makes sense.
The 95% confidence interval defines a range of values that you can be
95% certain contains the population mean. With large samples, you know
that mean with much more precision than you do with a small sample, so
the confidence interval is quite narrow when computed from a large
sample.

Don't view a confidence interval and
misinterpret it as the range that contains 95%
of the values.
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A 95% chance of what? 

It is correct to say that there is a 95% chance that the confidence interval
you calculated contains the true population mean. It is not quite correct
to say that there is a 95% chance that the population mean lies within the
interval.

What's the difference? 

The population mean has one value. You don't know what it is (unless you
are doing simulations) but it has one value. If you repeated the
experiment, that value wouldn't change (and you still wouldn't know what
it is). Therefore it isn't strictly correct to ask about the probability that
the population mean lies within a certain range. 

In contrast, the confidence interval you compute depends on the data you
happened to collect. If you repeated the experiment, your confidence
interval would almost certainly be different. So it is OK to ask about the
probability that the interval contains the population mean. 

It is not quite correct to ask about the probability that the interval
contains the population mean. It either does or it doesn't. There is no
chance about it. What you can say is that if you perform this kind of
experiment many times, the confidence intervals would not all be the
same, you would expect 95% of them to contain the population mean,
you would expect 5% of the confidence intervals to not include the
population mean, and that you would never know whether the interval
from a particular experiment contained the population mean or not. 

Nothing special about 95%

While confidence intervals are usually expressed with 95% confidence,
this is just a tradition. Confidence intervals can be computed for any
desired degree of confidence. 

People are often surprised to learn that 99% confidence intervals are
wider than 95% intervals, and 90% intervals are narrower. But this
makes perfect sense. If you want more confidence that an interval
contains the true parameter, then the intervals will be wider. If you want
to be 100.000% sure that an interval contains the true population, it has
to contain every possible value so be very wide. If you are willing to be
only 50% sure that an interval contains the true value, then it can be
much narrower.
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3.5.3 Other confidence intervals

The concept of confidence intervals is general. You can calculate the 95%
CI for almost any value you compute when you analyze data. We've
already discussed the CI of a SD . Other confidence intervals computed
by Prism include:

·  The difference between two group means

· A proportion

· The ratio of two proportions

· The best-fit slope of linear regression

· The best-fit value of an EC50 determined by nonlinear regression

· The ratio of the median survival times of two groups

· The median of a set of values.

The concept is the same for all these cases. You collected data from a
small sample and analyzed the data. The values you compute are 100%
correct for that sample, but are affected by random scatter. A confidence
interval tells you how precisely you have determined that value. Given
certain assumptions (which we list with each analysis later in this book),
you can be 95% sure that the 95% CI contains the true (population)
value.

The fundamental idea of statistics is to analyze a sample of data, and
make quantitative inferences about the population from which the data
were sampled. Confidence intervals are the most straightforward way to
do this. 

3.5.4 Advice: Emphasize confidence intervals over P values

Many statistical analyses generate both P values and confidence intervals.
Many scientists report the P value and ignore the confidence interval.

 I think this is a mistake. 

Interpreting P values is tricky . Interpreting confidence intervals, in
contrast, is quite simple. You collect some data, do some calculations to
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quantify a difference (or ratio, or best-fit value...), and report that value
along with a confidence interval to show how precise that value is. 

The underlying theory is identical for confidence intervals and P values.
So if both are interpreted correctly, the conclusions are identical. But that
is a big 'if'', and I agree with the following quote (JM Hoenig and DM
Heisey, The American Statistician, 55: 1-6, 2001):

"... imperfectly understood confidence intervals are more useful and
less dangerous than incorrectly understood P values and hypothesis
tests." 

3.5.5 One sided confidence intervals

Typically, confidence intervals are expressed as a two-sided range. You
might state, for example, with 95% confidence, that the true value of a
parameter such as mean, EC50, relative risk, difference, etc., lies in a
range between two values. We call this interval “two sided” because it is
bounded by both lower and upper confidence limits.

In some circumstances, it can make more sense to express the
confidence interval in only one direction – to either the lower or upper
confidence limit. This can best be illustrated by following an example.

A recent study was performed to evaluate the effectiveness of a new drug
in the eradication of Heliobacter pylori infection, and to determine
whether or not it was inferior to the standard drug. (This example was
adapted from one presented in reference 1). The eradication rate for the
new drug was 86.5% (109/126) compared with 85.3% (110/129) for
patients treated with the standard therapy.

In this study, the difference between the eradication rates of the two
treatments was 1.2%. The 95% confidence interval extends at the lower
limit for the new drug from an eradication rate of 7.3% worse than
standard drug, to the upper limit with an eradication rate of 9.7% better.

If we assume that the subjects of the study are representative of a larger
population, this means there is a 95% chance that this range of values
includes the true difference of the eradication rates of the two drugs.
Splitting the remaining 5%, there is an additional 2.5% chance that the
new treatment increases the eradication rate by more than 9.7%, and a
2.5% chance that the new treatment decreases the eradication rate by
more than 7.3%.
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In this case, our goal is to show that the new drug is not worse than the
old one. So we can combine our 95% confidence level with the 2.5%
upper limit, and say that there is a 97.5% chance that the eradication
rate with the new drug is no more than 7.3% worse than the eradication
rate with standard drug.

It is conventional, however, to state confidence intervals with 95%, not
97.5%, confidence. We can easily create a one-sided 95% confidence
interval. To do this, we simply compute a 90% two-sided confidence
interval instead of 95%.

The 90% CI for difference in eradication rate extends from -5.9% to 8.4%
. Since we are less confident that it includes the true value, it doesn't
extend as far as 95% interval. We can restate this to say that the 95%
confidence interval is greater than -5.9%. Thus, we are 95% sure that
the new drug has an eradication rate not more than 5.9% worse than that
of the standard drug. 

In this example of testing noninferiority, it makes sense to express a one-
sided confidence interval as the lower limit only. In other situations, it can
make sense to express a one-sided confidence limit as an upper limit
only. For example, in toxicology you may care only about the upper
confidence limit.

GraphPad Prism does not compute one-sided confidence intervals directly.
But, as the example shows, it is easy to create the one-sided intervals
yourself. Simply ask Prism to create a 90% confidence interval for the
value you care about. If you only care about the lower limit, say that you
are 95% sure the true value is higher than that (90%) lower limit. If you
only care about the upper limit, say that you are 95% sure the true value
is lower than the (90%) upper limit.

Reference

1. S. J. Pocock, The pros and cons of noninferiority trials, Fundamental &
Clinical Pharmacology, 17: 483-490 (2003). 

3.5.6 Compare confidence intervals, prediction intervals, and tolerance intervals

 When you fit a parameter to a model, the accuracy or precision can be
expressed as a confidence interval, a prediction interval or a tolerance
interval. The three are quite distinct. Prism only reports confidence
intervals.
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The discussion below explains the three different intervals for the simple
case of fitting a mean to a sample of data (assuming sampling from a
Gaussian distribution). The same ideas can be applied to intervals for any
best-fit parameter determined by regression.

Confidence interval

Confidence intervals tell you about how well you have determined the
mean. Assume that the data really are randomly sampled from a Gaussian
distribution. If you do this many times, and calculate a confidence interval
of the mean from each sample, you'd expect about 95 % of those intervals
to include  the true value of the population mean. The key point is that the
confidence interval tells you about the likely location of the true population
parameter.

Prediction interval

Prediction intervals tell you where you can expect to see the next data
point sampled. Assume that the data really are randomly sampled from a
Gaussian distribution. Collect a sample of data and calculate a prediction
interval. Then sample one more value from the population. If you do this
many times, you'd expect that next value to lie within that prediction
interval in 95% of the samples.The key point is that the prediction interval
tells you about the distribution of values, not the uncertainty in
determining the population mean. 

Prediction intervals must account for both the uncertainty in knowing the
value of the population mean, plus data scatter. So a prediction interval is
always wider than a confidence interval. 

Before moving on to tolerance intervals, let's define that word 'expect'
used in defining a prediction interval. It means there is a 50% chance that
you'd see the value within the interval in more than 95% of the samples,
and a 50% chance that you'd see the value within the interval in less than
95% of the samples.

Tolerance interval

What if you want to be 95% sure that the interval contains 95% of the
values? Or 90% sure that the interval contains 99% of the values? Those
latter questions are answered by a tolerance interval. To compute, or
understand, a tolerance interval you have to specify two different
percentages. One expresses how sure you want to be, and the other
expresses what fraction of the values the interval will contain. If you set
the first value (how sure) to 50%, then a tolerance interval is the same as
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a prediction interval. If you set it to a higher value (say 90% or 99%) then
the tolerance interval is wider. 

3.5.7 Confidence interval of a standard deviation

A confidence interval can be computed for almost any value computed
from a sample of data, including the standard deviation.

The SD of a sample is not the same as the SD of the population

It is straightforward to calculate the standard deviation from a sample of
values. But how accurate is that standard deviation? Just by chance you
may have happened to obtain data that are closely bunched together,
making the SD low. Or you may have randomly obtained values that are
far more scattered than the overall population, making the SD high. The
SD of your sample does not equal, and may be quite far from, the SD of
the population.

Confidence intervals are not just for means

Confidence intervals are most often computed for a mean. But the idea of
a confidence interval is very general, and you can express the precision of
any computed value as a 95% confidence interval (CI). Another example
is a confidence interval of a best-fit value from regression, for example a
confidence interval of a slope.

The 95% CI of the SD

The sample SD is just a value you compute from a sample of data. It's
not done often, but it is certainly possible to compute a CI for a SD.
GraphPad Prism does not do this calculation, but a free GraphPad
QuickCalc does.

Interpreting the CI of the SD is straightforward. If you assume that your
data were randomly and independently sampled from a Gaussian
distribution, you can be 95% sure that the CI  contains the true
population SD.

How wide is the CI of the SD? Of course the answer depends on sample
size (n). With small samples, the interval is quite wide as shown in the
table below.

n 95% CI of SD

2 0.45*SD to 31.9*SD

http://www.graphpad.com/quickcalcs/CISD1.cfm
http://www.graphpad.com/quickcalcs/CISD1.cfm
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3 0.52*SD to 6.29*SD

5 0.60*SD to 2.87*SD

10 0.69*SD to 1.83*SD

25 0.78*SD to 1.39*SD

50 0.84*SD to 1.25*SD

100 0.88*SD to 1.16*SD

500 0.94*SD to 1.07*SD

1000 0.96*SD to 1.05*SD

Example

Data: 23, 31, 25, 30, 27
Mean: 27.2
SD: 3.35

The sample standard deviation computed from the five values  is 3.35.
But the true standard deviation of the population from which the values
were sampled might be quite different. From the n=5 row of the table,
the 95% confidence interval extends from 0.60 times the SD to 2.87
times the SD. Thus the 95% confidence interval ranges from  0.60*3.35
to 2.87*3.35,  from 2.01 to 9.62. When you compute a SD from only five
values, the upper 95% confidence limit for the SD is almost five times the
lower limit.

Most people are surprised that small samples define the SD so poorly.
Random sampling can have a huge impact with small data sets, resulting
in a calculated standard deviation quite far from the true population
standard deviation.

Note that the confidence interval is not symmetrical around the computed
SD. Why? Since the SD is always a positive number, the lower confidence
limit can't be less than zero. This means that the upper confidence
interval usually extends further above the sample SD than the lower limit
extends below the sample SD. With small samples, this asymmetry is
quite noticeable.

Computing the Ci of a SD with Excel

These Excel equations compute the confidence interval of a SD. n is
sample size; alpha is 0.05 for 95% confidence, 0.01 for 99% confidence,
etc.:
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Lower limit: =SD*SQRT((n-1)/CHIINV((alpha/2), n-1))

Upper limit: =SD*SQRT((n-1)/CHIINV(1-(alpha/2), n-1))

These equations come from page 197-198 of Sheskin (reference below). 

Reference

David J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition, IBSN:1584888148. 

 

3.6 P Values

Almost every statistical tests generates a P value

(or several). Yet many scientists don't really

understand what P values are. This section

explains the principles, and also the difference

between one- and two-tail P values. 

3.6.1 What is a P value?

Suppose that you've collected data from two samples of animals treated
with different drugs. You've measured an enzyme in each animal's
plasma, and the means are different. You want to know whether that
difference is due to an effect of the drug – whether the two populations
have different means.

Observing different sample means is not enough to persuade you to
conclude that the populations have different means. It is possible that the
populations have the same mean (i.e., that the drugs have no effect on
the enzyme you are measuring) and that the difference you observed
between sample means occurred only by chance. There is no way you can
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ever be sure if the difference you observed reflects a true difference or if
it simply occurred in the course of random sampling. All you can do is
calculate probabilities.

The first step is to state the null hypothesis, that really the treatment
does not affect the outcome you are measuring (so all differences are due
to random sampling). 

The P value is a probability, with a value ranging from zero to one, that
answers this question (which you probably never thought to ask): 

In an experiment of this size, if the populations really have the same
mean, what is the probability of observing at least as large a
difference between sample means as was, in fact, observed?

3.6.2 The most common misinterpretation of a P value

Many people misunderstand what a P value means. Let's assume that you
compared two means and obtained a P value equal to 0.03. 

Correct definitions of this P value:

There is a 3% chance of observing a difference as large as you observed even if
the two population means are identical (the null hypothesis is true).

  or

Random sampling from identical populations would lead to a difference smaller
than you observed in 97% of experiments, and larger than you observed in 3% of
experiments.

Wrong:

There is a 97% chance that the difference you observed reflects a real difference
between populations, and a 3% chance that the difference is due to chance. 

This latter statement is a common mistake. If you have a hard time
understanding the difference between the correct and incorrect
definitions, read this Bayesian perspective .

3.6.3 More misunderstandings of P values

Kline (1) lists commonly believed fallacies about P values, which I
summarize here:
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 Fallacy: P value is the probability that the result was due to sampling
error

The P value is computed assuming the null hypothesis is true. In other
words,  the P value is computed based on the assumption that the
difference was due to sampling error. Therefore the P value cannot tell you
the probability that the result is due to sampling error.  

Fallacy: The P value Is the probability that the null hypothesis is true

Nope. The P value is computed assuming that the null hypothesis is true,
so cannot be the probability that it is true.

Fallacy: 1-P is the probability that the alternative hypothesis is true

If the P value is 0.03, it is very tempting to think: If there is only a 3%
probability that my difference would have been caused by random
chance, then there must be a 97% probability that it was caused by a real
difference. But this is wrong! 

What you can say is that if the null hypothesis were true, then 97% of
experiments would lead to a difference smaller than the one you
observed, and 3% of experiments would lead to a difference as large or
larger than the one you observed.

Calculation of a P value is predicated on the assumption that the null
hypothesis is correct. P values cannot tell you whether this assumption is
correct. P value tells you how rarely you would observe a difference as
larger or larger than the one you observed if the null hypothesis were
true.

The question that the scientist must answer is whether the result is so
unlikely that the null hypothesis should be discarded.

Fallacy: 1-P is the probability that the results will hold up when the
experiment is repeated

If the P value is 0.03, it is tempting to think that this means there is a
97% chance of getting ‘similar’ results on a repeated experiment. Not so.

Fallacy: A high P value proves that the null hypothesis is true. 

No. A high P value means that if the null hypothesis were true, it would
not be surprising to observe the treatment effect seen in this experiment.
But that does not prove the null hypothesis is true.
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Fallacy: The P value is the probability of rejecting the null hypothesis

You reject the null hypothesis (and deem the results statistically
significant) when a P value from a particular experiment is less than the
significance level α, which you (should have) set as part of the
experimental design. So if the null hypothesis is true, α is the probability
of rejecting the null hypothesis.

 The P value and α are not the same. A P value is computed from each
comparison, and is a measure of the strength of evidence. The significance
level α is set once as part of the experimental design. 

1. RB Kline, Beyond Significance Testing: Reforming Data Analysis
Methods in Behavioral Research, 2004, IBSN:1591471184

3.6.4 One-tail vs. two-tail P values

When comparing two groups, you must distinguish between one- and
two-tail P values. Some books refer to one-sided and two-sided P values,
which mean the same thing.

What does one-tail mean?

It is easiest to understand the distinction in context. So let’s imagine that
you are comparing the mean of two groups (with an unpaired t test). Both
one- and two-tail P values are based on the same null hypothesis, that
two populations really are the same and that an observed discrepancy
between sample means is due to chance.

A two-tailed P value answers this question:

Assuming the null hypothesis is true, what is the chance that randomly
selected samples would have means as far apart as (or further than)
you observed in this experiment with either group having the larger
mean?

To interpret a one-tail P value, you must predict which group will have the
larger mean before collecting any data. The one-tail P value answers this
question:

Assuming the null hypothesis is true, what is the chance that randomly
selected samples would have means as far apart as (or further than)
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observed in this experiment with the specified group having the larger
mean?

If the observed difference went in the direction predicted by the
experimental hypothesis, the one-tailed P value is half the two-tailed P
value (with most, but not quite all, statistical tests).

When is it appropriate to use a one-tail P value?

A one-tailed test is appropriate when previous data, physical limitations,
or common sense tells you that the difference, if any, can only go in one
direction. You should only choose a one-tail P value when both of the
following are true.

· You predicted which group will have the larger mean (or proportion)
before you collected any data. If you only made the "prediction" after
seeing the data, don't even think about using a one-tail P value.

· If the other group had ended up with the larger mean – even if it is
quite a bit larger – you would have attributed that difference to chance
and called the difference 'not statistically significant'.

Here is an example in which you might appropriately choose a one-tailed
P value: You are testing whether a new antibiotic impairs renal function,
as measured by serum creatinine. Many antibiotics poison kidney cells,
resulting in reduced glomerular filtration and increased serum creatinine.
As far as I know, no antibiotic is known to decrease serum creatinine, and
it is hard to imagine a mechanism by which an antibiotic would increase
the glomerular filtration rate. Before collecting any data, you can state
that there are two possibilities: Either the drug will not change the mean
serum creatinine of the population, or it will increase the mean serum
creatinine in the population. You consider it impossible that the drug will
truly decrease mean serum creatinine of the population and plan to
attribute any observed decrease to random sampling. Accordingly, it
makes sense to calculate a one-tailed P value. In this example, a two-
tailed P value tests the null hypothesis that the drug does not alter the
creatinine level; a one-tailed P value tests the null hypothesis that the
drug does not increase the creatinine level.

The issue in choosing between one- and two-tailed P values is not
whether or not you expect a difference to exist. If you already knew
whether or not there was a difference, there is no reason to collect the
data. Rather, the issue is whether the direction of a difference (if there is
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one) can only go one way. You should only use a one-tailed P value when
you can state with certainty (and before collecting any data) that in the
overall populations there either is no difference or there is a difference in
a specified direction. If your data end up showing a difference in the
“wrong” direction, you should be willing to attribute that difference to
random sampling without even considering the notion that the measured
difference might reflect a true difference in the overall populations. If a
difference in the “wrong” direction would intrigue you (even a little), you
should calculate a two-tailed P value.

How to convert between one- and two-tail P values

The one-tail P value is half the two-tail P value. 

The two-tail P value is twice the one-tail P value (assuming you correctly
predicted the direction of the difference).

3.6.5 Advice: Use two-tailed P values

If in doubt, choose a two-tail P value. Why?

· The relationship between P values and confidence intervals is easier to
understand with two-tail P values.

· Some tests compare three or more groups, which makes the concept
of tails inappropriate (more precisely, the P values have many tails). A
two-tail P value is more consistent with the P values reported by these
tests.

· Choosing a one-tail P value can pose a dilemma. What would you do if
you chose to use a one-tail P value, observed a large difference
between means, but the “wrong” group had the larger mean? In other
words, the observed difference was in the opposite direction to your
experimental hypothesis. To be rigorous, you must conclude that the
difference is due to chance, even if the difference is huge. While
tempting, it is not fair to switch to a two-tail P value or to reverse the



GraphPad Statistics Guide74

© 1995-2016 GraphPad Software, Inc.

direction of the experimental hypothesis. You avoid this situation by
always using two-tail P  value.

3.6.6 Advice: How to interpret a small P value

Before you interpret the P value

Before thinking about P values, you should:

· Review the science. If the study was not designed well, then the
results probably won't be informative. It doesn't matter what the P
value is. 

· Review the assumptions of the analysis you chose to make sure you
haven't violated any assumptions. We provide an analysis checklist
for every analysis that Prism does. If you've violated the
assumptions, the P value may not be meaningful.

Interpreting a small P value 

A small P value means that the difference (correlation, association,...)
you observed would happen rarely due to random sampling. There are
three possibilities:

· The null hypothesis of no difference is true, and a rare coincidence
has occurred. You may have just happened to get large values in one
group and small values in the other, and the difference is entirely
due to chance. How likely is this? The answer to that question,
surprisingly, is not the P value. Rather, the answer depends on the
scientific background of the experiment.

· The null hypothesis is false. There truly is a difference (or
correlation, or association...) that is large enough to be scientifically
interesting.

· The null hypothesis is false. There truly is a difference (or
correlation, or association...), but that difference is so small that it is
scientifically boring. The difference is real, but trivial. 

Deciding between the last two possibilities is a matter of scientific
judgment, and no statistical calculations will help you decide. 
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Using the confidence interval to interpret a small P value

If the P value is less than 0.05, then the 95% confidence interval will not
contain zero (when comparing two means). To interpret the confidence
interval in a scientific context, look at both ends of the confidence interval
and ask whether they represent a difference between means that you
consider to be scientifically important or scientifically trivial. This section
assumes you are comparing two means with a t test, but it is
straightforward to use these same ideas in other contexts.

 There are three cases to consider:

· The confidence interval only contains differences that are
trivial. Although you can be 95% sure that the true difference is not
zero, you can also be 95% sure that the true difference between
means is tiny and uninteresting. The treatment had an effect, but a
small one.

· The confidence interval only includes differences you would
consider to be important. Since even the low end of the confidence
interval represents a difference large enough that you consider it to be
scientifically important, you can conclude that there is a difference
between treatment means and that the difference is large enough to
be scientifically relevant. 

· The confidence interval ranges from a trivial to an important
difference. Since the confidence interval ranges from a difference
that you think would be scientifically trivial to one you think would be
important, you can't reach a strong conclusion. You can be 95% sure
that the true difference is not zero, but you cannot conclude whether
the size of that difference is scientifically trivial or important. 

3.6.7 Advice: How to interpret a large P value

Before you interpret the P value

Before thinking about P values, you should:

· Assess the science. If the study was not designed well, then the
results probably won't be informative. It doesn't matter what the P
value is. 
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· Review the assumptions of the analysis you chose to make sure you
haven't violated any assumptions. We provide an analysis checklist for
every analysis that Prism does. If you've violated the assumptions, the P
value may not be meaningful.

Interpreting a large P value 

If the P value is large, the data do not give you any reason to conclude
that the overall means differ. Even if the true means were equal, you
would not be surprised to find means this far apart just by chance. This is
not the same as saying that the true means are the same. You just don't
have convincing evidence that they differ.

Using the confidence interval to interpret a large P value

How large could the true difference really be? Because of random
variation, the difference between the group means in this experiment is
unlikely to be equal to the true difference between population means.
There is no way to know what that true difference is. The uncertainty is
expressed as a 95% confidence interval. You can be 95% sure that this
interval contains the true difference between the two means. When the P
value is larger than 0.05, the 95% confidence interval will start with a
negative number (representing a decrease) and go up to a positive
number (representing an increase).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference that
would be scientifically important or scientifically trivial. There are two
cases to consider:

· The confidence interval ranges from a decrease that you would
consider to be trivial to an increase that you also consider to be
trivial. Your conclusions is pretty solid. Either the treatment has no
effect, or its effect is so small that it is considered unimportant. This is
an informative negative experiment. 

· One or both ends of the confidence interval include changes
you would consider to be scientifically important. You cannot
make a strong conclusion. With 95% confidence you can say that
either the difference is zero, not zero but is scientifically trivial, or
large enough to be scientifically important. In other words, your data
really don't lead to any solid conclusions. 
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3.6.8 Decimal formatting of P values

New to Prism 7, you now have a choice of the decimal format used to
report P values. Each analysis that computes P values gives you these
choices:

· APA (American Psychological Association) style, which shows three
digits but omits the leading zero (.123). P values less than 0.001 shown
as "< .001". All P values less than 0.001 are summarized with three
asterisks, with no possibility of four asterisks.

· NEJM (New England Journal of Medicine) style, which shows three digits
and includes the leading zero (0.123). P values less than 0.001 shown
as "< .001". All P values less than 0.001 are summarized with three
asterisks, with no possibility of four asterisks.

· GraphPad style which reports four digits after the decimal point with a
leading zero (0.1234). P values less than 0.0001 shown as "< .0001". P
values less than 0.001 are summarized with three asterisks, and P
values less than 0.0001 are summarized with four asterisks.

· Choose how many digits you want to see after the decimal point, up to
15. P values less than 0.001 are given three asterisks, and P values less
than 0.0001 are given four asterisks.

3.6.9 How Prism computes exact P values

Calcuations built-in to Prism

GraphPad Prism report exact P values with most statistical calculations
using these algorithms, adapted from sections 6.2 and 6.4 of Numerical
Recipes.

PFromF(F_Ratio, DF_Numerator, DF_Denominator) =
BetaI(DF_Denominato /2, DF_Numerator/2, DF_Denominator / (DF_Denominator + DF_Numerator * F_Ratio))

PFromT(T_Ratio, DF) = BetaI(DF /2, 1/2, DF / (DF + T_Ratio^2))

PFromZ(Z_Ratio) = PFromT(Z_Ratio, Infinity)
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PFromR(R_Value) = PFromT(|R_Value| / SQRT((1 - R_Value^2)/DF) , DF)

PFromChi2(Chi2_Value, DF) = GammaQ(DF / 2, Chi2Value /2)

 Note that BetaI is the incomplete beta function, and GammaQ is the
incomplete gamma function. The variable names should all be self-
explanatory.

Calculations with newer versions of Excel

If you want to compute P values using newer (2010 and later) Excel, use
these functions:

P value from F
=F.DIST.RT (F, DFn, DFd)

P value from t (two tailed)
=T.DIST.2T(t, df)

P value from Chi Square
=CHISQ.DIST.RT(ChiSquare, DF)

P value from z (two tailed)
=2*(1.0-NORM.S.DIST(z,TRUE))

Calculations with older versions of Excel

If you want to compute P values using older (pre 2010) Excel, use these
functions:

P value from F
=FDIST (F, DFn, DFd)

P value from t (two tailed)
=TDIST (t, df, 2) 
(The third argument, 2, specifies a
two-tail P value.)

P value from Chi Square
=CHIDIST (ChiSquare, DF)

P value from z (two tailed)
=2*(1.0-NORMSDIST(z))
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Reference

Numerical Recipes 3rd Edition: The Art of Scientific Computing, by
William H. Press, Saul A. Teukolsky, William T. Vetterling,
IBSN:0521880688.

3.7 Hypothesis testing and statistical significance

"Statistically significant". That phrase is commonly

misunderstood. Before analyzing data and

presenting statistical results, make sure you

understand what statistical 'significance' means

and doesn't mean. 

3.7.1 Statistical hypothesis testing

Much of statistical reasoning was developed in the context of quality
control where you need a definite yes or no answer from every analysis.
Do you accept or reject the batch? The logic used to obtain the answer is
called hypothesis testing. 

First, define a threshold P value before you do the experiment. Ideally,
you should set this value based on the relative consequences of missing a
true difference or falsely finding a difference. In practice, the threshold
value (called alpha) is almost always set to 0.05 (an arbitrary value that
has been widely adopted).

Next, define the null hypothesis. If you are comparing two means, the
null hypothesis is that the two populations have the same mean. When
analyzing an experiment, the null hypothesis is usually the opposite of the
experimental hypothesis. Your experimental hypothesis -- the reason you
did the experiment -- is that the treatment changes the mean. The null
hypothesis is that two populations have the same mean (or that the
treatment has no effect). 
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Now, perform the appropriate statistical test to compute the P value.

· If the P value is less than the threshold, state that you “reject the null
hypothesis” and that the difference is “statistically significant”. 

· If the P value is greater than the threshold, state that you “do not
reject the null hypothesis” and that the difference is “not statistically
significant”. You cannot conclude that the null hypothesis is true. All
you can do is conclude that you don't have sufficient evidence to reject
the null hypothesis.

3.7.2 Asterisks

Once you have set a threshold significance level (usually 0.05), every
result leads to a conclusion of either "statistically significant" or not
"statistically significant". Some statisticians feel very strongly that the
only acceptable conclusion is significant or 'not significant', and oppose
use of adjectives or asterisks to describe values levels of statistical
significance.

Many scientists are not so rigid, and so prefer to use adjectives such as
“very significant” or “extremely significant”. Prism uses this approach as
shown in the tables below. These definitions are not entirely standard. If
you report the results in this way, you should define the symbols in your
figure legend.

Older versions of Prism use the scheme below. So does Prism 7 if you
choose GP formatting  or if you ask for four or more digits after the
decimal point. 

P value Wording Summary

< 0.0001 Extremely significant ****

0.0001 to 0.001 Extremely significant ***

0.001 to 0.01 Very significant **

0.01 to 0.05 Significant *

Not significant ns

If you choose APA or NEJM formatting for P values , Prism uses this
scheme (note the absence of ****). 
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P value Wording Summary

< 0.001 Very significant ***

0.001 to 0.01 Very significant **

0.01 to 0.05 Significant *

Not significant ns

Prism stores the P values in double precision (about 12 digits of
precision), and uses that value (not the value you see displayed) when it
decides how many asterisks to show. So if the P value equals
0.05000001, Prism will display "0.0500" and label that comparison as
"ns". 

3.7.3 Advice: Avoid the concept of 'statistical significance' when possible

The term "significant" is seductive and easy to misinterpret, because the
statistical use of the word has a meaning entirely distinct from its usual
meaning. Just because a difference is statistically significant does not
mean that it is biologically or clinically important or interesting. Moreover,
a result that is not statistically significant (in the first experiment) may
turn out to be very important.

Using the conventional definition with alpha=0.05, a result is said to be
statistically significant when a difference that large (or larger) would
occur less than 5% of the time if the populations were, in fact, identical. 

The entire construct of 'hypothesis testing' leading to a conclusion that a
result is or is not 'statistically significant' makes sense in situations where
you must make a firm decision based on the results of one P value. While
this situation occurs in quality control and maybe with clinical trials, it
rarely occurs with basic research. 

If you do not need to make a decision based on one P value, then there is
no need to declare a result "statistically significant" or not. Simply report
the P value as a number, without using the term 'statistically significant'.
Better, simply report the confidence interval, without a P value.

3.7.4 The false discovery rate and statistical signficance

Interpreting low P values is not straightforward



GraphPad Statistics Guide82

© 1995-2016 GraphPad Software, Inc.

Imagine that you are screening drugs to see if they lower blood pressure.
You use the usual threshold of P<0.05 as defining statistical significance.
Based on the amount of scatter you expect to see and the minimum
change you would care about, you've chosen the sample size for each
experiment to have 80% power  to detect the difference you are looking
for with a P value less than 0.05. 

If you do get a P value less than 0.05, what is the chance that the drug
truly works?

The answer is: It depends on the context of your experiment. Let's start
with the scenario where based on the context of the work, you estimate
there is a 10% chance that the drug actually has an effect. What happens
when you perform 1000 experiments? Given your 10% estimate, the two
column totals below are 100 and 900. Since the power is 80%, you expect
80% of truly effective drugs to yield a P value less than 0.05 in your
experiment, so the upper left cell is 80. Since you set the definition of
statistical significance to 0.05, you expect 5% of ineffective drugs to yield
a P value less than 0.05, so the upper right cell is 45.  

Drug really
works

Drug really doesn't
work

Total

P<0.05, “significant” 80 45 125

P>0.05, “not significant” 20 455 475

Total 100 900 1000

In all, you expect to see 125 experiments that yield a "statistically
significant" result, and only in 80 of these does the drug really work. The
other 45 experiments yield a "statistically significant" result but are false
positives or false discoveries. The false discovery rate (abbreviated FDR)
is 45/125 or 36%. Not 5%, but 36%.

The table below, from chapter 12 of Essential Biostatistics , shows the
FDR for this and three other scenarios. 
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Prior
Probability

FDR for
P<0.05

FDR for 0.045 < P
< 0.050

Comparing randomly
assigned groups in a
clinical trial prior to
treatment

0% 100% 100%

Testing a drug that might
possibly work

10% 36% 78%

Testing a drug with
50:50 chance of working

50% 6% 27%

Positive controls 100% 0% 0%

Each row in the table above is for a different scenario defined by a
different prior (before collecting data) probability of there being a real
effect. The middle column shows the expected FDR as calculated above.
This column answers the question: "If the P value is less than 0.05, what
is the chance that there really is no effect and the result is just a matter
of random sampling?". Note this answer is not 5%. The FDR is quite
different than alpha, the threshold P value used to define statistical
significance. 

The right column, determined by simulations, asks a slightly different
question based on work by Colquhoun(1).: "If the P value is just a little
bit less than 0.05 (between 0.045 and 0.050), what is the chance that
there really is no effect and the result is just a matter of random
sampling?" These numbers are much higher. Focus on the third row
where the prior probability is 50%. In this case, if the P value is just
barely under 0.05 there is a 27% chance that the effect is due to chance.
Note: 27%, not 5%! And in a more exploratory situation where you think
the prior probability is 10%, the false discovery rate for P values just
barely lower than 0.05 is 78%. In this situation, a statistically significant
result (defined conventionally) means almost nothing.  

Bottom line:  You can't interpret statistical significance (or a P value) in a
vacuum. Your interpretation depends on the context of the experiment.
The false discovery rate can be much higher than the value of alpha
(usually 5%). Interpreting results requires common sense, intuition, and
judgment. 
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Reference

1. Colquhoun, D. (2014). An investigation of the false discovery rate and
the misinterpretation of p-values. Royal Society Open Science, 1(3),
140216–140216. http://doi.org/10.1098/rsos.140216

3.7.5 A legal analogy: Guilty or not guilty?

The statistical concept of 'significant' vs. 'not significant' can be
understood by comparing to the legal concept of 'guilty' vs. 'not guilty'. 

In the American legal system (and much of the world) a criminal
defendant is presumed innocent until proven guilty. If the evidence
proves the defendant guilty beyond a reasonable doubt, the verdict is
'guilty'. Otherwise the verdict is 'not guilty'. In some countries, this
verdict is 'not proven', which is a better description. A 'not guilty' verdict
does not mean the judge or jury concluded that the defendant is innocent
-- it just means that the evidence was not strong enough to persuade the
judge or jury that the defendant was guilty.

In statistical hypothesis testing, you start with the null hypothesis
(usually that there is no difference between groups). If the evidence
produces a small enough P value, you reject that null hypothesis, and
conclude that the difference is real. If the P value is higher than your
threshold (usually 0.05), you don't reject the null hypothesis. This doesn't
mean the evidence convinced you that the treatment had no effect, only
that the evidence was not persuasive enough to convince you that there
is an effect.

3.7.6 Advice: Don't P-Hack

Statistical results can only be interpreted at face value when every choice
in data analysis was performed exactly as planned and documented as
part of the experimental design. This rule is commonly broken in some
research fileds.  Instead, analyses are often done as shown below: 
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Collect and analyze some data. If the results are not statistically
significant but show a difference or trend in the direction you expected,
collect some more data and reanalyze. Or try a different way to analyze
the data: remove a few outliers; transform to logarithms; try a
nonparametric test; redefine the outcome by normalizing (say, dividing
by each animal’s weight); use a method to compare one variable while
adjusting for differences in another; the list of possibilities is endless. 
Keep trying until you obtain a statistically significant result or until you
run out of money, time, or curiosity.  

The results from data collected this way cannot be interpreted at face
value. Even if there really is no difference (or no effect), the chance of
finding a “statistically significant” result exceeds 5%. The problem is that
you introduce bias when you choose to collect more data (or analyze the
data differently) only when the P value is greater than 0.05. If the P value



GraphPad Statistics Guide86

© 1995-2016 GraphPad Software, Inc.

was less than 0.05 in the first analysis, it might be larger than 0.05 after
collecting more data or using an alternative analysis. But you’d never see
this if you only collected more data or tried different data analysis
strategies when the first P value was greater than 0.05.

The term P-hacking was coined by Simmons et al (1) who also use the
phrase, “too many investigator degrees of freedom”. This is a general
term that encompasses dynamic sample size  collection, HARKing ,
and more. There are three kinds of P-hacking:

· The first kind of P-hacking involves changing the actual values
analyzed. Examples include ad hoc sample size selection, switching to
an alternate control group (if you don’t like the first results and your
experiment involved two or more control groups), trying various
combinations of independent variables to include in a multiple
regression (whether the selection is manual or automatic), trying
analyses with and without outliers, and analyzing various subgroups of
the data. 

· The second kind of P-hacking is reanalyzing a single data set with
different statistical tests. Examples: Try parametric and nonparametric
tests. Analyze the raw data, then try analyzing the logarithms of the
data.

· The third kind of P-hacking is the garden of forking paths (2). This
happens when researchers performed a reasonable analysis given their
assumptions and their data, but would have done other analyses that
were just as reasonable  had the data turned out differently.

Exploring your data can be a very useful way to generate hypotheses and
make preliminary conclusions. But all such analyses need to be clearly
labeled, and then retested with new data.

 Reference

1. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive
psychology: undisclosed flexibility in data collection and analysis
allows presenting anything as significant. Psychological Science,
22(11), 1359–1366. 

2. Gelman, A., & Loken, E. (2013). The garden of forking paths: Why
multiple comparisons can be a problem, even when there is no
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“fishing expedition” or ‘p-hacking’ and the research hypothesis was
posited ahead of time. Unpublished as of Jan. 2016

3.7.7 Advice: Don't keep adding subjects until you hit 'significance'.

A commonly used approach leads to misleading results

This approach is tempting, but wrong (so shown crossed out):

Rather than choosing a sample size before beginning a study, simply repeat the statistical
analyses as you collect more data, and then:

· If the result is not statistically significant, collect some more data, and reanalyze. 

· If the result is statistically significant, stop the study. 

The problem with this approach is that you'll keep going if you don't like
the result, but stop if you do like the result. The consequence is that the
chance of obtaining a "significant" result if the null hypothesis were true
is a lot higher than 5%.

Simulations to demonstrate the problem

The graph below illustrates this point via simulation. We simulated data
by drawing values from a Gaussian distribution (mean=40, SD=15, but
these values are arbitrary). Both groups were simulated using exactly the
same distribution. We picked N=5 in each group and computed an
unpaired t test and recorded the P value. Then we added one subject to
each group (so N=6) and recomputed the t test and P value. We repeated
this until N=100 in each group. Then we repeated the entire simulation
three times. These simulations were done comparing two groups with
identical population means. So any "statistically significant" result we
obtain must be a coincidence -- a Type I error. 

The graph plots P value on the Y axis vs. sample size (per group) on the X
axis. The green shaded area at the bottom of the graph shows P values
less than 0.05, so deemed "statistically significant". 

http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
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Experiment 1 (green) reached a P value less than 0.05 when N=7, but the
P value is higher than 0.05 for all other sample sizes. Experiment 2 (red)
reached a P value less than 0.05 when N=61 and also when N=88 or 89.
Experiment 3 (blue) curve hit a P value less than 0.05 when N=92 to
N=100. 

If we followed the sequential approach, we would have declared the
results in all three experiments to be "statistically significant". We would
have stopped when N=7 in the first (green) experiment, so would never
have seen the dotted parts of its curve. We would have stopped the
second (red) experiment when N=6, and the third (blue) experiment
when N=92. In all three cases, we would have declared the results to be
"statistically significant". 

Since these simulations were created for values where the true mean in
both groups was identical, any declaration of "statistical significance" is a
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Type I error. If the null hypothesis is true (the two population means are
identical) we expect to see this kind of Type I error in 5% of experiments
(if we use the traditional definition of alpha=0.05 so P values less than
0.05 are declared to be significant). But with this sequential approach, all
three of our experiments resulted in a Type I error.  If you extended the
experiment long enough (infinite N) all experiments would eventually
reach statistical significance. Of course, in some cases you would
eventually give up even without "statistical significance". But this
sequential approach will produce "significant" results in far more than 5%
of experiments, even if the null hypothesis were true, and so this
approach is invalid. 

Bottom line

It is important that you choose a sample size and stick with it. You'll fool
yourself if you stop when you like the results, but keep going when you
don't. The alternative is using specialized sequential or adaptive methods
that take into account the fact that you analyze the data as you go. To
learn more about these techniques, look up 'sequential' or 'adaptive'
methods in advanced statistics books.

3.7.8 Advice: Don't HARK

Hypothesizing After the Result is Known (HARKing, Kerr 1998) is when
you analyze the data many different ways (say different subgroups),
discover an intriguing relationship, and then publish the data so it
appears that the hypothesis was stated before the data were collected. 
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3.8 Statistical power
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If there really is a difference (or correlation or

association), you might not find it. it depends on

the power of your experiment. This section

explains what power means. Note that Prism does

not provide any tools to compute power.

Nonetheless, understanding power is essential to

interpreting statistical results properly.

3.8.1 Key concepts: Statistical Power

Definitions of power and beta

Even if the treatment really does affect the outcome, you might not
obtain a statistically significant difference in your experiment. Just by
chance, your data may yield a P value greater than 0.05 (or whatever
value, alpha, you use as your cutoff). 

Let's assume we are comparing two means with a t test. Assume that the
two means truly differ by a particular amount, and that you perform many
experiments with the same sample size. Each experiment will have
different values (by chance) so each t test will yield different results. In
some experiments, the P value will be less than alpha (usually set to
0.05), so you call the results statistically significant. In other
experiments, the P value will be greater than alpha, so you will call the
difference not statistically significant. 

If there really is a difference (of a specified size) between group means,
you won't find a statistically significant difference in every experiment.
Power is the fraction of experiments that you expect to yield a
"statistically significant" P value. If your experimental design has high
power, then there is a high chance that your experiment will find a
"statistically significant" result if the treatment really works. 

The variable beta is defined to equal 1.0 minus power (or 100% - power
%). If there really is a difference between groups, then beta is the



GraphPad Statistics Guide92

© 1995-2016 GraphPad Software, Inc.

probability that an experiment like yours will yield a "not statistically
significant" result. 

How much power do I need?

The power is the chance that an experiment will result in a "statistically
significant" result given some assumptions. How much power do you
need? These guidelines might be useful: 

· If the power is less than 50% to detect some effect that you think is
worth detecting, then the study is really not helpful. 

· Many investigators choose sample size to obtain a 80% power. This is
arbitrary, but commonly used.

· Ideally, your choice of acceptable power should depend on the
consequence of making a Type II error . 

GraphPad StatMate

GraphPad Prism does not compute statistical power or sample size, but
the companion program GraphPad StatMate does. 

3.8.2 An analogy to understand statistical power

Looking for a tool in a basement

The concept of statistical power is a slippery one. Here is an analogy that
might help (courtesy of John Hartung, SUNY HSC Brooklyn). 

You send your child into the basement to find a tool. He comes back and
says "it isn't there". What do you conclude? Is the tool there or not?
There is no way to be sure.

So let's express the answer as a probability. The question you really want
to answer is: "What is the probability that the tool is in the basement"?
But that question can't really be answered without knowing the prior
probability and using Bayesian thinking. We'll pass on that, and instead
ask a slightly different question: "If the tool really is in the basement,
what is the chance your child would have found it"? 

The answer depends on the answers to these questions:
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·  How long did he spend looking? If he looked for a long time, he is
more likely to have found the tool.

·  How big is the tool? It is easier to find a snow shovel than the tiny
screw driver you use to fix eyeglasses.

·  How messy is the basement? If the basement is a real mess, he was
less likely to find the tool than if it is super organized. 

So if he spent a long time looking for a large tool in an organized
basement, there is a high chance that he would have found the tool if it
were there. So you can be quite confident of his conclusion that the tool
isn't there. If he spent a short time looking for a small tool in a messy
basement, his conclusion that "the tool isn't there" doesn't really mean
very much.

Analogy with sample size and power

So how is this related to computing the power of a completed
experiment? The question about finding the tool, is similar to asking
about the power of a completed experiment. Power is the answer to this
question: If an effect (of a specified size) really occurs, what is the
chance that an experiment of a certain size will find a "statistically
significant" result?

· The time searching the basement is analogous to sample size. If you
collect more data you have a higher power to find an effect. 

· The size of the tool is analogous to the effect size you are looking for.
You always have more power to find a big effect than a small one.

· The messiness of the basement is analogous to the standard deviation
of your data. You have less power to find an effect if the data are very
scattered. 

If you use a large sample size looking for a large effect using a system
with a small standard deviation, there is a high chance that you would
have obtained a "statistically significant effect" if it existed. So you can be
quite confident of a conclusion of "no statistically significant effect". But if
you use a small sample size looking for a small effect using a system with
a large standard deviation, then the finding of "no statistically significant
effect" really isn't very helpful. 
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3.8.3 Type I, II (and III) errors

Type I and Type II errors

When you make a conclusion about whether an effect is statistically
significant, you can be wrong in two ways:

· You've made a type I error when there really is no difference
(association, correlation..) overall, but random sampling caused your
data to show a statistically significant difference (association,
correlation...). Your conclusion that the two groups are really different
(associated, correlated) is incorrect.

· You've made a type II error when there really is a difference
(association, correlation) overall, but random sampling caused your
data to not show a statistically significant difference. So your
conclusion that the two groups are not really different is incorrect.

Type 0 and Type III errors

Additionally, there are two more kinds of errors you can define:

· You've made a type 0 error when you get the right answer, but asked
the wrong question! This is sometimes called a type III error,
although that term is usually defined differently (see below).

· You've made a type III error when you correctly conclude that the
two groups are statistically different, but are wrong about the direction
of the difference. Say that a treatment really increases some variable,
but you don't know this. When you run an experiment to find out,
random sampling happens to produce very high values for the control
subjects but low values for the treated subjects. This means that the
mean of the treated subjects is lower (on average) in the treated
group, and enough lower that the difference is statistically significant.
You'll correctly reject the null hypothesis of no difference and correctly
conclude that the treatment significantly altered the outcome. But you
conclude that the treatment lowered the value on average, when in
fact the treatment (on average, but not in your subjects) increases the
value. Type III errors are very rare, as they only happen when random
chance leads you to collect low values from the group that is really
higher, and high values from the group that is really lower. 
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3.8.4 Using power to evaluate 'not significant' results

Example data

Motulsky et al. asked whether people with hypertension (high blood
pressure) had altered numbers of alpha2-adrenergic receptors on their

platelets (Clinical Science 64:265-272, 1983). There are many reasons to
think that autonomic receptor numbers may be altered in hypertension.
We studied platelets because they are easily accessible from a blood
sample. The results are shown here:

Variable Hypertensive Control

Number of subjects 18 17

Mean receptor number
(receptors per cell)

257 263

Standard Deviation 59.4 86.6

The two means were almost identical, so of course a t test computed a
very high P value. We concluded that there is no statistically significant
difference between the number of alpha2 receptors on platelets of people

with hypertension compared to controls. When we published this nearly
30 years ago, we did not go further.

These negative data can be interpreted in terms of confidence intervals or
using power analyses. The two are equivalent and are just alternative
ways of thinking about the data.

Interpreting not significant results using a confidence interval

All results should be accompanied by confidence intervals showing how
well you have determined the differences (ratios, etc.) of interest. For our
example, the 95% confidence interval for the difference between group
means extends from -45 to 57 receptors/platelet. Once we accept the
assumptions of the t test analysis, we can be 95% sure that this interval
contains the true difference between mean receptor number in the two
groups. To put this in perspective, you need to know that the average
number of receptors per platelet is about 260. 

The interpretation of the confidence interval must be in a scientific
context. Here are two very different approaches to interpreting this
confidence interval. 
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· The CI includes possibilities of a 20% change each way. A 20% change
is huge. With such a wide CI, the data are inconclusive. Could be no
change. Could be big decrease. Could be big increase. 

· The CI tells us that the true difference is unlikely to be more than 20%
in each direction. Since we are only interested in changes of 50%, we
can conclude that any difference is, at best, only 20% or so, which is
biologically trivial. These are solid negative results. 

Both statements are sensible. It all depends on how you would interpret a
20% change. Statistical calculations can only compute probabilities. It is
up to you to put these in a scientific context. As with power calculations,
different scientists may interpret the same results differently. 

Interpreting not significant results using power analysis

What was the power of this study to find a difference (if there was one)?
The answer depends on how large the difference really is. Here are the
results shown as a graph (created with GraphPad StatMate).
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All studies have a high power to detect "big" differences and a low power
to detect "small" differences, so power graph all have the same shape.
Interpreting the graph depends on putting the results into a scientific
context. Here are two alternative interpretations of the results: 

· We really care about receptors in the heart, kidney, brain and blood
vessels, not the ones in the platelets (which are much more
accessible). So we will only pursue these results (do more studies) if
the difference was 50%. The mean number of receptors per platelet is
about 260, so we would only be seriously interested in these results if
the difference exceeded half of that, or 130. From the graph above,
you can see that this study had extremely high power to detect a
difference of 130 receptors/platelet. In other words, if the difference
really was that big, this study (given its sample size and variability)
would almost certainly have found a statistically significant difference.
Therefore, this study gives convincing negative results. 

· Hey, this is hypertension. Nothing is simple. No effects are large.
We've got to follow every lead we can. It would be nice to find
differences of 50% (see above) but realistically, given the
heterogeneity of hypertension, we can't expect to find such a large
difference. Even if the difference was only 20%, we'd still want to do
follow up experiments. Since the mean number of receptors per
platelet is 260, this means we would want to find a difference of about
50 receptors per platelet. Reading off the graph (or the table), you can
see that the power of this experiment to find a difference of 50
receptors per cell was only about 50%. This means that even if there
really were a difference this large, this particular experiment (given its
sample size and scatter) had only a 50% chance of finding a
statistically significant result. With such low power, we really can't
conclude very much from this experiment. A reviewer or editor making
such an argument could convincingly argue that there is no point
publishing negative data with such low power to detect a biologically
interesting result. 

As you can see, the interpretation of power depends on how large a
difference you think would be scientifically or practically important to
detect. Different people may reasonably reach different conclusions. Note
that it doesn't help at all to look up the power of a study to detect the
difference we actually observed. This is a common misunderstanding . 
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Comparing the two approaches

Confidence intervals and power analyses are based on the same
assumptions, so the results are just different ways of looking at the same
thing. You don't get additional information by performing a power analysis
on a completed study, but a power analysis can help you put the results
in perspective

The power analysis approach is based on having an alternative hypothesis
in mind. You can then ask what was the probability that an experiment
with the sample size actually used would have resulted in a statistically
significant result if your alternative hypothesis were true. 

If your goal is simply to understand your results, the confidence interval
approach is enough. If your goal is to criticize a study of others, or plan a
future similar study, it might help to also do a power analysis. 

Reference

1. Motulsky HJ, O'Connor DT, Insel PA. Platelet alpha 2-adrenergic
receptors in treated and untreated essential hypertension.  Clin Sci
(Lond). 1983 Mar;64(3):265-72.

3.8.5 Why doesn't Prism compute the power of tests

Post-hoc power analyses are rarely useful

Some programs report a power value as part of the results of t tests and
other statistical comparisons. Prism does not do so, and this page
explains why.

It is never possible to answer the question "what is the power of this
experimental design?". That question is simply meaningless. Rather, you
must ask "what is the power of this experimental design to detect an
effect of a specified size?". The effect size might be a difference between
two means, a relative risk, or some other measure of treatment effect.

Which effect size should you calculate power for? How large a difference
should you be looking for? These are not statistical questions, but rather
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scientific questions. It only makes sense to do a power analysis when you
think about the data scientifically. It makes sense to compute the power
of a study design to detect an effect that is the smallest effect you'd care
about. Or it makes sense to compute the power of a study to find an
effect size determined by a prior study. 

When computing statistical comparisons, some programs augment their
results by reporting the power to detect the effect size (or difference,
relative risk, etc.) actually observed in that particular experiment. The
result is sometimes called observed power, and the procedure is
sometimes called a post-hoc power analysis or retrospective power
analysis. 

Many (perhaps most) statisticians (and I agree) think that these
computations are useless and misleading. If your study reached a
conclusion that the difference is not statistically significant, then -- by
definition-- its power to detect the effect actually observed is very low.
You learn nothing new by such a calculation. It can be useful to compute
the power of the study to detect a difference that would have been
scientifically or clinically worth detecting. It is not worthwhile to compute
the power of the study to detect the difference (or effect) actually
observed.

Observed power is directly related to P value

Hoenig and Helsey (2001) pointed out that the observed power can be
computed from the observed P value as well as the value of alpha you
choose (usually 0.05). When the P value is 0.05 (assuming you define
statistical significance to mean P<0.05, so have set alpha to 0.05), then
the power must be 50%. If the P value is smaller than 0.05, the observed
power is greater than 50%. If the P value is greater than 0.05, then the
observed power is less than 50%. The observed power conveys no new
information. The figure below (from Helsey, 2001) shows the relationship
between P value and observed power of an unpaired t test, when alpha is
set to 0.05.
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3.8.6 Advice: How to get more power

If you are not happy with the power of your study, consider this list of
approaches to increase power (abridged from Bausell and Li ). 

The best approach to getting more power is to collect more, or higher
quality, data by: 

· Increasing sample size. If you collect more data, you'll have more
power. 

· Increasing sample size for the group that is cheaper (or less risky). If
you can't add more subjects to one group because it is too expensive,
too risky, or too rare, add subjects to the other group. 

· Reduce the standard deviation of the values (when comparing means)
by using a more homogeneous group of subjects, or by improving the
laboratory techniques. 

You can also increase power, by making some compromises: 

· Increase your choice for alpha. Alpha is the threshold P value below
which you deem the results "statistically significant". While this is
traditionally set at 0.05, you can choose another value. If you raise
alpha, say to 0.10, you'll increase the power of the study to find a real
difference while also increasing the chance of falsely finding a
"significant" difference. 

· Decide you only care about a larger difference or effect size. All
studies have higher power to detect a large difference than a small
one.

Reference

1. R. Barker Bausell, Yu-Fang Li, Power Analysis for Experimental
Research: A Practical Guide for the Biological, Medical and Social Sciences,
IBSN:0521809169.



GraphPad Statistics Guide102

© 1995-2016 GraphPad Software, Inc.

3.9 Choosing sample size

How big a sample do you need? The answer, of

course, is "it depends". This section explains what

it depends on. Note that Prism does not do any

sample size calculations, and this material is here

for general interest.

3.9.1 Overview of sample size determination

The four questions

Many experiments and clinical trials are run with too few subjects. An
underpowered study is a wasted effort because even substantial
treatment effects are likely to go undetected. Even if the treatment
substantially changed the outcome, the study would have only a small
chance of finding a "statistically significant" effect.

When planning a study, therefore, you need to choose an appropriate
sample size. The required sample size depends on your answers to these
questions:

· How scattered do you expect your data to be?

· How willing are you to risk mistakenly finding a difference by chance?

· How big a difference are you looking for?

· How sure do you need to be that your study will detect a difference, if it
exists? In other words, how much statistical power do you need?  

The first question requires that you estimate the standard deviation you
expect to see. If you can't estimate the standard deviation, you can't
compute how many subjects you will need. If you expect lots of scatter, it
is harder to discriminate real effects from random noise, so you'll need
lots of subjects.

The second question is answered with your definition of statistical
significance. Almost all investigators choose the 5% significance level,
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meaning that P values less than 0.05 are considered to be "statistically
significant". If you choose a smaller significance level (say 1%), then
you'll need more subjects.

The third and fourth questions are trickier. Everyone would prefer to plan
a study that can detect very small differences, but this requires a large
sample size. And everyone wants to design a study with lots of power, so
it is quite certain to return a "statistically significant" result if the
treatment actually works, but this too requires lots of subjects. 

An alternative approach to sample size calculations

Rather than asking you to answer those last two questions, StatMate
presents results in a table so you see the tradeoffs between sample size,
power, and the effect size you can detect. You can look at this table,
consider the time, expense and risk of your experiment, and decide on an
appropriate sample size. Note that StatMate does not directly answer the
question "how many subjects do I need?" but rather answers the related
question "if I use N subjects, what information can I learn?". This
approach to sample size calculations was recommended by Parker and
Berman (1).

In some cases, StatMate's calculations may convince you that it is
impossible to find what you want to know with the number of subjects
you are able to use. This can be very helpful. It is far better to cancel
such an experiment in the planning stage, than to waste time and money
on a futile experiment that won't have sufficient power. If the experiment
involves any clinical risk or expenditure of public money, performing such
a study can even be considered unethical.

Also...

One benefit of larger sample size is you have more power to detect a
specified effect, or with constant power can detect smaller effect sizes.
But there is another reason to choose larger sample sizes when possible.
With larger samples, you can better assess teh distribution of the data. Is
the assumption of sampling from a Gaussian, or lognormal, distribution
reasonable? With larger samples, it is easier to assess

Reference

1.  R. A. Parker and N. G. Berman, Sample Size: More than Calculations,
Am. Statistician 57:166-170, 2003.
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3.9.2 Why choose sample size in advance?

The appeal of choosing sample size as you go

To many, calculating sample size before the study starts seems like a
nuisance. Why not do the analyses as you collect data? If your results are
not statistically significant,  then collect some more data, and reanalyze.
If your results are statistically significant result, then stop the study and
don't waste time or money on more data collection.

The problem with this approach is that you'll keep going if you don't like
the result, but stop if you do like the result. The consequence is that the
chance of obtaining a "significant" result if the null hypothesis were true
is a lot higher than 5%.

Simulation to show the dangers of not choosing sample size in advance

The graph below illustrates this point via simulation. We simulated data
by drawing values from a Gaussian distribution (mean=40, SD=15, but
these values are arbitrary). Both groups were simulated using exactly the
same distribution. We picked N=5 in each group and computed an
unpaired t test and recorded the P value. Then we added one subject to
each group (so N=6) and recomputed the t test and P value. We repeated
this until N=100 in each group. Then we repeated the entire simulation
three times. These simulations were done comparing two groups with
identical population means. So any "statistically significant" result we
obtain must be a coincidence -- a Type I error.

The graph plots P value on the Y axis vs. sample size (per group) on the X
axis. The greenish shaded area at the bottom of the graph shows P values
less than 0.05, so deemed "statistically significant".
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The green curve shows the results of the first simulated set of
experiments. It reached a P value less than 0.05 when N=7, but the P
value is higher than 0.05 for all other sample sizes. The red curve shows
the second simulated experiment. It reached a P value less than 0.05
when N=61 and also when N=88 or 89. The blue curve is the third
experiment. It has a P value less than 0.05 when N=92 to N=100.

If we followed the sequential approach, we would have declared the
results in all three experiments to be "statistically significant". We would
have stopped when N=7 in the green experiment, so would never have
seen the dotted parts of its curve. We would have stopped the red
experiment when N=6, and the blue experiment when N=92. In all three
cases, we would have declared the results to be "statistically significant".
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Since these simulations were created for values where the true mean in
both populations was identical, any declaration of "statistical significance"
is a Type I error. If the null hypothesis is true (the two population means
are identical) we expect to see this kind of Type I error in 5% of
experiments (if we use the traditional definition of alpha=0.05 so P values
less than 0.05 are declared to be significant). But with this sequential
approach, all three of our experiments resulted in a Type I error. If you
extended the experiment long enough (infinite N) all experiments would
eventually reach statistical significance. Of course, in some cases you
would eventually give up even without "statistical significance". But this
sequential approach will produce "significant" results in far more than 5%
of experiments, even if the null hypothesis were true, and so this
approach is invalid.

Bottom line

It is important that you choose a sample size and stick with it. You'll fool
yourself if you stop when you like the results, but keep going when you
don't. If experiments continue when results are not statistically
significant, but stop  when the results are statistically significant, the
chance of mistakenly concluding that results are statistical significant is
far greater than 5%.

There are some special statistical techniques for analyzing data
sequentially, adding more subjects if the results are ambiguous and
stopping if the results are clear. Look up 'sequential medical trials' in
advanced statistics books to learn more.

3.9.3 Choosing alpha and beta for sample size calculations

Standard approach

When computing sample size, many scientists use standard values for
alpha and beta. They always set alpha to 0.05, and beta to 0.20 (which
allows for 80% power). 

The advantages of the standard approach are that everyone else does it
too and it doesn't require much thinking. The disadvantage is that it
doesn't do a good job of deciding sample size
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Choosing alpha and beat for the scientific context

When computing sample size, you should pick values for alpha and power
according to the experimental setting, and on the consequences of
making a Type I or Type II error ().

Let's consider four somewhat contrived examples. Assume you are
running a screening test to detect compounds that are active in your
system. In this context, a Type I error is concluding that a drug is
effective, when it really is not. A Type II error is concluding that a drug is
ineffective, when it fact it is effective. But the consequences of making a
Type I or Type II error depend on the context of the experiment. Let's
consider four situations.

· A. Screening drugs from a huge library of compounds with no biological
rationale for choosing the drugs. You know that some of the "hits" will
be false-positives (Type I error) so plan to test all those "hits" in
another assay. So the consequence of a Type I error is that you need to
retest that compound. You don't want to retest too many compounds,
so can't make alpha huge. But it might make sense to set it to a fairly
high value, perhaps 0.10. A Type II error occurs when you conclude that
a drug has no statistically significant effect, when in fact the drug is
effective. But in this context, you have hundreds of thousands of more
drugs to test, and you can't possibly test them all. By choosing a low
value of power (say 60%) you can use a smaller sample size. You know
you'll miss some real drugs, but you'll be able to test many more with
the same effort. So in this context, you can justify setting alpha to a
high value. Summary: low power, high alpha.

· B. Screening  selected drugs, chosen with scientific logic. The
consequences of a Type I error are as before, so you can justify setting
alpha to 0.10. But the consequences of a Type II error are more serious
here. You've picked these compounds with some care, so a Type II error
means that a great drug might be overlooked. In this context, you want
to set power to a high value. Summary: high power, high alpha.

· C. Test carefully selected drugs, with no chance for a second round of
testing. Say the compounds might be unstable, so you can only use
them in one experiment. The results of this experiment -- the list of hits
and misses -- will be used to do a structure-activity relationship which
will then be used to come up with a new list of compounds for the
chemists to synthesize. This will be a expensive and time-consuming
task, so a lot is riding on this experiment, which can't easily be
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repeated. In this case, the consequences of both a Type I and Type II
error are pretty bad, so you set alpha to a small value (say 0.01) and
power to a large value (perhaps 99%). Choosing these values means
you'll need a larger sample size, but the cost is worth it here.
Summary: high power, low alpha.

· D. Rethink scenario C. The sample size required for scenario C may be
too high to be feasible. You simply can't run that many replicates. After
talking to your colleagues, you decide that the consequence of making a
Type I error (falsely concluding that a drug is effective) is much worse
than making a Type II error (missing a real drug). One false hit may
have a huge impact on your structure-activity studies, and lead the
chemists to synthesize the wrong compounds. Falsely calling a drug to
be inactive will have less severe consequences. Therefore you choose a
low value of alpha and also a low power. Summary: low power, low
alpha.

Bottom line

These scenarios are contrived, and I certainly am not in a position to tell
anyone how to design their efforts to screen for drugs. But these
scenarios make the point that you should choose values for alpha and
power after carefully considering the consequences of making a Type I
and Type II error. These consequences depend on the scientific context of
your experiment. It doesn't really make sense to just use standard values
for alpha and power.

3.9.4 What's wrong with standard values for effect size?

The appeal of using standard effect sizes

Computing sample size requires that you decide how large a difference
you are looking for -- how large a difference (association, correlation..)
would be scientifically interesting. You'll need a large sample size if your
goal is to find tiny differences. You can get by with smaller samples, if
you are only looking for larger differences.

In a very influential book (1) , Jacob Cohen   makes some
recommendations for what to do when you don't know what effect size
you are looking for. He limits these recommendations to the behavioral
sciences (his area of expertise), and warns that all general
recommendations are more useful in some circumstances than others.
Here are his guidelines for an unpaired t test:
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· A "small" difference between means is equal to one fifth the standard
deviation.

· A "medium" effect size is equal to one half the standard deviation.

· A "large" effect is equal to 0.8 times the standard deviation.

So if you are having trouble deciding what effect size you are looking for
(and therefore are stuck and can't determine a sample size), Cohen would
recommend you choose whether you are looking for a "small", "medium",
or "large" effect, and then use the standard definitions.

The problem with standard effect sizes

Russell Lenth (2) argues that you should avoid these "canned" effect
sizes, and I agree. You must decide how large a difference you care to
detect based on understanding the experimental system you are using
and the scientific questions you are asking. Cohen's recommendations
seem a way to avoid thinking about the point of the experiment. It
doesn't make sense to only think about the difference you are looking at
in terms of the scatter you expect to see (anticipated standard deviation),
without even considering what the mean value might be.

If you choose standard definitions of alpha (0.05), power (80%), and
effect size (see above), then there is no need for any calculations. If you
accept those standard definitions for all your studies (that use an
unpaired t test to compare two groups), then all studies need a sample
size of 26 in each group to detect a large effect, 65 in each group to
detect a medium effect, 400 in each group to detect a small effect. 

Bottom line

Choosing standard effect sizes is really the same as picking standard
sample sizes.

References

1.  J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 1988,
ISBN=978-0805802832

2.  R. V. Lenth, R. V. (2001), "Some Practical Guidelines for Effective
Sample Size Determination,'' The American Statistician, 55, 187-193. 
A preliminary draft was posted as a pdf file.
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3.9.5 Sample size for nonparametric tests

The problem of choosing sample size for data to be analyzed by
nonparametric tests

Nonparametric tests are used when you are not willing to assume that
your data come from a Gaussian distribution. Commonly used
nonparametric tests are based on ranking values from low to high, and
then looking at the distribution of sum-of-ranks between groups. This is
the basis of the Wilcoxon rank-sum (test one group against a hypothetical
median), Mann-Whitney (compare two unpaired groups), Wilcoxon
matched pairs (compare two matched groups), Kruskal-Wallis (three or
more unpaired groups) and Friedman (three or more matched groups).

When calculating a nonparametric test, you don't have to make any
assumption about the distribution of the values. That is why it is called
nonparametric. But if you want to calculate necessary sample size for a
study to be analyzed by a nonparametric test, you must make an
assumption about the distribution of the values. It is not enough to say
the distribution is not Gaussian, you have to say what kind of distribution
it is. If you are willing to make such an assumption (say, assume an
exponential distribution of values, or a uniform distribution) you should
consult an advanced text or use a more advanced program to compute
sample size.

A useful rule-of-thumb

Most people choose a nonparametric test when they don't know the shape
of the underlying distribution. Without making an explicit assumption
about the distribution, detailed sample size calculations are impossible.
Yikes!

But all is not lost! Depending on the nature of the distribution, the
nonparametric tests might require either more or fewer subjects. But
they never require more than 15% additional subjects if the following two
assumptions are true:

· You are looking at reasonably high numbers of subjects (how high
depends on the nature of the distribution and test, but figure at least a
few dozen)

· The distribution of values is not really unusual (doesn't have infinite
tails, in which case its standard deviation would be infinitely large).
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So a general rule of thumb is this (1): 

If you plan to use a nonparametric test, compute the sample size
required for a parametric test and add 15%.

Reference

Erich L. Lehmann, Nonparametrics : Statistical Methods Based on Ranks,
Revised, 1998, ISBN=978-0139977350, pages 76-81. 

3.10 Multiple comparisons

Multiple comparisons are everywhere, and

understanding multiple comparisons is key to

understanding statistics.

3.10.1 The problem of multiple comparisons

3.10.1.1 The multiple comparisons problem

Review of the meaning of P value and alpha

Interpreting an individual P value is straightforward. Consider the simple
case of comparing two means. Assuming the null hypothesis is true, the P
value is the probability that random subject selection alone would result
in a difference in sample means (or a correlation or an association...) at
least as large as that observed in your study. 

Alpha is a threshold that you set in advance. If the P value is less than
alpha, you deem the comparison "statistically significant'. If you set alpha
to 5% and if the null hypothesis is true, there is a 5% chance of randomly
selecting subjects such that you erroneously infer a treatment effect in
the population based on the difference observed between samples

Multiple comparisons

Many scientific studies test multiple hypotheses. Some studies can
generate hundreds, or even thousands of comparisons. 
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Interpreting multiple P values is difficult. If you test several independent
null hypotheses and leave the threshold at 0.05 for each comparison, the
chance of obtaining at least one “statistically significant” result is greater
than 5% (even if all null hypotheses are true). This graph shows the
problem. The probability at least one "significant" comparison is
computed from the number of comparisons (N) on the X axis using this
equation: 100(1.00 - 0.95N).

Remember the unlucky number 13. If you perform 13 independent
comparisons, your chances are about 50% of obtaining at least one
'significant' P value (<0.05) just by chance.

The graph above (and the equation that generated it) assumes that the
comparisons are independent. In other words, it assumes that the chance
of any one comparison having a small P value is not related to the chance
of any other comparison having a small P value. If the comparisons are
not independent, it really is impossible to compute the probability shown
the the graph.

Example

Let's consider an example. You compare control and treated animals, and
you measure the level of three different enzymes in the blood plasma.
You perform three separate t tests, one for each enzyme, and use the
traditional cutoff of alpha=0.05 for declaring each P value to be
significant. Even if the treatment doesn't actually do anything, there is a
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14% chance that one or more of your t tests will be “statistically
significant”. 

If you compare 10 different enzyme levels with 10 t tests, the chance of
obtaining at least one “significant” P value by chance alone, even if the
treatment really does nothing, is 40%. Finally, imagine that you test 100
different enzymes, at 10 time points, with 12 pre treatments... If you
don't correct for multiple comparisons, you are almost certain to find that
some of them are 'significant', even if really all null hypotheses are true.

You can only correct for comparisons you know about

When reading a study, you can only account for multiple comparisons
when you know about all the comparisons made by the investigators. If
they report only “significant” differences, without reporting the total
number of comparisons, it is not possible to properly evaluate the results.
Ideally, all analyses should be planned before collecting data, and all
should be reported .

Learn more

Multiple comparisons is a big problem, affecting interpretation of almost
all statistical results. Learn more from a review by Berry (1), excerpted
below, or from chapter 22 and 23 of Intuitive Biostatistics(2). 

"Most scientists are oblivious to the problems of multiplicities. Yet they
are everywhere. In one or more of its forms, multiplicities are present
in every statistical application. They may be out in the open or hidden.
And even if they are out in the open, recognizing them is but the first
step in a difficult process of inference. Problems of multiplicities are the
most difficult that we statisticians face. They threaten the validity of
every statistical conclusion. " (1)

1.Berry, D. A. (2007). The difficult and ubiquitous problems of
multiplicities. Pharmaceutical Statistics , 6, 155-160

2. Motulsky, H.J. (2010). Intuitive Biostatistics, 3rd edition. Oxford
University Press. ISBN=978-0-19-994664-8.

3.10.1.2 Lingo: Multiple comparisons

Multiple comparison test applies whenever you make several comparisons
at once.  

18

http://www.intuitivebiostatistics.com


GraphPad Statistics Guide114

© 1995-2016 GraphPad Software, Inc.

Post test is sometimes used interchangeably with multiple comparison
test (above) but sometimes as a short form of post-hoc test (below). 

Post-hoc test is used for situations where you decide which comparisons
you want to make after looking at the data. You didn't plan ahead.  

Planned comparison tests  require that you focus in on a few scientifically
sensible comparisons. You can't decide which comparisons to do after
looking at the data. The choice must be based on the scientific questions
you are asking, and be chosen when you design the experiment.  

Orthogonal comparison. When you only make a few comparison, the
comparisons are called "orthogonal" when the each comparison is among
different groups. Comparing Groups A and B is orthogonal to comparing
Groups C and D, because there is no information in the data from groups
A and B that is relevant when comparing Groups C and D. In contrast,
comparing A and B is not orthogonal to comparing B and C.

Multiple comparisons procedures are used to cope with a set of
comparisons at once. They analyze a family of comparisons.

When you set the customary significance level of 5% (or some other
value) to apply to the entire family of comparisons, it is called a 
familywise error rate. When that significance level applies to only one
comparison at a time (no correction for multiple comparisons), it is called
a per-comparison error rate.

3.10.2 Three approaches to dealing with multiple comparisons

 .

3.10.2.1 Approach 1: Don't correct for multiple comparisons

 .

3.10.2.1.1  When it makes sense to not correct for multiple comparisons

Multiple comparisons can be accounted for with Bonferroni and other
corrections , or by the approach of controlling the False Discover Rate
. But these approaches are not always needed. Here are three situations
were special calculations are not needed. 

122 132
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Account for multiple comparisons when interpreting the results rather
than in the calculations

Some statisticians recommend never correcting for multiple comparisons
while analyzing data (1,2). Instead report all of the individual P values
and confidence intervals, and make it clear that no mathematical
correction was made for multiple comparisons. This approach requires
that all comparisons be reported. When you interpret these results, you
need to informally account for multiple comparisons. If all the null
hypotheses are true, you’d expect 5% of the comparisons to have
uncorrected P values less than 0.05. Compare this number to the actual
number of small P values.

Following ANOVA, the unprotected Fishers Least Significant Difference
test  follows this approach.

Corrections for multiple comparisons may not be needed if you make only
a few planned comparisons

The term planned comparison is used when:

· You focus in on a few scientifically sensible comparisons rather than
every possible comparison.

· The choice of which comparisons to make was part of the experimental
design. 

· You did not succumb to the temptation to do more comparisons after
looking at the data.

It is important to distinguish between comparisons that are preplanned
and those that are not (post hoc). It is not a planned comparison if you
first look at the data, and based on that peek decide to make only two
comparisons. In that case, you implicitly compared all the groups.

If you only make a few planned comparisons, some statistical texts
recommend setting the significance level (or the meaning of the
confidence interval) for each individual comparison without correction for
multiple comparisons. In this case, the 5% traditional significance level
applies to each individual comparisons, rather than the whole family of
comparisons.

121
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The logic of not correcting for multiple comparisons seems to be that
some statisticians think this extra power is a deserved bonus for planning
the experiment carefully and focussing on only a few scientifically sensible
comparisons. Kepel and Wickles advocate this approach (reference
below). But they also warn it is not fair to "plan" to make all comparisons,
and thus not correct for multiple comparisons.

Corrections for multiple comparisons are not needed when the
comparisons are complementary

Ridker and colleagues (3) asked whether lowering LDL cholesterol would
prevent heart disease in patients who did not have high LDL
concentrations and did not have a prior history of heart disease (but did
have an abnormal blood test suggesting the presence of some
inflammatory disease).  They study included almost 18,000 people. Half
received a statin drug to lower LDL cholesterol and half received placebo.

The investigators primary goal (planned as part of the protocol) was to
compare the number of  “end points” that occurred in the two groups,
including deaths from a heart attack or stroke, nonfatal heart attacks or
strokes, and hospitalization for chest pain. These events happened about
half as often to people treated with the drug compared to people taking
placebo. The drug worked.

The investigators also analyzed each of the endpoints separately. Those
taking the drug (compared to those taking placebo) had fewer deaths,
and fewer heart attacks, and fewer strokes, and fewer hospitalizations for
chest pain.

The data from various demographic groups were then analyzed
separately. Separate analyses were done for men and women, old and
young, smokers and nonsmokers, people with hypertension and without,
people with a family history of heart disease and those without. In each of
25 subgroups, patients receiving the drug experienced fewer primary
endpoints than those taking placebo, and all these effects were
statistically significant.

The investigators made no correction for multiple comparisons for all
these separate analyses of outcomes and  subgroups. No corrections were
needed, because the results are so consistent.  The multiple comparisons
each ask the same basic question a different way (does the drug prevent
disease?), and all the comparisons point to the same conclusion – people
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taking the drug had less cardiovascular disease than those taking
placebo.  

References

1. Rothman, K.J. (1990). No adjustments are needed for multiple
comparisons .Epidemiology, 1: 43-46.

2. D. J. Saville, Multiple Comparison Procedures: The Practical Solution.
The American Statistician, 44:174-180, 1990

3. Ridker. Rosuvastatin to Prevent Vascular Events in Men and Women
with Elevated C-Reactive Protein. N Engl J Med (2008) vol. 359 pp. 3195

3.10.2.1.2  Example: Planned comparisons

What are planned comparisons?

The term planned comparison is used when you focus in on a few
scientifically sensible comparisons. You don't do every possible
comparison. And you don't decide which comparisons to do after looking
at the data. Instead, you decide -- as part of the experimental design --
to only make a few comparisons.

Some statisticians recommend not correcting for multiple comparisons
when you make only a few planned comparisons. The idea is that you get
some bonus power as a reward for having planned a focussed study. 

Prism always corrects for multiple comparisons, without regard for
whether the comparisons were planned or post hoc. But you can get
Prism to do the planned comparisons for you once you realize that a
planned comparison is identical to a Bonferroni corrected comparison for
selected pairs of means, when there is only one pair to compare. 

Example data with incorrect analysis

In the graph below, the first column shows control data, and the second
column shows data following a treatment. The goal of the experiment is
to see if the treatment changes the measured activity (shown on the Y
axis). To make sure the vehicle (solvent used to dissolve the treatment)
isn't influencing the result, the experiment was performed with another

http://www.ncbi.nlm.nih.gov/pubmed/2081237
http://www.ncbi.nlm.nih.gov/pubmed/2081237
http://www.jstor.org/stable/2684163
http://content.nejm.org/cgi/content/abstract/352/1/20
http://content.nejm.org/cgi/content/abstract/352/1/20
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control that lacked the vehicle (third column). To make sure the
experiment is working properly, nonspecific (blank) data were collected
and displayed in the fourth column. 

Here are the results of one-way ANOVA and Tukey multiple comparison
tests comparing every group with every other group.

One-way analysis of variance

 P value P<0.0001

 P value summary ***

 Are means signif. different? (P <
0.05)

Yes

 Number of groups 4

 F 62.69

 R squared 0.9592

ANOVA Table SS df MS

 Treatment (between columns) 15050 3 5015

 Residual (within columns) 640 8 80

 Total 15690 11

Tukey's Multiple Comparison Test Mean Diff. q P value 95% CI of diff

 Control vs Treated 22.67 4.389 P > 0.05 -0.7210 to 46.05

 Control vs Con. wo vehicle -0.3333 0.06455 P > 0.05 -23.72 to 23.05

 Control vs Blank 86.33 16.72 P < 0.001 62.95 to 109.7

 Treated vs Con. wo vehicle -23 4.454 P > 0.05 -46.39 to 0.3877

 Treated vs Blank 63.67 12.33 P < 0.001 40.28 to 87.05
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 Con. wo vehicle vs Blank 86.67 16.78 P < 0.001 63.28 to 110.1

The overall ANOVA has a very low P value, so you can reject the null
hypothesis that all data were sampled from groups with the same mean.
But that really isn't very helpful. The fourth column is a negative control,
so of course has much lower values than the others. The ANOVA P value
answers a question that doesn't really need to be asked.

Tukey's multiple comparison tests were used to compare all pairs of
means (table above). You only care about the first comparison -- control
vs. treated -- which is not statistically significant (P>0.05). 

These results don't really answer the question your experiment set out to
ask. The Tukey multiple comparison tests set the 5% level of significance
to the entire family of six comparisons. But five of those six comparisons
don't address scientifically valid questions. You expect the blank values to
be much lower than the others. If that wasn't the case, you wouldn't have
bothered with the analysis since the experiment hadn't worked. Similarly,
if the control with vehicle (first column) was much different than the
control without vehicle (column 3), you wouldn't have bothered with the
analysis of the rest of the data. These are control measurements,
designed to make sure the experimental system is working. Including
these in the ANOVA and post tests just reduces your power to detect the
difference you care about.

Example data with planned comparison

Since there is only one comparison you care about here, it makes sense
to only compare the control and treated data. 

From Prism's one-way ANOVA dialog, choose the Bonferroni comparison
between selected pairs of columns, and only select one pair. 
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The difference is statistically significant with P<0.05, and the 95%
confidence interval for the difference between the means extends from
5.826 to 39.51.

When you report the results, be sure to mention that your P values and
confidence intervals are not corrected for multiple comparisons, so the P
values and confidence intervals apply individually to each value you
report and not to the entire family of comparisons.

In this example, we planned to make only one comparison. If you planned
to make more than one comparison, choose the Fishers Least Significant
Difference approach to performing multiple comparisons. When you
report the results, be sure to explain that you are doing planned
comparisons so have not corrected the P values or confidence intervals
for multiple comparisons.

Example data analyzed by t test

The planned comparisons analysis depends on the assumptions of
ANOVA, including the assumption that all data are sampled from groups
with the same scatter. So even when you only want to compare two
groups, you use data in all the groups to estimate the amount of scatter
within groups, giving more degrees of freedom and thus more power. 

That assumption seems dubious here. The blank values have less scatter
than the control and treated samples. An alternative approach is to ignore
the control data entirely (after using the controls to verify that the
experiment worked) and use a t test to compare the control and treated
data. The t ratio is computed by dividing the difference between the
means (22.67) by the standard error of that difference (5.27, calculated
from the two standard deviations and sample sizes) so equals 4.301.
There are six data points in the two groups being compared, so four
degrees of freedom. The P value is 0.0126, and the 95% confidence
interval for the difference between the two means ranges from 8.04 to
37.3. 

How planned comparisons are calculated

First compute the standard error of the difference between groups 1 and
2. This is computed as follows, where N1 and N2 are the sample sizes of

the two groups being compared (both equal to 3 for this example) and
MSresidual is the residual mean square reported by the one-way ANOVA

(80.0 in this example): 



PRINCIPLES OF STATISTICS 121

© 1995-2016 GraphPad Software, Inc.

1 2

1 1
Difference ResidualSE MS

N N

æ ö
ç ÷
ç ÷
è ø

= + ×

For this example, the standard error of the difference between the means
of column 1 and column 2 is 7.303. 

Now compute the t ratio as the difference between means (22.67) divided
by the standard error of that difference (7.303). So t=3.104. Since the
MSerror is computed from all the data, the number of degrees of freedom is

the same as the number of residual degrees of freedom in the ANOVA
table, 8 in this example (total number of values minus number of
groups). The corresponding P value is 0.0146. 

The 95% confidence interval extends from the observed mean by a
distance equal to SE of the difference (7.303) times the critical value from
the t distribution for 95% confidence and 8 degrees of freedom (2.306).
So the 95% confidence interval for the difference extends from 5.826 to
39.51.

3.10.2.1.3  Fisher's Least Significant Difference (LSD)

Fishers Least Significant Difference (LSD) test in Prism

Following one-way (or two-way) analysis of variance (ANOVA), you may
want to explore further and compare the mean of one group with the
mean of another. One way to do this is by using  Fisher's Least Significant
Difference (LSD) test.

Key facts about Fisher's LSD test

· The Fishers LSD test is basically a set of individual t tests. It is only
used as a followup to ANOVA.

· Unlike the Bonferroni, Tukey, Dunnett and Holm methods, Fisher's LSD
does not correct for multiple comparisons. 
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· If you choose to use the Fisher's LSD test, you'll need to account for
multiple comparisons when you interpret the data, since the
computations themselves do not correct for multiple comparisons. 

· The only difference a set of t tests and the Fisher's LSD test, is that t
tests compute the pooled SD from only the two groups being compared,
while the Fisher's LSD test computes the pooled SD from all the groups
(which gains power).

· Prism performs the unprotected LSD test. Unprotected simply means
that calculations are reported regardless of the results of the  ANOVA.
The unprotected Fisher's LSD test is essentially a set of t tests, without
any correction for multiple comparisons. 

· Prism does not perform a protected Fisher's LSD test. Protection means
that you only perform the calculations described above when the overall
ANOVA resulted in a P value less than 0.05 (or some other value set in
advance). This first step sort of controls the false positive rate for the
entire family of comparisons. While the protected Fisher's LSD test is of
historical interest as the first multiple comparisons test ever developed,
it is no longer recommended. It pretends to correct for multiple
comparisons, but doesn't do so very well. 

· How it works . 

3.10.2.2 Approach 2: Control the Type I error rate for the family of comparisons

 .

3.10.2.2.1  What it means to control the Type I error for a family

Let's consider what would happen if you did many comparisons, and
determined whether each result is 'significant' or not. Also assume that
we are 'mother nature' so know whether a difference truly exists or not in
the populations from which the data were sampled. 

In the table below, the top row represents the results of comparisons
where the null hypothesis is true -- the treatment really doesn't work.
Nonetheless, some comparisons will mistakenly yield a 'significant'
conclusion. The second line shows the results of comparisons where there
truly is a difference. Even so, you won't get a 'significant' result in every
experiment. 

341
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A, B, C and D represent numbers of comparisons, so the sum of
A+B+C+D equals the total number of comparisons you are making. You
can't make this table from experimental data because this table is an
overview of many experiments. 

"Significant" "Not significant" Total

No difference. 

Null hypothesis true

A B A+B

A difference truly exists C D C+D

Total A+C B+D A+B+C+D

In the table above, alpha is the expected value of A/(A+B). If you set
alpha to the usual value of 0.05, this means you expect 5% of all
comparisons done when the null hypothesis is true (A+B) to be
statistically significant (in the first column). So you expect A/(A+B) to
equal 0.05.

The usual approach to correcting for multiple comparisons is to set a
stricter threshold to define statistical significance. The goal is to  set a
strict definition of significance such that -- if all null hypotheses are true
-- there is only a 5% chance of obtaining one or more 'significant' results
by chance alone, and thus a 95% chance that none of the comparisons
will lead to a 'significant' conclusion. The 5% applies to the entire
experiment, so is sometimes called an experimentwise error rate or
familywise error rate (the two are synonyms). 

Setting a stricter threshold for declaring statistical significance ensures
that you are far less likely to be mislead by false conclusions of 'statistical
significance'. But this advantage comes at a cost: your experiment will
have less power to detect true differences.

The methods of Bonferroni , Tukey, Dunnett , Dunn , Holm  (and
more) all use this approach.

125 130 131 127
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3.10.2.2.2  Multiplicity adjusted P values

If you choose the Bonferroni, Tukey, Dunnett or Dunn (nonparametric)
multiple comparisons test, Prism can compute a multiplicity adjusted P
value for each comparison. This is a choice on the Options tab of the
ANOVA dialog. It is checked by default in Prism 7.

Key facts about multiplicity adjusted P values

· A separate adjusted P values is computed for each comparison in a
family of comparisons. 

· The value of each adjusted P value depends on the entire family. The
adjusted P value for one particular comparison would have a different
value if there were a different number of comparisons or if the data in
the other comparisons were changed. 

· Because the adjusted P value is determined by the entire family of
comparisons, it cannot be compared to an individual P value computed
by a t test or Fishers Least Significant Difference test. 

· Choosing the compute adjusted P values won't change Prism's
reporting of statistical significance. Instead Prism will report an
additional set of results -- the adjusted P value for each comparison.

· Multiplicity adjusted P values are not reported by most programs. If
you choose to report adjusted P values, be sure to explain that they
are multiplicity adjusted P values, and to give a reference. Avoid
ambiguous terms such as exact P values.

What are multiplicity adjusted P values?

Before defining adjusted P values, let's review the meaning of  a P value
from a single comparison. The P value is the answer to two equivalent
questions:

· If the null hypothesis were true, what is the chance that random
sampling would result in a difference this large or larger?

· What is the smallest definition of the threshold (alpha) of statistical
significance at which this result would be statistically significant?
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The latter form of the question is less familiar, but equivalent to the first.
It leads to a definition of the adjusted P value, which is the answer to this
question:

· What is the smallest significance level, when applied to the entire
family of comparisons, at which this particular comparison will be
deemed statistically significant?

The idea is pretty simple. There is nothing special about significance
levels of 0.05 or 0.01... You can set the significance level to any
probability you want. The adjusted P value is the smallest familywise
significance level at which a particular comparison will be declared
statistically significant as part of the multiple comparison testing.

Here is a simple way to think about it. You perform multiple comparisons
twice. The first time you set the familywise significance level to 5%. The
second time, you set it to 1% level. If a particular comparison is
statistically significant by the first calculations (5% significance level) but
is not for the second (1% significance level), its adjusted P value must be
between 0.01 and 0.05, say 0.0323. 

Learn more about adjusted P values

Three places to learn about adjusted P values:

· Wright  defines these adjusted P values and argues for their
widespread use (S.P. Wright. Adjusted P-values for simultaneous
inference. Biometrics 48:1005-1013,1992). 

· Multiple Comparisons and Multiple Tests (Text and Workbook Set) by
Peter H. Westfall, Randall D. Tobias, Dror Romm, 2000, 
IBSN:1580258336.

· Adjusted P values are computed by SAS's  PROC MULTTEST statement.
However, the SAS documentation does not do a good job of explaining
adjusted  P values.

3.10.2.2.3  Bonferroni and Sidak methods

Bonferroni and Sidak tests in Prism

Prism can perform Bonferroni and Sidak multiple comparisons tests as
part of several analyses:

http://www-stat.wharton.upenn.edu/~steele/Courses/956/Resource/MultipleComparision/Writght92.pdf
http://www-stat.wharton.upenn.edu/~steele/Courses/956/Resource/MultipleComparision/Writght92.pdf
http://www.amazon.com/Multiple-Comparisons-Tests-Text-Workbook/dp/1580258336%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D1580258336
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_multtest_sect005.htm
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· Following one-way ANOVA. This makes sense when you are comparing
selected pairs of means, with the selection based on experimental
design. Prism also lets you choose Bonferroni tests when comparing
every mean with every other mean. We don't recommend this. Instead,
choose the Tukey test  if you want to compute confidence intervals for
every comparison or the Holm-Šídák test  if you don't. 

· Following two-way ANOVA. If you have three or more columns, and wish
to compare means within each row (or three or more rows, and wish to
compare means within each column), the situation is much like one-way
ANOVA. The Bonferroni test is offered because it is easy to understand,
but we don't recommend it. If you enter data into two columns, and
wish to compare the two values at each row, then we recommend the
Bonferroni method, because it can compute confidence intervals for
each comparison. The alternative is the Holm-Šídák method, which has
more power, but doesn't compute confidence intervals. 

· As part of the analysis that performs many t tests at once . 

· To analyze a stack of P values . 

Key facts about the Bonferroni and Šídák methods

· The inputs to the Bonferroni and Šídák (the letter Š is pronounced "Sh")
methods are a list of P values, so these methods can be used whenever
you are doing multiple comparisons. They are not limited to use as
followup tests to ANOVA.

· It only makes sense to use these methods in situations for which a
specialized test has not been developed. For example, use the Tukey
method  when comparing every mean with every other mean, and use
Dunnett's method  to compare every mean with a control mean. But
use Bonferroni or Šídák when you select a set of means to compare.

· The Bonferroni and Šídák methods can determine statistical
significance, compute adjusted P value, and also compute confidence
intervals. 
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· The Šídák method has a bit more power than the Bonferroni method. 

· The Šídák method assumes that each comparison is independent of the
others. If this assumption is independence cannot be supported, choose
the Bonferroni method, which does not assume independence.    

· The Bonferroni method is used more frequently, because it is easier to
calculate (which doesn't matter when a computer does the work), easier
to understand, and much easier to remember. 

· Prism 5 and earlier offered  the Bonferroni method, but not the Šídák
method.

· The Bonferroni method is sometimes called the Bonferroni-Dunn
method. And the Šídák method is sometimes called the Bonferroni-
Šídák method.

References

1. H Abdi. The Bonferonni and Šidák Corrections for Multiple
Comparisons. In N.J. Salkind (Ed.), 2007, Encyclopedia of Measurement
and Statistics. Thousand Oaks (CA): Sage. pp. 103-107.

2. DJ Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fifth edition, 2011, ISBN=978-7-1398-5801-1

 

 

3.10.2.2.4  The Holm-Sidak method

The Holm-Šídák test in Prism

Prism can perform the Holm multiple comparisons test as part of several
analyses:

https://www.utd.edu/~herve/Abdi-Bonferroni2007-pretty.pdf
https://www.utd.edu/~herve/Abdi-Bonferroni2007-pretty.pdf
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· Following one-way ANOVA. This makes sense when you are comparing
selected pairs of means, with the selection based on experimental
design. Prism also lets you choose Bonferroni tests when comparing
every mean with every other mean. We don't recommend this. Instead,
choose the Tukey test  if you want to compute confidence intervals for
every comparison or the Holm-Šídák test  if you don't. 

· Following two-way ANOVA. If you have three or more columns, and wish
to compare means within each row (or three or more rows, and wish to
compare means within each column), the situation is much like one-way
ANOVA. The Bonferroni test is offered because it is easy to understand,
but we don't recommend it. If you enter data into two columns, and
wish to compare the two values at each row, then we recommend the
Bonferroni method, because it can compute confidence intervals for
each comparison. The alternative is the Holm-Šídák method, which has
more power, but doesn't compute confidence intervals. 

· As part of the analysis that performs many t tests at once . 

· To analyze a stack of P values . 

·

Key facts about the Holm test

· The input to the Holm method is a list of P values, so it is not restricted
to use as a followup test to ANOVA.

· The Holm multiple comparison test can calculate multiplicity adjusted P
values , if you request them (2).

· The Holm multiple comparison test cannot compute confidence intervals
for the difference between means.

· The method is also called the Holm step-down method. 

·  Although usually attributed to Holm, in fact this method was first
described explicitly by Ryan (3) so is sometimes called the Ryan-Holm
step down method.   

· Holm's method has more power than the Bonferroni or Tukey methods 
(4). It has less power than the Newman-Keuls method, but that method
is not recommended because it does not really control the familywise
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significance level as it should, except for the special case of exactly
three groups (4).

· The Tukey and Dunnett multiple comparisons tests are used only as
followup tests to ANOVA, and they take into account the fact that the
comparisons are intertwined. In contrast, Holm's method can be used to
analyze any set of P values, and is not restricted to use as a followup
test after ANOVA.

· The Šídák modification of the Holm test makes it a bit more powerful,
especially when there are many comparisons.

·  Note that Šídák's name is used as part of two distinct multiple
comparisons methods, the Holm-Šídák test and the Šídák test related to
the Bonferroni test . 

· How it works.

 References:

1. Holm, S. (1979). A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics 6 (2): 65–70.

2. Aickin, M. & Gensler, H. Adjusting for multiple testing when reporting
research results: the Bonferroni vs Holm methods. American journal of
public health 86, 726–728 (1996).

3. Ryan TA.  Significance tests for proportions, variances, and other 
statistics. Psychol. Bull.  1960;  57: 318-28

4. MA Seaman, JR Levin and RC Serlin,   New Developments in pairwise
multiple comparisons: Some powerful and practicable procedures,
Psychological Bulletin 110:577-586, 1991.

5. SA Glantz, Primer of Biostatistics, 2005, ISBN=978-0071435093.
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3.10.2.2.5  Tukey and Dunnett methods

Tukey and Dunnett tests in Prism

Prism can perform either Tukey or Dunnett tests as part of one- and two-
way ANOVA. Choose to assume a Gaussian distribution and to use a
multiple comparison test that also reports confidence intervals. If you
choose to compare every mean with every other mean, you'll be choosing
a Tukey test. If you choose to compare every mean to a control mean,
Prism will perform the Dunnett test. 

Key facts about the Tukey and Dunnett tests

· The Tukey and Dunnet tests are only used as followup tests to ANOVA.
They cannot be used to analyze a stack of P values.

· The Tukey test compares every mean with every other mean. Prism
actually computes the Tukey-Kramer test, which allows for the
possibility of unequal sample sizes.

· The Dunnett test compares every mean to a control mean. 

· Both tests take into account the scatter of all the groups. This gives
you a more precise value for scatter (Mean Square of Residuals) which
is reflected in more degrees of freedom. When you compare mean A to
mean C, the test compares the difference between means to the
amount of scatter, quantified using information from all the groups,
not just groups A and C. This gives the test more power to detect
differences, and only makes sense when you accept the assumption
that all the data are sampled from populations with the same standard
deviation, even if the means are different. 

· The results are a set of decisions: "statistically significant" or "not
statistically significant". These decisions take into account multiple
comparisons.

· It is possible to compute multiplicity adjusted P values  for these
tests. 

· Both tests can compute a confidence interval for the difference
between the two means. This confidence interval accounts for multiple
comparisons. If you choose 95% intervals, then you can be 95%
confident that all of the intervals contain the true population value.

124
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· Prism reports the q ratio for each comparison. By historical tradition,
this q ratio is computed differently for the two tests. For the Dunnett
test, q is the difference between the two means (D) divided by the
standard error of that difference (computed from all the data):
q=D/SED. For the Tukey test, q=sqrt(2)*D/SED. Because of these
different definitions, the two q values cannot be usefully compared.
The only reason to look at these q ratios is to compare Prism's results
with texts or other programs.  Note that this use of the variable q is
distinct from the use of q when using the FDR approach.

· Different tables (or algorithms) are used for the Tukey and Dunnett
tests to determine whether or not a q value is large enough for a
difference to be declared to be statistically significant. This calculation
depends on the value of q, the number of groups being compared, and
the number of degrees of freedom.

· Read the details of how these (and other) tests are calculated here.
We use the original single step Dunnett method, not the newer step-
up or step-down methods.

3.10.2.2.6  Dunn's multiple comparisons after nonparametric ANOVA

If you choose nonparametric ANOVA, the Multiple Comparisons tab lets
you choose:

·  No multiple comparisons

· Compare the mean rank of each group with the mean rank of every
other group

· Compare the mean rank of each group to the mean rank of a control
group you specify

· Compare selected pairs of columns. 

In all cases, you won't have any choice of method. Prism will use Dunn's
method  at a significance level alpha you choose (usually 0.05). 

346
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3.10.2.2.7  Newman-Keuls method

Prism offers the Newman-Keuls test (sometimes called the Student-
Newman-Keuls test) for historical reasons, but we don't recommend ever
using it. 

This test is a powerful way to compare all pairs of means, reporting
statistical significance but not confidence intervals or multiplicity adjusted
P values. The problem is it is too powerful, and so it does not maintain the
family-wise error rate at the specified level(2). In some cases, the chance
of a Type I error can be greater than the alpha level you specified.   

1. MA Seaman, JR Levin and RC Serlin, Psychological Bulletin 110:577-
586, 1991.

3.10.2.3 Approach 3: Control the False Discovery Rate (FDR)

 .

3.10.2.3.1  What it means to control the FDR

Defining the FDR

Here again is the table from the previous page  predicting the results
from many comparisons. The only difference, is that I changed the term
"statistically signfiicant" to "discovery" because that is more commonly
used with the false discovery rate approach. 

"Discovery" "Not a discovery" Total

No difference. 

Null hypothesis true

A B A+B

A difference truly exists C D C+D

Total A+C B+D A+B+C+D

The top row represents the results of comparisons where the null
hypothesis is true -- the treatment really doesn't work. Nonetheless,
some comparisons will mistakenly yield a P value small enough so that
comparison is deemed a "discovery". 

The second row shows the results of comparisons where there truly is a
difference. Even so, you won't get a P value small enough to call that
finding a "discovery" in every experiment. 
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A, B, C and D represent numbers of comparisons, so the sum of
A+B+C+D equals the total number of comparisons you are making. 

Of course, you can only make this table in theory. If you collected actual
data, you'd never know if the null hypothesis is true or not, so could not
assign results to row 1 or row 2. 

The usual approach to statistical significance and multiple comparisons
asks the question:

If the null hypothesis is true what is the chance of getting "statistically
significant" results? 

The False Discovery Rate (FDR) answers a different question: 

If a comparison is a "discovery", what is the chance that the null
hypothesis is true? 

In the table, above the False Discovery rate is the ratio A/(A+C).

Controlling the FDR with Q

When dealing with multiple comparisons, you may want to set a FDR
value (usually called Q) and then use that value when deciding which
comparisons are "discoveries" and which are not with the intention that
the actual false discovery rate is no higher than Q. 

If you are only making a single comparison, you can't do this without
defining the prior odds and using Bayesian reasoning . But if you have
many comparisons, simple methods let you control the FDR
approximately.  You can set the desired value of Q, and the FDR method
will decide if each P value is small enough to be designated a "discovery".
 If you set Q to 10%, you expect about 90% of the discoveries (in the
long run) to truly reflect actual differences, while no more than 10% are
false positives. In other words, you expect A/(A+C) to equal 10% (the
value you set for Q).

q values or adjusted P values

There are two ways to think about the false discovery rate. 

· You enter a value for Q (note the uppercase; the desired false discovery
rate) and, using that definition, the program tells you which

81
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comparisons are discoveries and which are not. In Prism, you enter Q as
a percentage.

· For each comparison, the program computes a q value (note the lower
case). This value is also called an adjusted P value. The way to think
about this value is as follows. If you had set Q above to this value, then
the comparison you are looking at now would be right at the border of
being a discovery or not. Prism reports q as a decimal fraction. 

3.10.2.3.2  Key facts about controlling the FDR

Prism uses the concept of False Discovery Rate as part of our method to
define outliers (from a stack of values , or during nonlinear regression).
Prism also can use the FDR method when calculating many t tests at
once , when analyzing a stack of P values computed elsewhere , and
as a multiple comparisons method following one-, two, or three-way
ANOVA. 

Key facts about the False Discovery Rate approach

· This approach first computes a P value for each comparison. When used
as a followup to ANOVA, the comparisons are done using the Fisher
Least Significant Different approach (which by itself does not correct for
multiple comparisons but does pool the variances to increase the
number of degrees of freedom). When used to analyze a set of t tests,
each t test is first computed individually. When analyzing a set of P
values, of course you enter these P values directly.

· The goal is explained here . You enter Q, the desired false discovery
rate (as a percentage), and Prism then tells you which P values are low
enough to be called a "discovery", with the goal of ensuring that no
more than Q% of those "discoveries" are actually false positives.

· Prism let's you choose one of three algorithms  for deciding which P
values are small enough to be a "discovery". The Benjamini and
Hochberg method was developed first so is more standard. The
Benjamani, Krieger and Yekutieli method have more power, so is
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preferred. The method of Benjamini & Yekutieli makes fewer
assumptions, but has much less power.

· This FDR approach does not use the concept or phrase "statistically
significant" when a P value is small, but instead uses the term
"discovery". (Some authors use terminology differently.)

· The FDR approach cannot compute confidence intervals to accompany
each comparison.

· Q (note the upper case) is a value you enter as the desired FDR. Prism
also computes q (lower case) for each comparison. This value q is the
value of Q at which this particular comparison would be right on the
border of being classified as a discovery or not. The value q depends not
only on that one comparison, but on the number of comparisons in the
family and the distribution of P values. 

· The q values Prism reports are FDR-adjusted p values, not FDR-
corrected P values. This is a subtle distinction.

· If all the null hypotheses are true,  there will be only a Q% chance that
you find one or more discoveries (where Q is the false discovery rate
you chose).

· If all the P values are less than your chosen value of Q (correcting for
the fact that P values are fractions and Q is a percentage), then all the
comparisons will be flagged as discoveries. (This rule is not true when
you choose the method of Benjamini & Yekutieli). 

· If all the P values are greater than your chosen value of Q, then no
comparison will be flagged as a discovery.

· The q values are generally larger than the corresponding P value. The
exception is the q value for the comparison with the largest P value can
have a q value equal to the P value. 

· The value of q is set by the P value for that comparison as well as the
other P values and the number of comparisons. The value you enter for
Q does not impact the computation of q.

· The algorithms in Prism control the FDR, not the pFDR (which won't be
explained here). 

http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/
http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/
http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/
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· The q values determined by these methods tend to be higher (and are
never lower) than the adjusted P values computed when using the usual
multiple comparisons methods (Bonferroni, etc.).

· Great nonmathematical review: Glickman, M. E., Rao, S. R., & Schultz, M. R.
(2014). False discovery rate control is a recommended alternative to Bonferroni-
type adjustments in health studies. Journal of Clinical Epidemiology, 67(8), 850–
857.

3.10.2.3.3  Pros and cons of the three methods used to control the FDR

Prism offers three methods to control the FDR that differ in power,
simplicity and assumptions. 

Original method of Benjamini and Hochberg (1).

This method was developed first, and is still the standard. It assumes
that "test statistics are independent or positive dependent". This seems
to mean that while it is OK that some of the comparisons are positively
correlated (if one is low, the others tend to be low), the method does not
work well if some comparisons are  negatively correlated (if one is low,
others tend to be high).

We offer this method because it is the standard. 

Two-stage step-up  method of Benjamini, Krieger and Yekutieli (2).

This method relies on the same assumption as the Benjamini and
Hochberg method, but it is a more clever method. It first examines the
distribution of P values to estimate the fraction of the null hypotheses
that are actually true. It then uses this information to get more power
when deciding when a P value is low enough to be called a discovery. 

The only downside of this method is that the math is a bit more
complicated, so it is harder to use if you were doing the calculations by
hand.   

The improved adaptive method of Benjamini, Krieger and Yekutieli  has
more power than the Benjamini and Hochberg method, while making the
same assumptions, so we recommend it.

http://doi.org/10.1016/j.jclinepi.2014.03.012
http://doi.org/10.1016/j.jclinepi.2014.03.012
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The paper that describes this metnod (2) describes several methods.
Prism uses  the method defined in section 6 , the two-stage linear step-up
procedure.

Corrected method of  Benjamini & Yakutieli (3)

This method requires no assumptions about how the various comparisons
correlate with each other. But the price of this is that is has less power,
so identifies fewer comparisons as being a discovery. Another way of
saying this is that the method is very conservative.  

References

1. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological) 289–300 (1995).
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3.11 Testing for equivalence

3.11.1 Key concepts: Equivalence

Why test for equivalence?

Usually statistical tests are used to look for differences. But sometimes
your goal is to prove that two sets of data are equivalent. A conclusion of
"no statistically significant difference" is not enough to conclude that two
treatments are equivalent. You've really need to rethink how the test is
set up.

http://www.jstor.org/stable/10.2307/2346101
http://www.jstor.org/stable/10.2307/2346101
http://www.math.tau.ac.il/~yekutiel/papers/KBY%20--%20adaptive%20FDR.pdf
http://www.math.tau.ac.il/~yekutiel/papers/KBY%20--%20adaptive%20FDR.pdf
http://projecteuclid.org/euclid.aos/1013699998
http://projecteuclid.org/euclid.aos/1013699998
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In most experimental situations, your goal is to show that one treatment
is better than another. But in some situations, your goal is just the
opposite -- to prove that one treatment is indistinguishable from another,
that any difference is of no practical consequence. This can either be the
entire goal of the study (for example to show that a new formulation of a
drug works as well as the usual formulation) or it can just be the goal for
analysis of a control experiment to prove that a system is working as
expected, before moving on to asking the scientifically interesting
questions.

Standard statistical tests cannot be used to test for equivalence

Standard statistical tests cannot be used to test for equivalence. 

A conclusion of “no statistically significant difference” between
treatments, simply means that you don't have strong enough evidence to
persuade you that the two treatments lead to different outcomes. That is
not the same as saying that the two outcomes are equivalent. 

A conclusion that the difference is “statistically significant” means you
have strong evidence that the difference is not zero, but you don't know
whether the difference is large enough to rule out the conclusion that the
two treatments are functionally equivalent. 

You must decide how large a difference has to be to in order to be
considered scientifically or clinically relevant.

In any experiment, you expect to almost always see some difference in
outcome when you apply two treatments. So the question is not whether
the two treatments lead to exactly the same outcome. Rather, the
question is whether the outcomes are close enough to be clinically or
scientifically indistinguishable. How close is that? There is no way to
answer that question generally. The answer depends on the scientific or
clinical context of your experiment.

To ask questions about equivalence, you first have to define a range of
treatment effects that you consider to be scientifically or clinically trivial.
This is an important decision that must be made totally on scientific or
clinical grounds. 

You can test for equivalence using either a confidence interval or P value
approach

Statistical methods have been developed for testing for equivalence. You
can use either a confidence interval or a P value approach . 
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3.11.2 Testing for equivalence with confidence intervals or P values

Before you can test for equivalence, you first have to define a range of
treatment effects that you consider to be scientifically or clinically trivial.
You must set this range based on scientific or clinical judgment --
statistical analyses can't help.

If the treatment effect you observed is outside this zone of scientific or
clinical indifference, then clearly you can't conclude the treatments are
equivalent. 

If the treatment effect does lie within the zone of clinical or scientific
indifference, then you can ask whether the data are tight enough to make
a strong conclusion that the treatments are equivalent. 

Testing for equivalence with confidence intervals.

The figure below shows the logic of how to test for equivalence with
confidence intervals. The horizontal axis shows the absolute value of the
treatment effect (difference between mean responses). The filled circles
show the observed effect, which is within the zone of indifference. The
horizontal error bars show the one-sided 95% confidence intervals, which
show the largest treatment effect consistent with the data (with 95%
confidence). 

In the experiment shown on top, even the limit of the confidence interval
lies within the zone of indifference. You can conclude (with 95%
confidence) that the two treatments are equivalent.
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In the experiment shown on the bottom, the confidence interval extends
beyond the zone of indifference. Therefore, you cannot conclude that the
treatments are equivalent. You also cannot conclude that the treatments
are not equivalent, as the observed treatment is inside the zone of
indifference. With data like these, you simply cannot make any conclusion
about equivalence.

Testing for equivalence using statistical hypothesis testing

Thinking about statistical equivalence with confidence intervals (above) is
pretty straightforward. Applying the ideas of statistical hypothesis testing
to equivalence is much trickier.

Statistical hypothesis testing starts with a null hypothesis, and then asks
if you have enough evidence to reject that null hypothesis. When you are
looking for a difference, the null hypothesis is that there is no difference.
With equivalence testing, we are looking for evidence that two treatments
are equivalent. So the “null” hypothesis, in this case, is that the
treatments are not equivalent, but rather that the difference is just barely
large enough to be outside the zone of scientific or clinical indifference. 

In the figure above, define the null hypothesis to be that the true effect
equals the effect denoted by the dotted line. Then ask: If that null
hypothesis were true, what is the chance (given sample size and
variability) of observing an effect as small or smaller than observed. If
the P value is small, you reject the null hypothesis of nonequivalence, so
conclude that the treatments are equivalent. If the P value is large, then
the data are consistent with the null hypothesis of nonequivalent effects.

Since you only care about the chance of obtaining an effect so much lower
than the null hypothesis (and wouldn't do the test if the difference were
higher), you use a one-tail P value.

The graph above is plotted with the absolute value of the effect on the
horizontal axis. If you plotted the treatment effect itself, you would have
two dotted lines, symmetric around the 0 point, one showing a positive
treatment effect and the other showing a negative treatment effect. You
would then have two different null hypotheses, each tested with a one-tail
test. You'll see this referred to as Two One-Sided Tests Procedure (1, 2). 
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The two approaches are equivalent

Of course, using the 95% confidence interval approach (using one-sided
95% confidence intervals) and the hypothesis testing approach (using
one-sided 0.05 threshold for significance are completely equivalent, so
always give the same conclusion. The confidence interval seems to me to
be far more straightforward to understand.

Testing for equivalence with Prism

Prism does not have any built-in tests for equivalence. But you can use
Prism to do the calculations:

1. Compare the two groups with a t test (paired or unpaired, depending
on experimental design). 

2. Check the option to create 90% confidence intervals. That's right
90%, not 95%.

3. If the entire range of the 90% confidence interval lies within the zone
of indifference that you defined, then you can conclude with 95%
confidence that the two treatments are equivalent. 

Confused about the switch from 90% confidence
intervals to conclusions with 95% certainty?
Good. That means you are paying attention. It is
confusing! 
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3.12 Nonparametric tests

3.12.1 Key concepts: Nonparametric tests

ANOVA, t tests, and many statistical tests assume that you have sampled
data from populations that follow a Gaussian  bell-shaped distribution. 

Biological data never follow a Gaussian distribution precisely, because a
Gaussian distribution extends infinitely in both directions, and so it
includes both infinitely low negative numbers and infinitely high positive
numbers! But many kinds of biological data follow a bell-shaped
distribution that is approximately Gaussian. Because ANOVA, t tests, and
other statistical tests work well even if the distribution is only
approximately Gaussian (especially with large samples), these tests are
used routinely in many fields of science.

An alternative approach does not assume that data follow a Gaussian
distribution. In this approach, values are ranked from low to high, and the
analyses are based on the distribution of ranks. These tests, called 
nonparametric tests, are appealing because they make fewer
assumptions about the distribution of the data. 

3.12.2 Advice: Don't automate the decision to use a nonparametric test

Don't use this approach:

First perform a normality test. If the P value is low,
demonstrating that the data do not follow a Gaussian
distribution, choose a nonparametric test. Otherwise choose a
conventional test. 

Prism does not use this approach, because the choice of parametric vs.
nonparametric is more complicated than that.

· Often, the analysis will be one of a series of experiments. Since you
want to analyze all the experiments the same way, you cannot rely on
the results from a single normality test.

· Many biological variables follow lognormal distributions . If your data
are sampled from a lognormal distribution, the best way to analyze the
data is to first transform to logarithms and then analyze the logs. It
would be a mistake to jump right to nonparametric tests, without
considering transforming.

36
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· Other transforms can also be useful (reciprocal) depending on the
distribution of the data.

· Data can fail a normality test because of the presence of an outlier .
Removing that outlier can restore normality.

· The decision of whether to use a parametric or nonparametric test is
most important with small data sets (since the power of nonparametric
tests is so low). But with small data sets, normality tests  have little
power to detect nongaussian distributions, so an automatic approach
would give you false confidence.

· With large data sets, normality tests can be too sensitive. A low P
value from a normality test tells you that there is strong evidence that
the data are not sampled from an ideal Gaussian distribution. But you
already know that, as almost no scientifically relevant variables form
an ideal Gaussian distribution. What you want to know is whether the
distribution deviates enough from the Gaussian ideal to invalidate
conventional statistical tests (that assume a Gaussian distribution). A
normality test does not answer this question. With large data sets,
trivial deviations from the idea can lead to a small P value.

The decision of when to use a parametric test and when to use a
nonparametric test is a difficult one, requiring thinking and perspective.
This decision should not be automated. 

3.12.3 The power of nonparametric tests

Why not always use nonparametric tests? You avoid assuming that the
data are sampled from a Gaussian distribution -- an assumption that is
hard to be sure of. The problem is that nonparametric tests have lower 
power  than do standard tests. How much less power? The answer
depends on sample size. 

This is best understood by example. Here are some sample data,
comparing a measurement in two groups, each with three subjects.

Control Treated

3.4 1234.5

3.7 1335.7

3.5 1334.8

149
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When you see those values, it seems obvious that the treatment
drastically increases the value being measured. 

But let's analyze these data with the Mann-Whitney test
(nonparametric test to compare two unmatched groups). This test only
sees ranks. So you enter the data above into Prism, but the Mann
Whitney calculations only see the ranks:

Control Treated

1 4

3 6

2 5

The Mann-Whitney test then asks if the ranks were randomly shuffled
between control and treated, what is the chance of obtaining the three
lowest ranks in one group and the three highest ranks in the other group.
The nonparametric test only looks at rank, ignoring the fact that the
treated values aren't just higher, but are a whole lot higher. The answer,
the two-tail P value, is 0.10. Using the traditional significance level of 5%,
these results are not significantly different. This example shows that with
N=3 in each group, the Mann-Whitney test can never obtain a P value
less than 0.05. In other words, with three subjects in each group and the
conventional definition of 'significance', the Mann-Whitney test has zero
power. 

With large samples in contrast, the Mann-Whitney test has almost as
much power as the t test. To learn more about the relative power of
nonparametric and conventional tests with large sample size, look up the
term "Asymptotic Relative Efficiency" in an advanced statistics book. 

3.12.4 Nonparametric tests with small and large samples

Small samples

Your decision to choose a parametric or nonparametric test matters the
most when samples are small (say less than a dozen values). 

If you choose a parametric test and your data do not come from a
Gaussian distribution, the results won't be very meaningful. Parametric
tests are not very robust to deviations from a Gaussian distribution when
the samples are tiny. 

295
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If you choose a nonparametric test, but actually do have Gaussian data,
you are likely to get a P value that is too large, as nonparametric tests
have less power than parametric tests, and the difference is noticeable
with tiny samples. 

Unfortunately, normality tests have little power to detect whether or not a
sample comes from a Gaussian population when the sample is tiny. Small
samples simply don't contain enough information to let you make reliable
inferences about the shape of the distribution in the entire population.

Large samples

The decision to choose a parametric or nonparametric test matters less
with huge samples (say greater than 100 or so). 

If you choose a parametric test and your data are not really Gaussian,
you haven't lost much as the parametric tests are robust to violation of
the Gaussian assumption, especially if the sample sizes are equal (or
nearly so). 

If you choose a nonparametric test, but actually do have Gaussian data,
you haven't lost much as nonparametric tests have nearly as much power
as parametric tests when the sample size is large. 

Normality tests work well with large samples, which contain enough data
to let you make reliable inferences about the shape of the distribution of
the population from which the data were drawn. But normality tests don't
answer the question you care about. What you want to know is whether
the distribution differs enough from Gaussian to cast doubt on the
usefulness of parametric tests. But normality tests answer a different
question. Normality tests ask the question of whether there is evidence
that the distribution differs from Gaussian. But with huge samples,
normality testing will detect tiny deviations from Gaussian, differences
small enough so they shouldn't sway the decision about parametric vs.
nonparametric testing.

Summary

Large samples (>100
or so)

Small samples (<12
or so)

Parametric tests on
nongaussian data

OK. Tests are robust. Misleading. Not robust.
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Nonparametric tests
on Gaussian data

OK. Tests have good
power.

Misleading. Too little
power.

Usefulness of
normality testing

A bit useful. Not very useful.

3.12.5 Advice: When to choose a nonparametric test

Choosing when to use a nonparametric test is not straightforward. Here
are some considerations:

· Off-scale values. With some kinds of experiments, one, or a few,
values may be "off scale" -- too high or too low to measure. Even if the
population is Gaussian, it is impossible to analyze these data with a t
test or ANOVA. If you exclude these off scale values entirely, you will
bias the results. If you estimate the value, the results of the t test
depend heavily on your estimate. The solution is to use a
nonparametric test. Assign an arbitrary low value to values that are
too low to measure, and an arbitrary high value to values too high to
measure. Since the nonparametric tests only analyze ranks, it will not
matter that you don't know one (or a few) of the values exactly, so
long as the numbers you entered gave those values the correct rank.

· Transforming can turn a nongaussian distribution into a
Gaussian distribution. If you are sure the data do not follow a
Gaussian distribution, pause before choosing a nonparametric test.
Instead, consider transforming the data, perhaps using logarithms or
reciprocals. Often a simple transformation will convert non-Gaussian
data to a Gaussian distribution. Then analyze the transformed values
with a conventional test.

· Noncontinuous data. The outcome is a rank or score with only a few
categories. Clearly the population is far from Gaussian in these cases.
The problem with using nonparametric tests is that so many values
will tie for the same rank. Nonparametric tests have special
corrections built-in to deal with tied ranks, but I am not sure how well
those work when there are lots of tied ranks. An alternative would be
to do a chi-square test . 
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· Small samples. If you have tiny samples (a few subjects in each
group), the nonparametric tests have little or no power  to find a
significant difference. 

· Normality tests should not be used  to automatically decide
whether or not to use a nonparametric test. But they can help you
make the decision.

· You really should choose your statistical test as part of the
experimental design. If you try this test, then that test, until you get a
result you like, you are likely to be mislead. 

3.12.6 Lingo: The term "nonparametric"

The term nonparametric is used inconsistently. 

Nonparametric method or nonparametric data?

The term nonparametric characterizes an analysis method. A statistical
test can be nonparametric or not, although the distinction is not as crisp
as you'd guess.

It makes no sense to describe data as being nonparametric, and the
phrase "nonparametric data" should never ever be used. The term 
nonparametric simply does not describe data, or distributions of data.
That term should only be used to describe the method used to analyze
data. 

Which methods are nonparametric?

Methods that analyze ranks are uniformly called nonparametric. These
tests are all named after their inventors, including:  Mann-Whitney,
Wilcoxon, Kruskal-Wallis, Friedman, and Spearman.

Beyond that, the definition gets slippery.

What about modern statistical methods including randomization,
resampling and bootstrapping? These methods do not assume sampling
from a Gaussian distribution. But they analyze the actual data,  not the
ranks. Are these methods nonparametric?  Wilcox and Manly have each
written texts about modern methods, but they do not refer to these
methods as "nonparametric". Four texts of nonparametric statistics (by
Conover, Gibbons, Lehmann, and Daniel) don't mention randomization,
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resampling or bootstrapping at all, but the texts by Hollander and
Wasserman do.

What about chi-square test, and Fisher's exact test? Are they
nonparametric?  Daniel and Gibbons include a chapter on these tests their
texts of nonparametric statistics, but Lehmann and Hollander do not.  

What about survival data? Are the methods used to create a survival
curve (Kaplan-Meier) and to compare survival curves (logrank or Mantel-
Haenszel) nonparametric? Hollander includes survival data in his text of
nonparametric statistics, but the other texts of nonparametric statistics
don't mention survival data at all. I think everyone would agree that
fancier methods of analyzing survival curves (which involve fitting the
data to a model) are not nonparametric. 
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3.13 Outliers

When analyzing data, you'll sometimes find that

one value is far from the others. Such a value is

called an outlier, a term that is usually not defined

rigorously. This section discusses the basic ideas

of identifying outliers. Look elsewhere to learn how

to identify outliers in Prism from a column of

data , or while fitting a curve with nonlinear

regression. 

3.13.1 An overview of outliers

What is an outlier?

When analyzing data, you'll sometimes find that one value is far from the
others. Such a value is called an outlier, a term that is usually not defined
rigorously. 

Approach to thinking about outliers

When you encounter an outlier, you may be tempted to delete it from the
analyses. First, ask yourself these questions:

· Was the value entered into the computer correctly? If there was an
error in data entry, fix it. 

· Were there any experimental problems with that value? For example,
if you noted that one tube looked funny, you can use that as
justification to exclude the value resulting from that tube without
needing to perform any calculations. 

· Could the outlier be caused by biological diversity? If each value comes
from a different person or animal, the outlier may be a correct value.
It is an outlier not because of an experimental mistake, but rather
because that individual may be different from the others. This may be
the most exciting finding in your data! 
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If you answered “no” to all three questions, you are left with two
possibilities. 

· The outlier was due to chance. In this case, you should keep the value
in your analyses. The value came from the same distribution as the
other values, so should be included. 

· The outlier was due to a mistake: bad pipetting, voltage spike, holes in
filters, etc. Since including an erroneous value in your analyses will
give invalid results, you should remove it. In other words, the value
comes from a different population than the other values, and is
misleading.

The problem, of course, is that you can never be sure which of these
possibilities is correct. 

Robust methods

Some statistical tests are designed so that the results are not altered
much by the presence of one or a few outliers. Such tests are said to be 
robust. When you use a robust method, there is less reason to want to
exclude outliers.

Most nonparametric tests compare the distribution of ranks. This makes
the test robust because the largest value has the largest rank, but it
doesn't matter how large that value is. 

Other tests are robust to outliers because rather than assuming a
Gaussian distribution, they assume a much wider distribution where
outliers are more common (so have less impact). 

3.13.2 Advice: Beware of identifying outliers manually

A common practice is to visually inspect the data, and remove outliers by
hand. The problem with this approach is that it is arbitrary. It is too easy
to keep points that help the data reach the conclusion you want, and to
remove points that prevent the data from reaching the conclusion you
want. 
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The graph above was created via simulation. The values in all ten data
sets are randomly sampled from a Gaussian distribution with a mean of
50 and a SD of 15. But most people would conclude that the lowest value
in data set A is an outlier. Maybe also the high value in data set J. Most
people are unable to appreciate random variation, and tend to find
'outliers' too often.

3.13.3 Advice: Beware of lognormal distributions

The Grubbs' and ROUT outlier tests are both based on the assumption
that the data, except the potential outlier(s), are sampled from a
Gaussian distribution.

But what if the underlying distribution is not Gaussian? Then the outlier
tests are misleading. A common situation is sampling from a lognormal
distribution.

The graph below shows four data sets sampled from lognormal
distributions.  
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Three of those data sets seem to include an outlier, and indeed Grubbs'
outlier test identified outliers in three of the data sets.

But these data are not sampled from a Gaussian distribution with an
outlier. Rather they are sampled from a lognormal distribution. Transform
all the values to their logarithms, and the distribution becomes Gaussian:
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The apparent outliers are gone. Grubbs' test finds no outliers.  The
extreme points only appeared to be outliers because extremely large
values are common in a lognormal distribution but are rare in a Gaussian
distribution. If you don’t realize the distribution was lognormal, an outlier
test would be very misleading.

3.13.4 How it works: Grubb's test

What can an outlier tests do?

No mathematical calculation can tell you for sure whether the outlier
came from the same, or a different, population than the others. Statistical
calculations, however, can answer this question: 

If the values really were all sampled from a Gaussian distribution, what
is the chance that you would find one value as far from the others as you
observed? 

If this probability is small, then you will conclude that the outlier is not
from the same distribution as the other values. Assuming you answered
no to all three questions above, you have justification to exclude it from
your analysis. 

Statisticians have devised several methods for detecting outliers. All the
methods first quantify how far the outlier is from the other values. This
can be the difference between the outlier and the mean of all points, the
difference between the outlier and the mean of the remaining values, or
the difference between the outlier and the next closest value. Next,
standardize this value by dividing by some measure of scatter, such as
the SD of all values, the SD of the remaining values, or the range of the
data. Finally, compute a P value answering this question: If all the values
were really sampled from a Gaussian population, what is the chance of
randomly obtaining an outlier so far from the other values? If the P value
is small, you conclude that the deviation of the outlier from the other
values is statistically significant, and most likely from a different
population.

How Grubbs's test works

Grubbs' test is one of the most popular ways to define outliers, and is
quite easy to understand. This method is also called the ESD method
(extreme studentized deviate).
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The first step is to quantify how far the outlier is from the others.
Calculate the ratio Z as the difference between the outlier and the mean
divided by the SD. If Z is large, the value is far from the others. Note that
you calculate the mean and SD from all values, including the outlier.

You'll sometimes see this value referred to as G instead of Z.

Since 5% of the values in a Gaussian population are more than 1.96
standard deviations from the mean, your first thought might be to
conclude that the outlier comes from a different population if Z is greater
than 1.96. This approach only works if you know the population mean and
SD from other data. Although this is rarely the case in experimental
science, it is often the case in quality control. You know the overall mean
and SD from historical data, and want to know whether the latest value
matches the others. This is the basis for quality control charts.

When analyzing experimental data, you don't know the SD of the
population. Instead, you calculate the SD from the data. The presence of
an outlier increases the calculated SD. Since the presence of an outlier
increases both the numerator (difference between the value and the
mean) and denominator (SD of all values), Z can not get as large as you
may expect. For example, if N=3, Z cannot be larger than 1.155 for any
set of values.  More generally, with a  sample of N observations,  Z can
never get larger than:

 

Grubbs and others have tabulated critical values for Z which have been
tabulated. The critical value increases with sample size, as expected. If
your calculated value of Z is greater than the critical value in the table,
then the P value is less than 0.05.

Note that the Grubbs' test only tests the most extreme value in the
sample. If it isn't obvious which value is most extreme, calculate Z for all
values, but only calculate a P value for Grubbs' test from the largest value
of Z.

Prism can compute Grubbs' test with as few as three values in a data set.
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How to interpret the P value

If the P value is less than 0.05, it means that there is less than a 5%
chance that you'd encounter an outlier so far from the others (in either
direction) by chance alone, if all the data were really sampled from a
single Gaussian distribution. 

Note that the 5% probability (or whatever value of alpha you choose)
applies to the entire data set. If your dataset has 100 values, and all are
sampled from a Gaussian distribution, there is a 5% chance that the
largest (or smallest) value will be declared to be an outlier by Grubbs'
test. If you performed outliers tests on lots of data sets, you'd expect this
kind of mistake in 5% of data sets. 

Don't get confused and think that the 5% applies to each data point. If
there are 100 values in the data set all drawn from a Gaussian
distribution, there is a 5% chance that Grubbs test will identify the value
furthest from the mean as an outlier. This is different than concluding
(mistakenly) that you expect 5 of the values (5% of the total) to be
mistakenly declared to be outliers.  
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3.13.5 How it works: ROUT method

The basics of ROUT

The ROUT method was developed as a method to identify outliers from
nonlinear regression. Learn more about the ROUT method. 

Briefly, it first fits a model to the data using a robust method where
outliers have little impact. Then it uses a new outlier detection method,
based on the false discovery rate, to decide which points are far enough
from the prediction of the model to be called outliers. 

http://www.biomedcentral.com/1471-2105/7/123/abstract/
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When you ask Prism to detect outliers in a stack of column data, it simply
adapts this method. It considers the values you entered to be Y values,
and fits the model Y= M, where M is a robust mean. [If you want to do
this with Prism's nonlinear regression analysis, you'd need to assign
arbirtrary X values to each row, and then fit to the model Y = X*0 + M. )

This method can detect any number of outliers (up to 30% of the sample
size). 

Prism can perform the ROUT test with as few as three values in a data
set. 

What is Q?

The ROUT method is based on the False Discovery Rate (FDR), so you
specify Q, which is the maximum desired FDR. The interpretation of Q
depends on whether there are any outliers in the data set.

When there are no outliers (and the distribution is entirely Gaussian), Q is
very similar to alpha. Assuming all data come from a Gaussian
distribution, Q is the chance of (falsely) identifying one or more outliers.. 

When there are outliers in the data, Q is the maximum desired false
discovery rate. If you set Q to 1%, then you are aiming for no more than
1% of the identified outliers to be false (are in fact just the tail of a
Gaussian distribution) and at least 99% to be actual outliers (from a
different distribution). 

Comparing ROUT to Grubbs' method

I performed simulations  to compare the Grubbs' and ROUT methods of
detecting outliers.  Briefly, the data were sampled from a Gaussian
distribution. In most cases, outliers (drawn from a uniform distribution
with specified limits) were added. Each experimental design was
simulated 25,000 times, and I tabulated the number of simulations with
zero, one, two, or more than two outliers. 

When there are no outliers, the ROUT and Grubbs' tests perform almost
identically. The value of Q specified for the ROUT method is equivalent to
the value of alpha you set for the Grubbs' test.

When there is a single outlier, the Grubb's test is slightly better able to
detect it. The ROUT method has both more false negatives and false
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positives. In other words, it is slightly more likely to miss the outlier, and
is also more likely to find two outliers even when the simulation only
included one. This is not so surprising, as Grubbs' test was  designed to
detect a single outlier. While the difference between the two methods is
clear, it is not substantial.

When there are two outliers in a small data set, the ROUT test does a
much better job. The  iterative Grubbs' test is subject to masking, while
the ROUT test is not. Whether or not masking is an issue depends on how
large the sample is and how far the outliers are from the mean of the
other values. In situations where masking is a real possibility, the ROUT
test works much better than Grubbs' test.  For example, when n=10 with
two outliers, the Grubbs test never found both outliers and missed both in
98.8% of the simulations (in the remaining 1.2% of simulations, the
Grubbs' test found one of the two outliers). In contrast, the ROUT method
identified both outliers in 92.8% of those simulations, and missed both in
only 6% of simulations. 

Summary: 

· Grubbs' is slightly better than the ROUT method for the task it was
designed for: Detecting a single outlier from a Gaussian distribution.

· The ROUT method is much better than the iterative Grubbs' test at
detecting two outliers in some situations.

Reference

Motulsky HM and Brown RE, Detecting outliers when fitting data with
nonlinear regression – a new method based on robust nonlinear
regression and the false discovery rate, BMC Bioinformatics 2006, 7:123.
Download from http://www.biomedcentral.com/1471-2105/7/123.

3.13.6 The problem of masking

The figure below shows two data sets, identical except for one data point.
Clearly,  the data set on the right has two outliers, and the one on the left
has only one. This conclusion is not at all subtle.  

http://www.biomedcentral.com/1471-2105/7/123
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(Download the Prism file.)

The results of Grubbs' outlier test are surprising. That test (with alpha set
to 5%, but the same results are obtained with alpha set to 1%) does
identify the outlier in the data set on the left. No surprise there. But
Grubbs' test doesn't find any outliers in the data set on the right. The
presence of the second outlier prevents the outlier test from finding the
first one. This is called masking. 

Grubbs' outlier test  computes a ratio Z by first calculating the
difference between the possible outlier and the mean, and then dividing
that difference by the standard deviation. If Z is large enough
(considering the sample size), that point is declared to be an outlier. Note
that the mean and standard deviation are computed from all the data,
including the suspected outlier in the calculations. As the table below
shows, the presence of the second outlier (in a small data set) inflates the
standard deviation, and so decreases the value of Z to below the
threshold used to define an outlier. 

Left (one outlier) Right (two outliers)

Mean 60.364
68.167

SD
33.384 41.759

Z
2.8048 2.0554

n
11 12

153
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Critical Z to define
outlier (alpha=5%)

2.3547 2.4116

Critical Z to define
outlier (alpha=1%)

2.5641 2.6357

 

3.13.7 Simulations to compare the Grubbs' and ROUT methods

Goal

Since the ROUT method is not yet a standard method, we did simulations
to compare it to the Grubbs method. We compared the two methods for
data with no outliers, with one outlier and with two outliers.

· All simulations assumed a Gaussian distribution with a mean of 100 and
SD of 15 for the bulk of the values.

· A specified number of outliers were added. These were selected from a
uniform distribution whose limits are specified. 

· How the false discovery rate (FDR) was computed: For each simulated
data set, the FDR was defined to be 0.0 if no outliers were detected. If
any outliers were detected, the FDR for that simulation is the fraction of
outliers that are false -values that were simulated from the Gaussian
distribution, and were not included as outliers by the simulation. The
overall FDR is the average of these individual FDR values over the
simulations.

· In each case, 25,000 simulations were done.

Details of the simulations

The table below shows the ten simulated experimental designs, which
differ in sample size (n), the number of outliers included in the sample,
and the range of values from which those outliers were selected.
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Design n # of outliers Outlier range

A 100 0

B 10 0

C 10 1 50-75

D 10 1 100-125

E 100 1 100-125

F 100 1 50-75

G 100 2 50-75

H 100 2 100-125

I 10 2 50-75

J 25 2 50-75

Here are the results. Each set of simulated data was analyzed by both the
Grubbs and ROUT methods. 

Number of outliers identified

Design
 

#
Outliers

Analysis method 0 1 2 >2 FDR

1 A 0 Grubbs 5% 95.104% 4.69% 0.19% 0.20% 4.90%

2 A 0 Rout 5% 94.31% 4.68% 0.74% 0.10% 5.69%

3 A 0 Grubbs 1% 99.10% 0.90% 0.00% 0.00% 0.90%

4 A 0 Rout 1% 98.70% 1.21% 0.00% 0.08% 1.21%

5 B 0 Grubbs 5% 94.99% 5.01% 0.00% 0.00% 5.01%

6 B 0 Rout 5% 95.13% 3.87% 0.98% 0.02% 4.87%

7 B 0 Grubbs 1% 98.92% 1.08% 0.00% 0.00% 1.08%

8 B 0 Rout 1% 98.65% 1.14% 0.21% 0.00% 1.35%

9 C 1 Grubbs 1% 74.33% 25.41% 0.26% 0.00% 0.13%

10 C 1 Rout 1% 78.11% 21.29% 0.60% 0.00% 0.31%

11 D 1 Grubbs 1% 5.50% 93.51% 0.99% 0.00% 0.50%

12 D 1 Rout 1% 15.38% 84.01% 0.60% 0.00% 0.30%
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13 D 1 Grubbs 5% 0.20% 94.86% 4.75% 0.18% 2.51%

14 D 1 Rout 5% 2.30% 94.96% 2.70% 0.04% 2.73%

15 E 1 Grubbs 1% 0.00% 98.94% 1.05% 0.01% 0.53%

16 E 1 Rout 1% 0.00% 97.92% 1.94% 0.14% 1.07%

17 F 1 Grubbs 1% 43.94% 55.47% 0.57% 0.02% 0.40%

18 F 1 Rout 1% 47.08% 51.16% 1.63% 0.11% 1.05%

19 G 2 Grubbs 1% 39.70% 29.84% 30.72% 0.38% 0.16%

20 G 2 Rout 1% 29.08% 26.61% 40.37% 1.88% 0.82%

21 G 2 Grubbs 5% 10.82% 21.29% 6
4.23%

3.66% 1.40%

22 G 2 Rout 5% 7.52% 15.50% 66.54% 10.43% 3.96%

23 H 2 Grubbs 1% 0.00% 0.00% 98.89% 1.11% 0.37%

24 H 2 Rout 1% 0.00% 0.00% 97.57% 2.43% 0.84%

25 I 2 Grubbs 5% 98.80% 1.20% 0.00% 0.00% 0.00%

26 I 2 Rout 5% 6.06% 0.97% 92.80% 0.16% 0.05%

27 I 2 Rout 1% 27.46% 2.58% 69.95% 0.01% 0.004%

28 J 2 Grubbs 5% 49.16% 7.86% 40.85% 2.14% 0.737%

29 J 2 Rout 5% 24.57% 13.27% 57.46% 0.71% 1.74%

30 J 2 Grubbs 1% 90.21% 3.51% 6.20% 0.72% 0.24%

31 J 2 Rout 1% 54.47% 15.08% 29.46% 0.98% 0.36%

Results

When there are no outliers

When the simulations added no outliers to the data sets, the ROUT and
Grubbs' tests perform almost identically. The value of Q specified for the
ROUT method is equivalent to the value of alpha you set for the Grubbs'
test. If you set alpha to 0.05 or Q to 5%, then you'll detect a single
outlier in about 5% of simulations, even though all data in these
simulations came from a Gaussian distribution.
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When there is one outlier

When the simulations include a single outlier not from the same Gaussian
distribution as the rest, the Grubb's test is slightly better able to detect
it. The ROUT method has both more false negatives and false positives. It
is slightly more likely to miss the outlier, and is also more likely to find
two outliers even when the simulation actually only included one. 

This is not so surprising, as Grubbs' test was really designed to detect a
single outlier (although it can be used iteratively to detect more). While
the difference between the two methods is consistent, it is not
substantial.

When there are two outliers

When simulations include two outliers in a small data set, the ROUT test
does a much better job. The  iterative Grubbs' test is subject to 
masking , while the ROUT test is not. Whether or not masking is an
issue depends on how large the sample is and how far the outliers are
from the mean of the other values. In situations where masking is a real
possibility, the ROUT test works much better than Grubbs' test.  For
example, when n=10 with two outliers (experimental design I), the
Grubbs test never found both outliers and missed both outliers in 98.8%
of the simulations. In the remaining 1.2% of simulations, the Grubbs' test
found one of the two outliers. In contrast, the ROUT method identified
both outliers in 92.8% of those simulations, and missed both in only 6%
of simulations. 

Reminder. Don't delete outliers without thinking.

One an outlier (or several outliers) is detected, stop and think. Don't just
delete it. 

Think about the assumptions. Both the Grubbs' and ROUT methods
assume that the data (except for any outlers) are sampled from a
Gaussian distribution. If that assumption is violated, the "outliers" may be
from the same distribution as the rest. Beware of lognormal distributions.
These distributions have values in the tails that will often be incorrectly
flagged as outliers by methods that assume a Gaussian distribution. 

Even if the value truly is an outlier from the rest, it may be a important
value. It may not be a mistake. It may tell you about biological
variability. 

157
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Conclusion

Grubbs' is slightly better than the ROUT method for the task it was
designed for: Detecting a single outlier from a Gaussian distribution. 

The Grubbs' test is much worse than the ROUT method at detecting two
outliers.  I can't imagine any scientific situation where you know for sure
that there are either no outliers, or only one outlier, with no possibility of
two or more outliers. Whenever the presence of two (or more) outliers is
possible, we recommend that the ROUT method be used instead of the
Grubbs' test.

More details, with links to the Prism file used to do these simulations

3.14 Analysis checklists

All statistical analysis is based on a set of

assumptions. These checklists help you review the

assumptions, and make sure you have picked a

useful test. The checklists appear twice in this

guide: Once here with all the checklists together,

and again as part of the explanation for each

individual test.

Unpaired t test

Paired t test

Mann-Whitney test

Wilcoxon matched pairs test

One-way ANOVA

Repeated measures one-way ANOVA

Kruskal-Wallis test
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Friedman's test

Two-way ANOVA

Repeated measures two-way ANOVA

Contingency tables

Survival analysis

Outliers

3.14.1 Unpaired t test

The unpaired t test compares the means of two unmatched groups,
assuming that the values follow a Gaussian distribution. Read
elsewhere to learn about choosing a t test , and interpreting the
results .

Are the populations distributed according to a Gaussian distribution?

The unpaired t test assumes that you have sampled your data from
populations that follow a Gaussian distribution. Prism can perform
normality tests as part of the Column Statistics  analysis. Learn
more .  

Do the two populations have the same variances?

The unpaired t test assumes that the two populations have the same
variances (and thus the same standard deviation).

Prism tests for equality of variance with an F test. The P value from this
test answers this question: If the two populations really have the same
variance, what is the chance that you would randomly select samples
whose ratio of variances is as far from 1.0 (or further) as observed in
your experiment? A small P value suggests that the variances are
different.

Don't base your conclusion solely on the F test. Also think about data
from other similar experiments. If you have plenty of previous data that
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convinces you that the variances are really equal, ignore the F test
(unless the P value is really tiny) and interpret the t test results as
usual.

In some contexts, finding that populations have different variances may
be as important as finding different means.

Are the data unpaired? 

The unpaired t test works by comparing the difference between means
with the standard error of the difference, computed by combining the
standard errors of the two groups. If the data are paired or matched,
then you should choose a paired t test instead. If the pairing is effective
in controlling for experimental variability, the paired t test will be more
powerful than the unpaired test.

Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of a t test only make sense when the scatter is
random – that whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low.

Are you comparing exactly two groups?

Use the t test only to compare two groups. To compare three or more
groups, use one-way ANOVA  followed by multiple comparison tests. It
is not appropriate to perform several t tests, comparing two groups at a
time. Making multiple comparisons increases the chance of finding a
statistically significant difference by chance and makes it difficult to
interpret P values and statements of statistical significance. Even if you
want to use planned comparisons to avoid correcting for multiple
comparisons, you should still do it as part of one-way ANOVA to take
advantage of the extra degrees of freedom that brings you. 

351
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Do both columns contain data?

If you want to compare a single set of experimental data with a
theoretical value (perhaps 100%) don't fill a column with that theoretical
value and perform an unpaired t test. Instead, use a one-sample t test
.

Do you really want to compare means?

The unpaired t test compares the means of two groups. It is possible to
have a tiny P value – clear evidence that the population means are
different – even if the two distributions overlap considerably. In some
situations – for example, assessing the usefulness of a diagnostic test –
you may be more interested in the overlap of the distributions than in
differences between means.

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value , you should have predicted which
group would have the larger mean before collecting any data. Prism does
not ask you to record this prediction, but assumes that it is correct. If
your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50.

3.14.2 Paired t test

The paired t test compares the means of two matched groups,
assuming that the distribution of the before-after differences follows a
Gaussian distribution.

Are the differences distributed according to a Gaussian distribution?

The paired t test assumes that you have sampled your pairs of values
from a population of pairs where the difference between pairs follows a
Gaussian distribution.  

While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism .

Note that the paired t test, unlike the unpaired t test, does not assume
that the two sets of data (before and after, in the typical example) are
sampled from populations with equal variances. 
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Was the pairing effective? 

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, and a
corresponding P value. If the P value is small, the two groups are
significantly correlated. This justifies the use of a paired test. 

If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.

Are the pairs independent? 

The results of a paired t test only make sense when the pairs are 
independent  – that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent. 

Are you comparing exactly two groups? 

Use the t test only to compare two groups. To compare three or more
matched groups, use repeated measures one-way ANOVA followed by
post tests. It is not appropriate  to perform several t tests, comparing
two groups at a time. 

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted  which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50. 
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Do you care about differences or ratios? 

The paired t test analyzes the differences between pairs. With some
experiments, you may observe a very large variability among the
differences. The differences are larger when the control value is larger.
With these data, you'll get more consistent results if you perform a ratio
t test .

3.14.3 Ratio t test

The ratio t test compares the means of two matched groups, assuming
that the distribution of the logarithms of the before/after ratios follows
a Gaussian distribution.

Are the log(ratios) distributed according to a Gaussian distribution?

The ratio t test assumes that you have sampled your pairs of values
from a population of pairs where the log of the ratios follows a Gaussian
distribution.  

 While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism .

Was the pairing effective? 

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, between the
logarithms of the two columns of data. If the corresponding P value. If
the P value is small, the two groups are significantly correlated. This
justifies the use of a paired test. 

If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.
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Are the pairs independent? 

The results of a ratio t test only make sense when the pairs are 
independent  – that whatever factor caused a rato (of paired values) to
be too high or too low affects only that one pair. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have six pairs of values,
but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent. 

Are you comparing exactly two groups? 

Use the t test only to compare two groups. To compare three or more
matched groups, transform the values to their logarithms, and then use
repeated measures one-way ANOVA followed by post tests.  It is not
appropriate  to perform several t tests, comparing two groups at a
time. 

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted  which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50. 

Do you care about differences or ratios? 

The ratio t test analyzes the logarithm of the ratios of paired values. The
assumption is that the ratio is a consistent measure of experimental
effect. With many experiments, you may observe that the difference
between pairs is a consistent measure of effect, and the ratio is not. In
these cases, use a paired t test , not the ratio t test. 

3.14.4 Mann-Whitney test

The Mann-Whitney test  is a nonparametric test that compares the
distributions of two unmatched groups. It is sometimes said to compare
medians, but this is not always true . 
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Are the “errors” independent? 

The term “error” refers to the difference between each value and the
group median. The results of a Mann-Whitney test only make sense
when the scatter is random – that whatever factor caused a value to be
too high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent  if you have six values in each
group, but these were obtained from two animals in each group (in
triplicate). In this case, some factor may cause all triplicates from one
animal to be high or low. 

Are the data unpaired?

The Mann-Whitney test works by ranking all the values from low to high,
and comparing the mean rank in the two groups. If the data are paired
or matched, then you should choose a Wilcoxon matched pairs test
instead. 

Are you comparing exactly two groups? 

Use the Mann-Whitney test only to compare two groups. To compare
three or more groups, use the Kruskal-Wallis test followed by post tests.
It is not appropriate to perform several Mann-Whitney (or t) tests,
comparing two groups at a time.

Do the two groups follow data distributions with the same shape?

If the two groups have distributions with similar shapes, then you can
interpret the Mann-Whitney test as comparing medians. If the
distributions have different shapes, you really cannot interpret  the
results of the Mann-Whitney test. 

Do you really want to compare medians? 

The Mann-Whitney test compares the medians of two groups (well, not
exactly ). It is possible to have a tiny P value – clear evidence that the
population medians are different – even if the two distributions overlap
considerably.
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If you chose a one-tail P value, did you predict correctly? 

If you chose a one-tail P value, you should have predicted which group
would have the larger median before collecting any data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the P value reported by Prism and
state that P>0.50. One- vs. two-tail P values.

Are the data sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), and that difference is quite noticeable with small sample sizes.

3.14.5 Wilcoxon matched pairs test

The Wilcoxon test is a nonparametric test that compares two paired
groups.  Read elsewhere to learn about choosing a t test , and
interpreting the results .

Are the pairs independent? 

The results of a Wilcoxon test only make sense when the pairs are 
independent  – that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs (but not the other four), so these two are
not independent. 

Is the pairing effective? 

If the P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
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but also on the experimental design and the results you have seen in
other similar experiments.

Are you comparing exactly two groups? 

Use the Wilcoxon test only to compare two groups. To compare three or
more matched groups, use the Friedman test followed by post tests. It is
not appropriate  to perform several Wilcoxon tests, comparing two
groups at a time. 

If you chose a one-tail P value, did you predict correctly? 

If you chose a one-tail P value , you should have predicted which
group would have the larger median before collecting any data. Prism
does not ask you to record this prediction, but assumes that it is correct.
If your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50. 

Are the data clearly sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions. But there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using a t test.

Are the differences distributed symmetrically?

The Wilcoxon test first computes the difference between the two values
in each row, and analyzes only the list of differences. The Wilcoxon test
does not assume that those differences are sampled from a Gaussian
distribution. However it does assume that the differences are distributed
symmetrically around their median.

3.14.6 One-way ANOVA

One-way ANOVA compares the means of three or more unmatched
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groups. Read elsewhere to learn about choosing a test , and
interpreting the results .

Are the populations distributed according to a Gaussian distribution? 

One-way ANOVA assumes that you have sampled your data from
populations that follow a Gaussian distribution. While this assumption is
not too important with large samples, it is important with small sample
sizes (especially with unequal sample sizes). Prism can test for violations
of this assumption, but normality tests have limited utility. If your data
do not come from Gaussian distributions, you have three options. Your
best option is to transform the values (perhaps to logs or reciprocals) to
make the distributions more Gaussian. Another choice is to use the
Kruskal-Wallis nonparametric test instead of ANOVA. A final option is to
use ANOVA anyway, knowing that it is fairly robust to violations of a
Gaussian distribution with large samples.

Do the populations have the same standard deviation? 

One-way ANOVA assumes that all the populations have the same
standard deviation (and thus the same variance). This assumption is not
very important when all the groups have the same (or almost the same)
number of subjects, but is very important when sample sizes differ.

InStat tests for equality of variance with two tests: The Browne-
Forsythe test and Bartlett's test. The P value from these tests answer
this question: If the populations really have the same variance, what is
the chance that you'd randomly select samples whose variances are as
different from one another as those observed in your experiment. A
small P value suggests that the variances are different.

Don't base your conclusion solely on these tests. Also think about data
from other similar experiments. If you have plenty of previous data that
convinces you that the variances are really equal, ignore these tests
(unless the P value is really tiny) and interpret the ANOVA results as
usual. Some statisticians recommend ignoring tests for equal variance
altogether if the sample sizes are equal (or nearly so).

In some experimental contexts, finding different variances may be as
important as finding different means. If the variances are different, then
the populations are different -- regardless of what ANOVA concludes
about differences between the means.
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Are the data unmatched? 

One-way ANOVA works by comparing the differences among group
means with the pooled standard deviations of the groups. If the data are
matched, then you should choose repeated-measures ANOVA instead. If
the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.

Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of one-way ANOVA only make sense when the
scatter is random – that whatever factor caused a value to be too high or
too low affects only that one value. Prism cannot test this assumption.
You must think about the experimental design. For example, the errors
are not independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low. 

Do you really want to compare means? 

One-way ANOVA compares the means of three or more groups. It is
possible to have a tiny P value – clear evidence that the population
means are different – even if the distributions overlap considerably. In
some situations – for example, assessing the usefulness of a diagnostic
test – you may be more interested in the overlap of the distributions
than in differences between means.

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. These data need
to be analyzed by two-way ANOVA , also called two factor ANOVA.
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Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it. 

Do the different columns represent different levels of a grouping
variable?

One-way ANOVA asks whether the value of a single variable differs
significantly among three or more groups. In Prism, you enter each
group in its own column. If the different columns represent different
variables, rather than different groups, then one-way ANOVA is not an
appropriate analysis. For example, one-way ANOVA would not be helpful
if column A was glucose concentration, column B was insulin
concentration, and column C was the concentration of glycosylated
hemoglobin.

3.14.7 Repeated measures one-way ANOVA

Repeated measures one-way ANOVA compares the means of three or
more matched groups. Read elsewhere to learn about choosing a test
, and interpreting the results .

Was the matching effective? 

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
will not affect the difference between the measurements in that subject.
By analyzing only the differences, therefore, a matched test controls for
some of the sources of scatter. 

The matching should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
matching with an F test (distinct from the main F test of differences
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between columns). If the P value for matching is large (say larger than
0.05), you should question whether it made sense to use a repeated-
measures test. Ideally, your choice of whether to use a repeated-
measures test should be based not only on this one P value, but also on
the experimental design and the results you have seen in other similar
experiments.

Are the subjects independent? 

The results of repeated-measures ANOVA only make sense when the
subjects are independent. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six rows of data, but these were obtained from
three animals, with duplicate measurements in each animal. In this case,
some factor may affect the measurements from one animal. Since this
factor would affect data in two (but not all) rows, the rows (subjects) are
not independent. 

Is the random variability distributed according to a Gaussian
distribution?

Repeated-measures ANOVA assumes that each measurement is the sum
of an overall mean, a treatment effect (the average difference between
subjects given a particular treatment and the overall mean), an
individual effect (the average difference between measurements made in
a certain subject and the overall mean) and a random component.
Furthermore, it assumes that the random component follows a Gaussian
distribution and that the standard deviation does not vary between
individuals (rows) or treatments (columns). While this assumption is not
too important with large samples, it can be important with small sample
sizes. Prism does not test for violations of this assumption.

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
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several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it.

Can you accept the assumption of circularity or sphericity?

Repeated-measures ANOVA assumes that the random error truly is
random. A random factor that causes a measurement in one subject to
be a bit high (or low) should have no affect on the next measurement in
the same subject. This assumption is called circularity or sphericity. It is
closely related to another term you may encounter, compound
symmetry.

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. One way to violate this assumption is to make the repeated
measurements in too short a time interval, so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. When possible, also randomize the order of
treatments.

You only have to worry about the assumption of circularity when you
perform a repeated-measures experiment, where each row of data
represents repeated measurements from a single subject. It is
impossible to violate the assumption with randomized block experiments,
where each row of data represents data from a matched set of subjects.

If you cannot accept the assumption of sphericity, you can specify that
on the Parameters dialog. In that case, Prism will take into account
possible violations of the assumption (using the method of Geisser and
Greenhouse) and report a higher P value. 
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3.14.8 Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric test that compares three or
more unpaired or unmatched groups.Read elsewhere to learn about 
choosing a test , and interpreting the results . 

Are the “errors” independent? 

The term “error” refers to the difference between each value and the
group median. The results of a Kruskal-Wallis test only make sense when
the scatter is random – that whatever factor caused a value to be too
high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have nine values in each
of three groups, but these were obtained from two animals in each group
(in triplicate). In this case, some factor may cause all three values from
one animal to be high or low. 

Are the data unpaired?

If the data are paired or matched, then you should consider choosing
the Friedman test instead. If the pairing is effective in controlling for
experimental variability, the Friedman test will be more powerful than
the Kruskal-Wallis test.

Are the data sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to detect a true
difference), especially with small sample sizes. Furthermore, Prism
(along with most other programs) does not calculate confidence intervals
when calculating nonparametric tests. If the distribution is clearly not
bell-shaped, consider transforming the values (perhaps to logs or
reciprocals) to create a Gaussian distribution and then using ANOVA.

Do you really want to compare medians? 

The Kruskal-Wallis test compares the medians of three or more groups.
It is possible to have a tiny P value – clear evidence that the population
medians are different – even if the distributions overlap considerably.

353 384
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Are the shapes of the distributions identical?

The Kruskal-Wallis test does not assume that the populations follow
Gaussian distributions. But it does assume that the shapes of the
distributions are identical. The medians may differ – that is what you are
testing for – but the test assumes that the shapes of the distributions
are identical. If two groups have very different distributions, consider
transforming the data to make the distributions more similar.

3.14.9 Friedman's test

Friedman's test is a nonparametric test that compares three or more
paired groups. 

Was the matching effective? 

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
they will not affect the difference between the measurements in that
subject. By analyzing only the differences, therefore, a matched test
controls for some of the sources of scatter. 

The matching should be part of the experimental design and not
something you do after collecting data. Prism does not test the adequacy
of matching with the Friedman test.

Are the subjects (rows) independent? 

The results of a Friedman test only make sense when the subjects
(rows) are independent – that no random factor has affected values in
more than one row. Prism cannot test this assumption. You must think
about the experimental design. For example, the errors are not
independent if you have six rows of data obtained from three animals in
duplicate. In this case, some random factor may cause all the values
from one animal to be high or low. Since this factor would affect two of
the rows (but not the other four), the rows are not independent. 

Are the data clearly sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
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to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using repeated-measures
ANOVA. 

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

3.14.10 Two-way ANOVA

 Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs in both men and women. In this
example, drug treatment is one factor and gender is the other. Read
elsewhere to learn about choosing a test , and interpreting the
results.  

Are the populations distributed according to a Gaussian distribution? 

Two-way ANOVA assumes that your replicates are sampled from
Gaussian distributions. While this assumption is not too important with
large samples, it is important with small sample sizes, especially with
unequal sample sizes. Prism does not test for violations of this
assumption. If you really don't think your data are sampled from a
Gaussian distribution (and no transform will make the distribution
Gaussian), you should consider performing nonparametric two-way
ANOVA. Prism does not offer this test.
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ANOVA also assumes that all sets of replicates have the same SD
overall, and that any differences between SDs are due to random
sampling.

Are the data unmatched? 

Standard two-way ANOVA works by comparing the differences among
group means with the pooled standard deviations of the groups. If the
data are matched, then you should choose repeated-measures ANOVA
instead. If the matching is effective in controlling for experimental
variability, repeated-measures ANOVA will be more powerful than
regular ANOVA. 

Are the “errors” independent?

The term “error” refers to the difference between each value and the
mean of all the replicates. The results of two-way ANOVA only make
sense when the scatter is random – that whatever factor caused a value
to be too high or too low affects only that one value. Prism cannot test
this assumption. You must think about the experimental design. For
example, the errors are not independent if you have six replicates, but
these were obtained from two animals in triplicate. In this case, some
factor may cause all values from one animal to be high or low. 

Do you really want to compare means? 

Two-way ANOVA compares the means. It is possible to have a tiny P
value – clear evidence that the population means are different – even if
the distributions overlap considerably. In some situations – for example,
assessing the usefulness of a diagnostic test – you may be more
interested in the overlap of the distributions than in differences between
means.

Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.
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Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA. Prism does not perform three-way
ANOVA.

Are both factors “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment. 

3.14.11 Repeated measures two-way ANOVA

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. "Repeated measures" means that
one of the factors was repeated. For example you might compare two
treatments, and measure each subject at four time points (repeated).
Read elsewhere to learn about choosing a test , graphing the data ,
and interpreting the results .

 Are the data matched? 

If the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.
Also check that your choice in the experimental design tab matches how
the data are actually arranged. If you make a mistake, and the
calculations are done assuming the wrong factor is repeated, the results
won't be correct or useful.

Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.

392 435
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Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA. Prism does not perform three-way
ANOVA.

Are both factors “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment. 

Can you accept the assumption of sphericity?

A random factor that causes a measurement in one subject to be a bit
high (or low) should have no affect on the next measurement in the
same subject. This assumption is called circularity or sphericity. It is
closely related to another term you may encounter in advanced texts, 
compound symmetry.

You only have to worry about the assumption of circularity when your
experiment truly is a repeated-measures experiment, with
measurements from a single subject. You don't have to worry about
circularity with randomized block experiments where you used a
matched set of subjects (or a matched set of experiments)

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. You'll violate this assumption when the repeated
measurements are made too close together so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. Also randomize the order of treatments, when
possible.
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Consider alternatives to repeated measures two-way ANOVA. 

Two-way ANOVA may not answer the questions your experiment was
designed to address. Consider alternatives.

3.14.12 Contingency tables

Contingency tables summarize results where you compared two or
more groups and the outcome is a categorical variable (such as disease
vs. no disease, pass vs. fail, artery open vs. artery obstructed). Read
elsewhere to learn about relative risks & odds ratios , sensitivity &
specificity , and interpreting P values .

Are the subjects independent? 

The results of a chi-square or Fisher's test only make sense if each
subject (or experimental unit) is independent of the rest. That means
that any factor that affects the outcome of one subject only affects that
one subject. Prism cannot test this assumption. You must think about
the experimental design. For example, suppose that the rows of the
table represent two different kinds of preoperative antibiotics and the
columns denote whether or not there was a postoperative infection.
There are 100 subjects. These subjects are not independent if the table
combines results from 50 subjects in one hospital with 50 subjects from
another hospital. Any difference between hospitals, or the patient groups
they serve, would affect half the subjects but not the other half. You do
not have 100 independent observations. To analyze this kind of data, use
the Mantel-Haenszel test or logistic regression. Neither of these tests is
offered by Prism.

Are the data unpaired? 

In some experiments, subjects are matched for age and other variables.
One subject in each pair receives one treatment while the other subject
gets the other treatment. These data should be analyzed by special
methods such as McNemar's test . Paired data should not be analyzed
by chi-square or Fisher's test.

Is your table really a contingency table? 

To be a true contingency table, each value must represent numbers of
subjects (or experimental units). If it tabulates averages, percentages,
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ratios, normalized values, etc. then it is not a contingency table and the
results of chi-square or Fisher's tests will not be meaningful. If you've
entered observed values on one row (or column) and expected values on
another, you do not have a contingency table, and should use a separate
analysis  designed for those kind of data. 

Does your table contain only data?

The chi-square test is not only used for analyzing contingency tables. It
can also be used to compare the observed number of subjects in each
category with the number you expect to see based on theory. Prism
cannot do this kind of chi-square test. It is not correct to enter observed
values in one column and expected in another. When analyzing a
contingency table with the chi-square test, Prism generates the expected
values from the data – you do not enter them.

Are the rows or columns arranged in a natural order? 

If your table has two columns and more than two rows (or two rows and
more than two columns), Prism will perform the chi-square test for trend
as well as the regular chi-square test. The results of the test for trend
will only be meaningful if the rows (or columns) are arranged in a natural
order, such as age, duration, or time. Otherwise, ignore the results of
the chi-square test for trend and only consider the results of the regular
chi-square test.

3.14.13 Survival analysis

Survival curves plot the results of experiments where the outcome is
time until death. Usually you wish to compare the survival of two or
more groups. Read elsewhere to learn about interpreting survival
curves , and comparing two  (or more than two ) survival curves.

Are the subjects independent?

Factors that influence survival should either affect all subjects in a group
or just one subject. If the survival of several subjects is linked, then you
don't have independent observations. For example, if the study pools
data from two hospitals, the subjects are not independent, as it is
possible that subjects from one hospital have different average survival
times than subjects from another. You could alter the median survival
curve by choosing more subjects from one hospital and fewer from the
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other. To analyze these data, use Cox proportional hazards regression,
which Prism cannot perform.

Were the entry criteria consistent?

Typically, subjects are enrolled over a period of months or years. In
these studies, it is important that the starting criteria don't change
during the enrollment period. Imagine a cancer survival curve starting
from the date that the first metastasis was detected. What would happen
if improved diagnostic technology detected metastases earlier? Even
with no change in therapy or in the natural history of the disease,
survival time will apparently increase. Here's why: Patients die at the
same age they otherwise would, but are diagnosed when they are
younger, and so live longer with the diagnosis. (That is why airlines have
improved their “on-time departure” rates. They used to close the doors
at the scheduled departure time. Now they close the doors ten minutes
before the “scheduled departure time”. This means that the doors can
close ten minutes later than planned, yet still be "on time". It's not
surprising that “on-time departure” rates have improved.)

Was the end point defined consistently?

If the curve is plotting time to death, then there can be ambiguity about
which deaths to count. In a cancer trial, for example, what happens to
subjects who die in a car accident? Some investigators count these as
deaths; others count them as censored subjects. Both approaches can
be justified, but the approach should be decided before the study begins.
If there is any ambiguity about which deaths to count, the decision
should be made by someone who doesn't know which patient is in which
treatment group. 

If the curve plots time to an event other than death, it is crucial that the
event be assessed consistently throughout the study.

Is time of censoring unrelated to survival?

The survival analysis is only valid when the survival times of censored
patients are identical (on average) to the survival of subjects who stayed
with the study. If a large fraction of subjects are censored, the validity of
this assumption is critical to the integrity of the results. There is no
reason to doubt that assumption for patients still alive at the end of the
study. When patients drop out of the study, you should ask whether the
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reason could affect survival. A survival curve would be misleading, for
example, if many patients quit the study because they were too sick to
come to clinic, or because they stopped taking medication because they
felt well.

Does average survival stay constant during the course of the study?

Many survival studies enroll subjects over a period of several years. The
analysis is only meaningful if you can assume that the average survival
of the first few patients is not different than the average survival of the
last few subjects. If the nature of the disease or the treatment changes
during the study, the results will be difficult to interpret.

Is the assumption of proportional hazards reasonable?

The logrank test is only strictly valid when the survival curves have
proportional hazards. This means that the rate of dying in one group is a
constant fraction of the rate of dying in the other group. This assumption
has proven to be reasonable for many situations. It would not be
reasonable, for example, if you are comparing a medical therapy with a
risky surgical therapy. At early times, the death rate might be much
higher in the surgical group. At later times, the death rate might be
greater in the medical group. Since the hazard ratio is not consistent
over time (the assumption of proportional hazards is not reasonable),
these data should not be analyzed with a logrank test.

Were the treatment groups defined before data collection began?

It is not valid to divide a single group of patients (all treated the same)
into two groups based on whether or not they responded to treatment
(tumor got smaller, lab tests got better). By definition, the responders
must have lived long enough to see the response. And they may have
lived longer anyway, regardless of treatment. When you compare
groups, the groups must be defined before data collection begins.

3.14.14 Outliers

If the outlier test identifies one or more values as being an outlier, ask
yourself these questions:
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Was the outlier value entered into the computer incorrectly?

If the "outlier" is in fact a typo, fix it. It is always worth going back to the
original data source, and checking that outlier value entered into Prism is
actually the value you obtained from the experiment. If the value was the
result of calculations, check for math errors.

Is the outlier value scientifically impossible?

Of course you should remove outliers from your data when the value is
completely impossible. Examples include a negative weight, or an age (of
a person) that exceed 150 years. Those are clearly errors, and leaving
erroneous values in the analysis would lead to nonsense results.

Is the assumption of a Gaussian distribution dubious?

Both the Grubbs' and ROUT tests assume that all the values are sampled
from a Gaussian distribution, with the possible exception of one (or a few)
outliers from a different distribution. If the underlying distribution is not
Gaussian, then the results of the outlier test is unreliable. It is especially
important to beware of lognormal distributions . If the data are sampled
from a lognormal distribution, you expect to find some very high values
which can easily be mistaken for outliers. Removing these values would
be a mistake.

Is the outlier value potentially scientifically interesting?

 If each value is from a different animal or person, identifying an outlier
might be important. Just because a value is not from the same Gaussian
distribution as the rest doesn't mean it should be ignored. You may have
discovered a polymorphism in a gene. Or maybe a new clinical syndrome.
Don't throw out the data as an outlier until first thinking about whether
the finding is potentially scientifically interesting. 

Does your lab notebook indicate any sort of experimental problem with
that value

It is easier to justify removing a value from the data set when it is not
only tagged as an "outlier" by an outlier test, but you also recorded
problems with that value when the experiment was performed.
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Do you have a policy on when to remove outliers?

Ideally, removing an outlier should not be an ad hoc decision. You should
follow a policy, and apply that policy consistently.

If you are looking for two or more outliers, could masking be a
problem?

Masking  is the name given to the problem where the presence of two
(or more) outliers, can make it harder to find even a single outlier.

If you answered no to all those questions...

If you've answered no to all the questions above, there are two
possibilities:

· The suspect value came from the same Gaussian population as the
other values. You just happened to collect a value from one of the tails
of that distribution.

· The suspect value came from a different distribution than the rest.
Perhaps it was due to a mistake, such as bad pipetting, voltage spike,
holes in filters, etc.  

If you knew the first possibility was the case, you would keep the value in
your analyses. Removing it would be a mistake.

If you knew the second possibility was the case, you would remove it,
since including an erroneous value in your analyses will give invalid
results. 

The problem, of course, is that you can never know for sure which of
these possibilities is correct. An outlier test cannot answer that question
for sure. Ideally, you should create a lab policy for how to deal with such
data, and follow it consistently.

If you don't have a lab policy on removing outliers, here is suggestion:
Analyze your data both with and without the suspected outlier. If the
results are similar either way, you've got a clear conclusion. If the results
are very different, then you are stuck. Without a consistent policy on
when you remove outliers, you are likely to only remove them when it
helps push the data towards the results you want. 
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4 STATISTICS WITH PRISM 7

4.1 Getting started with statistics with Prism

Links to places to get started.

4.1.1 Statistical analyses with Prism

Key concepts: Statistical analyses with Prism

· To analyze data, start from a data table (or graph, or green results
table), and click the Analyze button.

· Prism ignores any selection you have made on the data table. If you
want to analyze only certain data sets, you can choose that on the
Analyze Data dialog.

· Prism remembers the links between data, analyses and graphs. If you
change (or replace) the data, the analyses and graphs will update
automatically.

· The best way to learn about analyses is to choose tutorial data sets.

From the User Guide

How to analyze data with Prism



STATISTICS WITH PRISM 7 191

© 1995-2016 GraphPad Software, Inc.

Creating chains of analyses

Changing an analysis

Frozen and orphaned analysis results

Excluding data points from an analysis

Embedding results on a graph

Hooking to analysis and info constants

Color coding key results

Simulating data and Monte Carlo analyses

Prism can plot and analyze simulated data, as well as data you enter. 

Simulating a data table

Using a script to simulate many data sets

Key concepts: Monte Carlo analyses

Monte Carlo example: Accuracy of confidence intervals

Transforming, normalizing, etc. 

Key concept -- Manipulating data

Transform data

Transforming concentrations

Remove baseline

Normalize

Transpose rows and columns

Prune rows

Fraction of total
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4.1.2 Guided examples: Statistical analyses

Guided examples

These examples will guide you through most of Prism's statistical analyses.

Descriptive statistics

Column statistics

Frequency distribution

Compare two groups

Unpaired t test from raw data

Paired t test

Mann-Whitney test

Wilcoxon matched pairs test

Categorical outcomes

Contingency table analysis

Survival analysis

Diagnostic lab tests

ROC curve

Bland-Altman plot

Analysis checklists

After completing each analysis, click the Analysis checklist button in the
Interpret section of the Prism toolbar to review a list of questions that will
help you interpret the results.

Here are links to a few of the analysis checklists, to view as examples.
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Analysis checklist: Unpaired t test

Analysis checklist: Survival analysis

Analysis checklist: Repeated measures two-way ANOVA

4.2 Descriptive statistics and frequency distributions

What can statistics help you say about a stack of

numbers? A lot! Quantify the center of the

distribution and its scatter. Plot a frequency

distribution. Test whether the mean (or median)

differs significantly from a hypothetical value. 

4.2.1 Column statistics

.

 This section explains how to analyze columns of

numbers to compute descriptive statistics,

compare the mean or median to a hypothetical

value, and test for normality

How to: Column statistics

Analysis checklist: Column statistics
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Interpreting results: Mean, geometric mean and median

Interpreting results: Quartiles and the interquartile range

Interpreting results: SD, SEM, variance and coefficient of
variation (CV)

Interpreting results: Skewness and kurtosis

Interpreting results: One-sample t test

Interpreting results: Wilcoxon signed rank test

Interpreting results: Normality tests

4.2.1.1 How to: Column statistics

1. Entering data for column statistics

Column statistics are most often used with data entered on data tables
formatted for Column data. If you want to experiment, create a Column
data table and choose the sample data set: One-way ANOVA, ordinary.

You can also choose the column statistics analysis from data entered onto
XY or Grouped data tables.

2. Choose the column statistics analysis

Click  and choose Column statistics from the list of analyses for
column data.
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Prism's column statistics analysis computes descriptive statistics of each
data set, tests for normality, and tests whether the mean of a column is
different than a hypothetical value. 

3. Choose analysis options

Descriptive statistics

Learn more about quartiles , median , SD , SEM , confidence
interval , coefficient of variation , geometric mean , skewness and
kurtosis . 

Test if the values come from a Gaussian distribution

One-way ANOVA and t tests depend on the assumption that your data are
sampled from populations that follow a Gaussian distribution. Prism offers
three tests for normality. We suggest using the D'Agostino and Pearson
test. The Kolmogorov-Smirnov test is not recommended, and the
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Shapiro-Wilk test is only accurate when no two values have the same
value.Learn more about testing for normality .

Inferences

If you have a theoretical reason for expecting the data to be sampled
from a population with a specified mean, choose the one-sample t test
to test that assumption. Or choose the nonparametric Wilcoxon signed-
rank test .

Subcolumns

The choices for subcolumn will not be available when you analyze data
entered on table formatted for column data, which have no subcolumns. If
your data are on a table formatted for XY or grouped data with
subcolumns, choose to compute column statistics for each subcolumn
individually or to average the subcolumns and compute columns statistics
on the means. 

If the data table has subcolumns for entry of mean and SD (or SEM)
values, Prism calculates column statistics for the means, and ignores the
SD or SEM values you entered.

4.2.1.2 Analysis checklist: Column statistics

Descriptive statistics

 Value  Meaning

Minimum The smallest value.

25th percentile 25% of values are lower than this. 

Median Half the values are lower; half are higher.

75th percentile 75% of values are lower than this.

Maximum The largest value.

Mean The average.

Standard Deviation Quantifies variability or scatter. 
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 Value  Meaning

Standard Error of
Mean

Quantifies how precisely the mean is known.

95% confidence
interval

Given some assumptions, there is a 95%
chance that this range includes the true
overall mean.

Coefficient of
variation

The standard deviation divided by the mean.

Geometric mean Compute the logarithm of all values,
compute the mean of the logarithms, and
then take the antilog. It is a better measure
of central tendency when data follow a
lognormal distribution (long tail). 

Skewness Quantifies how symmetrical the distribution
is. A distribution that is symmetrical has a
skewness of 0. 

Kurtosis Quantifies whether the tails of the data
distribution matches the Gaussian
distribution. A Gaussian distribution has a
kurtosis of 0. 

Normality tests

Normality tests  are performed for each column of data. Each normality
test reports a P value that answers this question: 

If you randomly sample from a Gaussian population, what is the
probability of obtaining a sample that deviates from a Gaussian
distribution as much (or more so) as this sample does? 

A small P value is evidence that your data was sampled from a
nongaussian distribution. A large P value means that your data are
consistent with a Gaussian distribution (but certainly does not prove that
the distribution is Gaussian). 
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Normality tests are less useful than some people guess. With small
samples, the normality tests don't have much power to detect
nongaussian distributions. Prism won't even try to compute a normality
test with fewer than seven values. With large samples, it doesn't matter
so much if data are nongaussian, since the t tests and ANOVA are fairly
robust to violations of this standard. 

Normality tests can help you decide when to use nonparametric tests, but
the decision should not be an automatic one . 

Inferences

A one-sample t test  compares the mean of a each column of numbers
against a hypothetical mean that you provide. 

The P value answers this question: 

If the data were sampled from a Gaussian population with a mean
equal to the hypothetical value you entered, what is the chance of
randomly selecting N data points and finding a mean as far (or further)
from the hypothetical value as observed here?

If the P value is small  (usually defined to mean less than 0.05), then it
is unlikely that the discrepancy you observed between sample mean and
hypothetical mean is due to a coincidence arising from random sampling.

The nonparametric Wilcoxon signed-rank test  is similar, but does not
assume a Gaussian distribution. It asks whether the median of each
column differs from a hypothetical median you entered.

4.2.1.3 Interpreting results: Quartiles and the interquartile range

What are percentiles?

Percentiles are useful for giving the relative standing of an individual in a
group. Percentiles are essentially normalized ranks. The 80th percentile is
a value where you'll find 80% of the values lower and 20% of the values
higher. Percentiles are expressed in the same units as the data.

142

208

74

209



STATISTICS WITH PRISM 7 199

© 1995-2016 GraphPad Software, Inc.

The median

The median is the 50th percentile. Half the values are higher; half are
lower. Rank the values from low to high. If there are an odd number of
points, the median is the one in the middle. If there are an even number
of points, the median is the average of the two middle values.

Quartiles

Quartiles divide the data into four groups, each containing an equal
number of values. Quartiles are divided by the 25th, 50th, and 75th
percentile, also called the first, second and third quartile. One quarter of
the values are less than or equal to the 25th percentile. Three quarters of
the values are less than or equal to the 75th percentile. 

Interquartile range

The difference between the 75th and 25th percentile is called the
interquartile range. It is a useful way to quantify scatter.

Computing percentiles

Computing a percentile other than the median is not straightforward.
Believe it or not, there are at least eight different methods to compute
percentiles. Here is another explanation of different methods (scroll down
to "plotting positions").

Prism  computes percentile values by first evaluating this expression:

R = P * (n + 1)/100

P is the desired percentile (25 or 75 for quartiles) and n is the number of
values in the data set. The result is the rank that corresponds to the
percentile value. If there are 68 values, the 25th percentile corresponds
to a rank equal to:

0.25 * 69 = 17.25

Prism (since version 5) interpolates one quarter of the way between the
17th and 18th value. This is the method most commonly used in stats
programs. It is definition 6 in Hyndman and Fan (1) . With this method,
the percentile of any point is k/(n+1), where k is the rank (starting at 1)
and n is the sample size.  This is not the same way that Excel computes
percentiles, so percentiles computed by Prism and Excel will not match
when sample sizes are small.

http://www.resacorp.com/quartiles.htm
http://www.resacorp.com/quartiles.htm
http://www.stata.com/support/faqs/stat/pcrank.html
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Beware of percentiles of tiny data sets. Consider this example: What is
the 90th percentile of six values? Using the formula above, R equals 6.3.
Since the largest value has a rank of 6, it is not really possible to compute
a 90th percentile. Prism reports the largest value as the 90th percentile.
A similar problem occurs if you try to compute the 10th percentile of six
values. R equals 0.7, but the lowest value has a rank of 1. Prism reports
the lowest value as the 10th percentile.

Note that there is no ambiguity about how to compute the median. All
definitions of percentiles lead to the same result for the median. 

Five-number summary

The term five-number summary is used to describe a list of five values:
the minimum, the 25th percentile, the median, the 75th percentile, and
the maximum. These are the same values plotted in a box-and-whiskers
plots (when the whiskers extend to the minimum and maximum; Prism
offers other ways to define the whiskers).

Reference

1. R.J.  and Y. Fan, Sample quantiles in statistical packages, The
American Statistician, 50: 361-365, 1996

4.2.1.4 Interpreting results: Mean, SD, SEM

Mean

The mean is the average. Add up the values, and divide by the number of
values.

Standard Deviation

The standard deviation  (SD) quantifies variability. It is expressed in the
same units as the data. It is often abbreviated as s. Prism computes the
SD using a denominator of n-1, so computes what is sometimes called the
sample SD rather than the population SD . 

Standard Error of the Mean and Confidence Interval of the mean

The Standard Error of the Mean (SEM) quantifies the precision of the
mean. It is a measure of how far your sample mean is likely to be from
the true population mean. It is expressed in the same units as the data.
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Learn about the difference between SD and SEM  and when to use
each . 

The SEM is used to compute the confidence interval of the mean, and this
CI is easier to interpret . If the data are sampled from a Gaussian
distribution, you can be 95% certain that the interval encloses the
population mean.

Variance

The variance equals the SD squared, and therefore is expressed in the
units of the data squared. Mathematicians like to think about variances
because they can partition variances into different components -- the
basis of ANOVA. In contrast, it is not correct to partition the SD into
components.  Because variance units are usually impossible to think
about, most scientists avoid reporting the variance of data, and stick to
standard deviations. Prism does not report the variance.

4.2.1.5 Interpreting results: Median and its CI

The median is the 50th percentile. Half the values are greater than (or
equal to ) the median and half are smaller. 

The confidence interval of the median is computed by a standard method
explained well in Zar (pages 548-549), based on the binomial distribution.

Four notes:

· The confidence interval of the median is not symmetrical around the
median. 

· You do not need to assume that the population distribution is
symmetrical in order to interpret the confidence interval.

· The confidence interval begins and ends with values in the data set.
No interpolation.

· Even if you ask for 95% confidence level, the actual confidence level
will usually be different (especially with small samples) and Prism
reports this.
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J.H. Zar, Biostatistical Analysis, Fifth edition 2010, ISBN:  0131008463. 

4.2.1.6 Interpreting results: Coefficent of Variation

The coefficient of variation (CV), also known as “relative variability”,
equals the standard deviation divided by the mean. It can be expressed
either as a fraction or a percent. 

It only makes sense to report CV for a variable, such as mass or enzyme
activity, where “0.0” is defined to really mean zero. A weight of zero
means no weight. An enzyme activity of zero means no enzyme activity.
Therefore, it can make sense to express variation in weights or enzyme
activities as the CV. In contrast, a temperature of “0.0” does not mean
zero temperature (unless measured in degrees Kelvin), so it would be
meaningless to report a CV of values expressed as degrees C. 

It never makes sense to calculate the CV of a variable expressed as a
logarithm because the definition of zero is arbitrary. The logarithm of 1
equals 0, so the log will equal zero whenever the actual value equals 1.
By changing units, you'll redefine zero, so redefine the CV. The CV of a
logarithm is, therefore, meaningless. For example, it makes no sense to
compute the CV of a set of pH values. pH is measured on a log scale (it is
the negative logarithm of the concentration of hydrogen ions). A pH of 0.0
does not mean 'no pH', and certainly doesn't mean 'no acidity' (quite the
opposite). Therefore it makes no sense to compute the CV of pH. 

What is the advantage of reporting CV? The only advantage is that it lets
you compare the scatter of variables expressed in different units. It
wouldn't make sense to compare the SD of blood pressure with the SD of
pulse rate, but it might make sense to compare the two CV values.

4.2.1.7 Interpreting results: Geometric mean and median

How Prism computes the geometric mean

Compute the logarithm of all values, compute the mean of the logarithms,
and then take the antilog. Prism uses base 10 (common) logarithms, and

http://www.amazon.com/Biostatistical-Analysis-5th-Jerrold-Zar/dp/0131008463/ref=sr_1_1?ie=UTF8&qid=1309457931&sr=8-1
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then takes ten to the power of the mean of the logarithms to get the
geometric mean.  This is equivalent to multiplying all the values together
and taking that product to the 1/n power, where n is the number of
values. 

How Prism computes the geometric SD 

First, transform all the values to logarithms, compute the sample SD of
those log values, and then take the antilogarithm of that SD. Prism uses
base 10 (common) logarithms, and then takes ten to the power of the
mean of the logarithms to get the geometric mean.

The geometric SD factor has no units. It is a unitless ratio. 

It makes no sense to add the geometric SD to the geometric mean (or
any other value), and makes equally no sense to ever subtract the
geometric SD from the geometric mean. The geometric SD is a value you
always multiply or divide by. The range from (the geometric mean divided
by the geometric SD factor) to (the geometric mean multiplied by the
geometric SD factor) will contain about two thirds of the values if the data
are sampled from a lognormal distribution. Similarly, the range from (the
mean minus the SD) to (the mean plus the SD) will contain about two
thirds of the values when data are sampled from a Gaussian distribution.  
 

More about the geometric SD.  

How to report the geometric mean and SD

While it is common to see a data sampled from a Gaussian distribution
reported as, "The mean is 3.2 ± 1.2 (SD)",  it is currently rare to report
data sampled from a lognormal distribution reported as, "The geometric
mean is 4.3 *¸ 1.14." But that kind of reporting makes sense.  Instead of
using a symbol meaning "plus or minus" which makes sense for data
sampled from a Gaussian distribution, use symbols meaning "times or
divided by" when reporting results from data sampled from a lognormal
distribution. 
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Example

The example above shows eight values (so you can do the calculations
yourself, if you want to). The geometric mean is 49.55 and the geometric
SD factor is 5.15. The left graph shows the data with lines denoting the
mean and geometric mean. The middle graph shows how Prism plots the
geometric mean and geometric SD. The upper error bar extends up to the
geometric mean times the geometric SD factor (49.55 * 5.15 = 255.2).
The lower error bars extends down to the geometric mean divided by the
geometric SD factor (49.55 / 5.15 = 9.62). The right graph shows the
data, the geometric mean, and the geometric SD plotted on a logarithmic
axis. The log SD error bars appear visually symmetrical on a log axis,
even though numerically they are very asymmetrical. 

4.2.1.8 Interpreting results: Skewness

 Key facts about skewness  

Skewness quantifies how symmetrical the distribution is. 

· A symmetrical distribution has a skewness of zero.

· An asymmetrical distribution with a long tail to the right (higher values)
has a positive skew.

· An asymmetrical distribution with a long tail to the left (lower values)
has a negative skew.
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· The skewness is unitless.

· Any threshold or rule of thumb is arbitrary, but here is one: If the
skewness is greater than 1.0 (or less than -1.0), the skewness is
substantial and the distribution is far from symmetrical.

How skewness is computed

Skewness has been defined in multiple ways. The steps below explain the
method used by Prism, called g1 (the most common method). It is
identical to the skew() function in Excel.  

1. We want to know about symmetry around the sample mean. So the
first step is to subtract the sample mean from each value,  The result
will be positive for values greater than the mean, negative for values
that are smaller than the mean, and zero for values that exactly equal
the mean.

2. To compute a unitless measures of skewness,  divide each of the
differences computed in step 1 by the standard deviation of the values.
These ratios (the difference between each value and the mean divided
by the standard deviation) are called z ratios. By definition, the
average of these values is zero and their standard deviation is 1. 

3. For each value, compute z3. Note that cubing values preserves the
sign. The cube of a positive value is still positive, and the cube of a
negative value is still negative. 

4. Average the list of z3  by dividing the sum of those values by n-1,
where n is the number of values in the sample. If the distribution is
symmetrical, the positive and negative values will balance each other,
and the average will be close to zero. If the distribution is not
symmetrical, the average will be positive if  the distribution is skewed
to the right, and negative if skewed to the left. Why n-1 rather than n? 
For the same reason  that n-1 is used when computing the standard
deviation. 

5. Correct for bias. For reasons that I do not really understand, that
average computed in step 4 is biased with small samples -- its absolute
value is smaller than it should be.  Correct for the bias by multiplying
the mean of z3 by the ratio n/(n-2). This correction increases the value
if the skewness is positive, and makes the value more negative if the
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skewness is negative. With large samples, this correction is trivial. But
with small samples, the correction is substantial. 

 More on skewness and kurtosis

4.2.1.9 Interpreting results: Kurtosis

Kurtosis

Kurtosis quantifies whether the tails of the data distribution matches the
Gaussian distribution. 

· A Gaussian distribution has a kurtosis of 0. 

· A distribution with fewer values in the tails than a Gaussian distribution
has a negative kurtosis.

· A distribution with more values in the tails (or values further out in the
tails) than a Gaussian distribution has a positive kurtosis.

· Kurtosis has no units. 

· Although it is commonly thought to measure the shape of the peak,
kurtosis actually tells you virtually nothing about the shape of the peak.
Its only unambiguous interpretation is in terms of the values in the tail.
Essentially it measures the presence of outliers (1).

· The value that Prism reports is sometimes called the excess kurtosis
since the expected kurtosis for a Gaussian distribution is 0.0.

· An alternative definition of kurtosis is computed by adding 3 to the
value reported by Prism. With this definition, a Gaussian distribution is
expected to have a kurtosis of 3.0.

How Kurtosis is computed

1. Subtract the sample mean from each value,  The result will be positive
for values greater than the mean, negative for values that are smaller
than the mean, and zero for values that exactly equal the mean.

http://www.tc3.edu/instruct/sbrown/stat/shape.htm
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2. Divide each of the differences computed in step 1 by the standard
deviation of the values. These ratios (the difference between each
value and the mean divided by the standard deviation) are called z
ratios. By definition, the average of these values is zero and their
standard deviation is 1. 

3. For each value, compute z4. In case that doesn't render well, that is z
to the fourth power.  All these values are positive. 

4. Average that list of values  by dividing the sum of those values by n-1,
where n is the number of values in the sample. Why n-1 rather than n? 
For the same reason  that n-1 is used when computing the standard
deviation. 

5. With a Gaussian distribution, you expect that average to equal 3.
Therefore, subtract 3 from that average. Gaussian data are expected to
have a kurtosis of 0. This value (after subtracting 3) is sometimes
called the excess kurtosis.

Why don't values in the middle of the distribution affect the kurtosis very
much?

Because the z values are taken to the fourth power, only large z values
(so only values far from the mean) have a big impact on the kurtosis. If
one value has a z value of 1 and another has a z value of 2, the second
value will have 16 times more impact on the kurtosis (because 2 to the
fourth power is 16). If one value has a z value of 1 and another has a z
value of 3 (so is three times further from the mean), the second value will
have 81 times more impact on the kurtosis (because 3 to the fourth
power is 81). Accordingly, values near the mean (especially those less
than one SD from the mean) have very little impact on the kurtosis, while
values far from the mean have a huge impact. For this reason, the
kurtosis does not quantify peakedness and does not really quantify the
shape of the bulk of the distribution. Rather kurtosis quantifies the overall
impact of points far from the mean. 

Reference

1. Westfall, P. H. (2014). Kurtosis as Peakedness, 1905–2014. R.I.P.
The American Statistician, 68(3), 191–195. 
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4.2.1.10 Interpreting results: One-sample t test

A one-sample t test compares the mean of a single column of numbers
against a hypothetical mean that you provide. 

The P value answers this question: 

If the data were sampled from a Gaussian population with a mean
equal to the hypothetical value you entered, what is the chance of
randomly selecting N data points and finding a mean as far (or further)
from the hypothetical value as observed here?

If the P value is large , the data do not give you any reason to conclude
that the population mean differs from the hypothetical value you entered.
This is not the same as saying that the true mean equals the hypothetical
value. You just don't have evidence of a difference.

If the P value is small  (usually defined to mean less than 0.05), then it
is unlikely that the discrepancy you observed between sample mean and
hypothetical mean is due to a coincidence arising from random sampling.
You can reject the idea that the difference is a coincidence, and conclude
instead that the population has a mean different than the hypothetical
value you entered. The difference is statistically significant. But is the
difference scientifically important? The confidence interval helps you
decide .

Prism also reports the 95% confidence interval for the difference between
the actual and hypothetical mean. You can be 95% sure that this range
includes the true difference.

Assumptions

The one sample t test assumes that you have sampled your data from a
population that follows a Gaussian distribution. While this assumption is
not too important with large samples, it is important with small sample
sizes, especially when N is less than 10. If your data do not come from a
Gaussian distribution, you have three options. Your best option is to
transform the values to make the distribution more Gaussian, perhaps by
transforming all values to their reciprocals or logarithms. Another choice
is to use the Wilcoxon signed rank nonparametric test instead of the t
test. A final option is to use the t test anyway, knowing that the t test is
fairly robust to departures from a Gaussian distribution with large
samples.
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The one sample t test also assumes that the “errors” are independent .
The term “error” refers to the difference between each value and the
group mean. The results of a t test only make sense when the scatter is
random – that whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this assumption. 

How the one-sample t test works

Prism calculates the t ratio by dividing the difference between the actual
and hypothetical means by the standard error of the mean. 

A P value is computed from the t ratio and the numbers of degrees of
freedom (which equals sample size minus 1). 

4.2.1.11 Interpreting results: Wilcoxon signed rank test

The nonparametric  Wilcoxon signed rank test compares the median of
a single column of numbers against a hypothetical median. Don't confuse
it with the Wilcoxon matched pairs test  which compares two paired or
matched groups. 

Interpreting the confidence interval

The signed rank test compares the median of the values you entered with
a hypothetical population median you entered. Prism reports the
difference between these two values, and the confidence interval of the
difference. Prism subtracts the median of the data from the hypothetical
median, so when the hypothetical median is higher, the result will be
positive. When the hypothetical median is lower, the result will be
negative

Since the nonparametric test works with ranks, it is usually not possible
to get a confidence interval with exactly 95% confidence. Prism finds a
close confidence level, and reports what it is. So you might get a 96.2%
confidence interval when you asked for a 95% interval.

Interpreting the P value 

 The P value answers this question: 

If the data were sampled from a population with a median equal to the
hypothetical value you entered, what is the chance of randomly
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selecting N data points and finding a median as far (or further) from
the hypothetical value as observed here?

If the P value is small , you can reject the idea that the difference is a
due to chance and conclude instead that the population has a median
distinct from the hypothetical value you entered.

If the P value is large , the data do not give you any reason to conclude
that the population median differs from the hypothetical median. This is
not the same as saying that the medians are the same. You just have no
compelling evidence that they differ. If you have small samples, the
Wilcoxon test has little power. In fact, if you have five or fewer values,
the Wilcoxon test will always give a P value greater than 0.05, no matter
how far the sample median is from the hypothetical median. 

Assumptions

The Wilcoxon signed rank test does not assume that the data are sampled
from a Gaussian distribution. However it does assume that the data are
distributed symmetrically around the median. If the distribution is
asymmetrical, the P value will not tell you much about whether the
median is different than the hypothetical value. 

Like all statistical tests, the Wilcoxon signed rank test assumes that the
errors are independent . The term “error” refers to the difference
between each value and the group median. The results of a Wilcoxon test
only make sense when the scatter is random – that any factor that causes
a value to be too high or too low affects only that one value.

How the Wilcoxon signed rank test works

1. Calculate how far each value is from the hypothetical median.

2. Ignore values that exactly equal the hypothetical value. Call the
number of remaining values N.

3. Rank these distances, paying no attention to whether the values are
higher or lower than the hypothetical value. 

4. For each value that is lower than the hypothetical value, multiply the
rank by negative 1.

5. Sum the positive ranks. Prism reports this value.
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6. Sum the negative ranks. Prism also reports this value.

7. Add the two sums together. This is the sum of signed ranks, which
Prism reports as W. 

If the data really were sampled from a population with the hypothetical
median, you would expect W to be near zero. If W (the sum of signed
ranks) is far from zero, the P value will be small.

With fewer than 200 values, Prism computes an exact P value, using a
method explained in Klotz(2). With 200 or more values, Prism uses a
standard approximation that is quite accurate.

Prism calculates the confidence interval for the discrepancy between the
observed median and the hypothetical median you entered  using the
method explained on page 234-235 of Sheskin (1) and 302-303 of Klotz
(2).

How Prism deals with values that exactly equal the hypothetical median

What happens if a value is identical to the hypothetical median?

When Wilcoxon developed this test, he recommended that those data
simply be ignored. Imagine there are ten values. Nine of the values are
distinct from the hypothetical median you entered, but  the tenth is
identical to that hypothetical median (to the precision recorded). Using
Wilcoxon's original method, that tenth value would be ignored and the
other nine values would be analyzed.This is how InStat and previous
versions of Prism (up to version 5) handle the situation.

Pratt(3,4) proposed a different method that accounts for the tied values.
Prism 6 offers the choice of using this method. 

Which method should you choose? Obviously, if no value equals the
hypothetical median, it doesn't matter. Nor does it matter much if there
is, for example, one such value out of 200.

It makes intuitive sense that data should not be ignored, and so Pratt's
method must be better.  However, Conover (5) has shown that the
relative merits of the two methods depend on the underlying distribution
of the data, which you don't know. 

http://www.google.com/url?sa=t&source=web&cd=2&ved=0CCAQFjAB&url=http%3A%2F%2Fwww.amazon.com%2FHandbook-Parametric-Nonparametric-Statistical-Procedures%2Fdp%2F0849331196&ei=qtTnTdXlMMXmiALoj5GVDA&usg=AFQjCNHGi87lO0-0Wb8-FH1-uKtpAgCmcw&sig2=JzI6YF_WjzrG2jHhK3Z3ew
http://www.stat.wisc.edu/~klotz/Book.pdf
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Why results in Prism 6 can be different than from previous versions of
Prism

Results from Prism 6 can differ from prior versions because Prism 6 does
exact calculations in two situations where Prism 5 did approximate
calculations. All versions of Prism report whether it uses an approximate
or exact methods. 

· Prism 6 can perform the exact calculations much faster than did Prism
5, so does exact calculations with some sample sizes that earlier
versions of Prism could only do approximate calculations. 

· If two values are the same, prior versions of Prism always used the
approximate method. Prism 6 uses the exact method unless the sample
is huge.   

Another reason for different results between Prism 6 and prior versions is
if a value exactly matches the hypothetical value you are comparing
against. Prism 6 offers a new option (method of Pratt) which will give
different results than prior versions did. See the previous section.

References

1. D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, fourth edition.
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4.2.1.12 Interpreting results: Normality tests

What question does the normality test answer?

The normality tests all report a P value. To understand any P value, you
need to know the null hypothesis. In this case, the null hypothesis is that
all the values were sampled from a population that follows a Gaussian
distribution. 

The P value answers the question:

If that null hypothesis were true, what is the chance that a random
sample of data would deviate from the Gaussian ideal as much as
these data do?

Prism also uses the traditional 0.05 cut-off to answer the question
whether the data passed the normality test. If the P value is greater than
0.05, the answer is Yes. If the P value is less than or equal to 0.05, the
answer is No.  

What should I conclude if the P value from the normality test is high?

All you can say is that the data are not inconsistent with a Gaussian
distribution. A normality test cannot prove the data were sampled from a
Gaussian distribution. All the normality test can do is demonstrate that
the deviation from the Gaussian ideal is not more than you’d expect to
see with chance alone. With large data sets, this is reassuring. With
smaller data sets, the normality tests don’t have much power to detect
modest deviations from the Gaussian ideal.

What should I conclude if the P value from the normality test is low?

The null hypothesis is that the data are sampled from a Gaussian
distribution. If the P value is small enough, you reject that null hypothesis
and so accept the alternative hypothesis that the data are not sampled
from a Gaussian population. The distribution could be close to Gaussian
(with large data sets) or very far form it. The normality test tells you
nothing about the alternative distributions.

If you P value is small enough to declare the deviations from the Gaussian
idea to be "statistically significant", you then have four choices:

· The data may come from another identifiable distribution. If so, you
may be able to transform your values to create a Gaussian distribution.
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For example, if the data come from a lognormal distribution, transform
all values to their logarithms.

· The presence of one or a few outliers might be causing the normality
test to fail. Run an outlier test. Consider excluding the outlier(s).

· If the departure from normality is small, you may choose to do nothing.
Statistical tests tend to be quite robust to mild violations of the
Gaussian assumption.

· Switch to nonparametric tests that don’t assume a Gaussian
distribution. But the decision to use (or not use) nonparametric tests is
a big decision. It should not be based on a single normality test and
should not be automated .

4.2.1.13 Trimmed, windsorized and harmonic mean

This page explains some descriptive statistics that Prism does not
compute. Let us know if you think it should compute these.

Trimmed and Winsorized means

The idea of trimmed or Winsorized means is to not let the largest and
smallest values have much impact. Before calculating a trimmed or
Winsorized mean, you first have to choose how many of the largest and
smallest values to ignore or down weight. If you set K to 1, the largest
and smallest values are treated differently. If you set K to 2, then the two
largest and two smallest values are treated differently. K must be set in
advance. Sometimes K is set to 1, other times to some small fraction of
the number of values, so K is larger when you have lots of data.

To compute a trimmed mean, simply delete the K smallest and K largest
observations, and compute the mean of the remaining data. 

To compute a Winsorized mean, replace the K smallest values with the
value at the K+1 position, and replace the k largest values with the value
at the N-K-1 position. Then take the mean of the data. . 

The advantage of trimmed and Winsorized means is that they are not
influenced by one (or a few) very high or low values. Prism does not
compute these values.
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Harmonic mean

To compute the harmonic mean, first transform all the values to their
reciprocals. Then take the mean of those reciprocals. The harmonic mean
is the reciprocal of that mean. If the values are all positive, larger
numbers effectively get less weight than lower numbers. The harmonic
means is not often used in biology, and is not computed by Prism.

Mode

The mode is the value that occurs most commonly. It is not useful with
measured values assessed with at least several digits of accuracy, as
most values will be unique. It can be useful with variables that can only
have integer values. While the mode is often included in lists like this, the
mode doesn't always assess the center of a distribution. Imagine a
medical survey where one of the questions is "How many times have you
had surgery?" In many populations, the most common answer will be
zero, so that is the mode. In this case, some values will be higher than
the mode, but none lower, so the mode is not a way to quantify the
center of the distribution.

4.2.2 Frequency Distributions

4.2.2.1 Visualizing scatter and testing for normality without a frequency distribution

Viewing data distributions 

Before creating a frequency distribution, think about whether you actually
need to create one. 

In many cases, plotting a column scatter graph is all you need to do to
see the distribution of data. The graph on the left is a column scatter plot
(with line drawn at the mean) made from the "Frequency distribution"
sample data. The graph on the right is a box-and-whiskers graph of the
same data, showing the values lower than the first percentile and greater
than the 99th percentile as circles. Note that Prism offers several choices
for how to define the whiskers in this kind of plot.

Both graphs were created by Prism directly from the data table, with no
analysis needed.
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Testing for normality

Prism can test for normality  as part of the column statistics analysis.
You don't have to create a frequency distribution, and then fit a Gaussian
distribution. 

4.2.2.2 How to: Frequency distribution

1. Enter data

Choose a Column table, and a column scatter graph. If you are not ready
to enter your own data, choose the sample data set: Frequency
distribution data and histogram.

2. Choose the analysis

Click Analyze and then choose Frequency distribution from the list of
analyses for Column data.
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3. Choose analysis options

Cumulative?

In a frequency distribution, each bin contains the number of values that
lie within the range of values that define the bin. In a cumulative
distribution, each bin contains the number of values that fall within or
below that bin. By definition, the last bin contains the total number of
values. The graph below shows a frequency distribution on the left, and a
cumulative distribution of the same data on the right, both plotting the
number of values in each bin.
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The main advantage of cumulative distributions is that you don't need to
decide on a bin width. Instead, you can tabulate the exact cumulative
distribution as shown below. The data set had 250 values, so this exact
cumulative distribution has 250 points, making it a bit ragged. When you
choose to tabulate a cumulative frequency distributions as percentages
rather than fractions, those percentages are really percentiles and the
resulting graph is sometimes called a percentile plot. 

Relative or absolute frequencies?

Select Relative frequencies to determine the fraction (or percent) of
values in each bin, rather than the actual number of values in each bin.
For example, if 15 of 45 values fall into a bin, the relative frequency is
0.33 or 33%. 

If you choose both cumulative and relative frequencies, you can plot the
distribution using a probabilities axis. When graphed this way, a Gaussian
distribution is linear. 
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Bin width

If you chose a cumulative frequency distributions, we suggest that you
choose to create an exact distribution. In this case, you don't choose a
bin width as each value is plotted individually. 

To create an ordinary frequency distribution, you must decide on a bin
width. If the bin width is too large, there will only be a few bins, so you
will not get a good sense of how the values distribute. If the bin width is
too low, many bins might have only a few values (or none) and so the
number of values in adjacent bins can randomly fluctuate so much that
you will not get a sense of how the data are distributed. 

How many bins do you need? Partly it depends on your goals. And partly
it depends on sample size. If you have a large sample, you can have more
bins and still have a smooth frequency distribution. One rule of thumb is
aim for a number of bins equal to the log base 2 of sample size. Prism
uses this as one of its two goals when it generates an automatic bin width
(the other goal is to make the bin width be a round number). 

The figures below show the same data with three different bin widths. The
graph in the middle displays the distribution of the data. The one on the
left has too little detail, while the one on the right has too much detail.

Bin range

In addition to deciding on the bin width, which controls the number of
bins, you can also choose the center of the first bin. This can be
important. Imagine that your data are percentages, running from 0 to
100. There is no possibility of a value that is less than 0 (negative) or
greater than 100. Let's say you want the bin width to be 10, to make 10
bins. If the first bin is centered at 0, it will contain values between -5 and
5,  the next bin will contain values between 5 and 15, the next between
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15 and 25, etc. Since negative values are impossible, the first bin actually
includes values only between 0 and 5, so its effective bin width is half the
other bin widths. Also note, there are eleven bins that contain data, not
ten.

If you instead make the first bin centered at 5, it will contain values
between 0 and 10, the next bin contains values from 10 to 20, etc. Now,
all bins truly contain the same range of values, and all the data are
contained within ten bins.

A point on the border goes with the bin holding the larger values. So if
one bin goes from 3.5 to 4.5 and the next from 4.5 to 5.5, a value of 4.5
ends up in that second bin (from 4.5 to 5.5). 

Replicates

If you entered replicate values, Prism can either place each replicate into
its appropriate bin, or average the replicates and only place the mean into
a bin.

All values too small to fit in the first bin are omitted from the analysis.
You can also enter an upper limit to omit larger values from the analysis.

How to graph

See these examples . 

Prism can only make frequency distributions
from numerical data. It can handle categorical
data, but only if the categories are entered as
values. 

4.2.2.3 Graphing tips: Frequency distributions

At the bottom of the frequency distribution analysis dialog, you can
choose among several ways to graph the resulting data. These are all
shown below, using 'frequency distribution' sample data set.

220



STATISTICS WITH PRISM 7 221

© 1995-2016 GraphPad Software, Inc.

Graphs of frequency distributions

If you don't create a cumulative distribution, Prism gives you three
choices illustrated below: XY graph with points, XY graph with spikes
(bars). or a bar graph

The last two graphs look very similar, but the graph on the right is a bar
graph, while the one in the middle is an XY graph plotting bars or spikes
instead of symbols. The graph in the middle has X values so you can fit a
Gaussian distribution  to it. The graph on the right has no X values (just
category names, which happen to be numbers), so it is not possible to fit
a curve. 

The term histogram is used inconsistently. We use the term to mean a
graph of a frequency distribution which is usually a bar graph. Some
people use the term histogram to refer to any bar graph, even those that
don't plot frequency distributions. 

Graphs of cumulative frequency distributions

If you choose a cumulative frequency distribution that tabulates the
actual number of values (rather than fractions or percents), Prism can
only create one kind of graph:
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If you choose to tabulate the results as fractions or percentages, then
Prism also offers you (from the bottom part of the Parameters dialog for
frequency distributions) the choice of plotting on a probability axis. If
your data were drawn from a Gaussian distribution, they will appear
linear when the cumulative distribution is plotted on a probability axis.
Prism uses standard values to label the Y axis, and you cannot adjust
these. This graph is very similar to a Q-Q plot.
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4.2.2.4 Fitting a Gaussian distribution to a frequency distribution

Why fit a Gaussian distribution to your data?

Does you data follow a Gaussian distribution? One way to answer that
question is to perform a normality test  on the raw data. Another
approach is to examine the frequency distribution or the cumulative
frequency distribution.

Fitting a Gaussian distribution 

To fit the frequency distribution, you have to specify that the distribution
be plotted as an XY graph, not a Column or Grouped graph,  so the bin
centers are X values (and not just row labels). Then click Analyze, choose
nonlinear regression, and choose the Gaussian family of equations and
then the Gaussian model. 

The results depend to some degree on which value you picked for bin
width, so we recommend fitting the cumulative distribution as explained
below.

Fitting a cumulative Gaussian distribution

The cumulative Gaussian distribution has a sigmoidal shape. 

To fit the frequency distribution, you have to specify that the distribution
be plotted as an XY plot, so the bin centers are X values (and not just row
labels). Then click Analyze, choose nonlinear regression, and choose the
one of the cumulative Gaussian models from the selection of Gaussian
models. Prism offers separate models to use for data expressed as
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percentages, fractions or number of observations. With the last choice,
you should constrain N to a constant value equal to the number of values.

The graph below shows the cumulative distribution of the sample data (in
percents) fit to the cumulative Gaussian curve. The observed distribution
is plotted with red circles and the fit distribution is a blue curve. The two
are superimposed, so hard to distinguish.

Plotting on a probability axis

Below, the same graph is plotted using a probability Y axis. To do this,
double-click on the Y axis to bring up the Format Axis dialog, drop down
the choices for scale in the upper right corner, and choose "Probability
(0..100%). The cumulative Gaussian distribution is linear when plotted on
probability axes. At the top right of the graph, the cumulative distribution
is a bit higher than predicted by a Gaussian distribution. This discrepancy
is greatly exaggerated when you plot on a probability axis.
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4.2.3 Describing curves

4.2.3.1 Smoothing, differentiating and integrating curves

A single Prism analysis smooths a curve and/or converts a curve to its
derivative or integral. 
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Finding the derivative or integral of a curve

The first derivative is the steepness of the curve at every X value. The
derivative is positive when the curve heads uphill and is negative when
the curve heads downhill. The derivative equals zero at peaks and
troughs in the curve. After calculating the numerical derivative, Prism can
smooth the results, if you choose. 

The second derivative is the derivative of the derivative curve. The
second derivative equals zero at the inflection points of the curve. 

The integral is the cumulative area between the curve and the line at
Y=0, or some other value you enter. 

Notes:

· Prism cannot do symbolic algebra or calculus. If you give Prism a series
of XY points that define a curve, it can compute the numerical derivative
(or integral) from that series of points. But if you give Prism an
equation, it cannot compute a new equation that defines the derivative
or integral.
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· This analysis integrates a curve, resulting in another curve showing
cumulative area. Don't confuse with a separate Prism analysis that
computes a single value for the area under the curve . 

Smoothing a curve

If you import a curve from an instrument, you may wish to smooth the
data to improve the appearance of a graph. Since you lose data when you
smooth a curve, you should not smooth a curve prior to nonlinear
regression or other analyses. Smoothing is not a method of data analysis,
but is purely a way to create a more attractive graph.

Prism gives you two ways to adjust the smoothness of the curve. You
choose the number of neighboring points to average and the 'order' of the
smoothing polynomial. Since the only goal of smoothing is to make the
curve look better, you can simply try a few settings until you like the
appearance of the results. If the settings are too high, you lose some
peaks which get smoothed away. If the settings are too low, the curve is
not smooth enough. The right balance is subjective -- use trial and error.

The results table has fewer rows than the original data.

Don't analyze smoothed data 

Smoothing a curve can be misleading. The whole idea is to reduce the
"fuzz" so you can see the actual trends. The problem is that you can see
"trends" that don't really exist. The three graphs in the upper row below
are simulated data. Each value is drawn from a Gaussian distribution with
a mean of 50 and a standard deviation of 10. Each value is independently
drawn from that distribution, without regard to the previous values. When
you inspect those three graphs, you see random scatter around a
horizontal line, which is exactly how the data were generated.
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The bottom three graphs above show the same data after smoothing
(averaging 10 values on each side, and using a second order smoothing
polynomial). When you look at these graphs, you see trends. The first one
tends to trend down. The second one seems to oscillate in a regular way.
The third graph tends to increase. All these trends are artefacts of
smoothing. Each graph shows the same data as the graph just above it. 

Smoothing the data creates the impression of trends by ensuring that any
large random swing to a high or low value is amplified, while the point-to-
point variability is muted. A key assumption of correlation, linear
regression and nonlinear regression is that the data are independent of
each other. With smoothed data, this assumption is not true. If a value
happens to be super high or low, so will the neighboring points after
smoothing. Since random trends are amplified and random scatter is
muted, any analysis of smoothed data (that doesn't account for the
smoothing) will be invalid.

Mathematical details

· The first derivative is calculated as follows (x, and Y are the arrays of
data; x' and y' are the arrays that contain the results).
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x'[i] = (x[i+1] + x[i]) / 2
y' at x'[i] = (y[i+1] - y[i]) / (x[i+1] - x[i])

· The second derivative is computed by running that algorithm twice, to
essentially compute the first derivative of the first derivative.

· Prism uses the trapezoid rule  to integrate curves. The X values of the
results are the same as the X values of the data you are analyzing. The
first Y value of the results equals a value you specify (usually 0.0). For
other rows, the resulting Y value equals the previous result plus the
area added to the curve by adding this point. This area equals the
difference between X values times the average of the previous and this
Y value. 

· Smoothing is done by the method of Savistsky and Golay (1).

· If you request that Prism both both smooth and convert to a derivative
(first or second order) or integral, Prism does the steps sequentially.
First it creates the derivative or integral, and then it smooths.

Reference

 1. A. Savitzky and M.J.E. Golay,  (1964). Smoothing and Differentiation
of Data by Simplified Least Squares Procedures. Analytical Chemistry 36
(8): 1627–1639

4.2.3.2 Area under the curve

How to: Area under the curve

The area under the curve is an integrated measurement of a measurable
effect or phenomenon. It is used as a cumulative measurement of drug
effect in pharmacokinetics and as a means to compare peaks in
chromatography. 

Note that Prism also computes the area under a Receiver Operator
Characteristic (ROC) curve as part of the separate ROC analysis .

Start from a data or results table that represents a curve. Click Analyze
and choose Area under the curve from the list of XY analyses.
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Interpreting area-under-the-curve results

If your data come from chromatography or spectroscopy, Prism can break
the data into separate regions and determine the highest point (peak) of
each. Prism can only do this, however, if the regions are clearly defined:
the signal, or graphic representation of the effect or phenomenon, must
go below the baseline between regions and the peaks cannot overlap.

For each region, Prism shows the area in units of the X axis times units of
the Y axis. Prism also shows each region as a fraction of the total area
under all regions combined. The area is computed using the trapezoid
rule. It simply connects a straight line between every set of adjacent
points defining the curve, and sums up the areas beneath these areas.

Next, Prism identifies the peak of each region. This is reported as the X
and Y coordinates of the highest point in the region and the two X
coordinates that represent the beginning and end of the region.

Prism may identify more regions than you are interested in. In this case,
go back to the Parameters dialog box and enter a larger value for the
minimum width of a region and/or the minimum height of a peak.
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Limitations of this analysis

Note these limitations:

· The baseline must be horizontal.

· There is no smoothing or curve fitting. 

· Prism will not separate overlapping peaks. The program will not
distinguish two adjacent peaks unless the signal descends all the way
to the baseline between those two peaks. Likewise, Prism will not
identify a peak within a shoulder of another peak.

· If the signal starts (or ends) above the baseline, the first (or last)
peak will be incomplete. Prism will report the area under the tails it
“sees”.

· Prism does not extrapolate back to X=0, if your first X value is greater
than zero.

· Prism does not extrapolate beyond the highest X value in your data
set, so does not extrapolate the curve down to the baseline.

· Prism no longer insists that the X values be equally spaced. When it
sums the areas of the trapezoids, it is fine if some are fatter than
others.

How Prism computes area under the curve

Prism computes the area under the curve using the trapezoid rule,
illustrated in the figure below. 

In Prism, a curve (created by nonlinear regression) is simply a series of
connected XY points, with equally spaced X values. Prism can compute
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area under the curve also for XY tables you enter, and does not insist that
the X values be equally spaced. The left part of the figure above shows
two of these points and the baseline as a dotted line. The area under that
portion of the curve, a trapezoid, is shaded. The middle portion of the
figure shows how Prism computes the area. The two triangles in the
middle panel have the same area, so the area of the trapezoid on the left
is the same as the area of the rectangle on the right (whose area is easier
to calculate). The area, therefore, is DX*(Y1+Y2)/2. Prism uses this
formula repeatedly for each adjacent pair of points defining the curve.

The area is computed between the baseline you specify and the curve,
starting from the first X value in your data set and ending at the largest X
value. Prism does not extend the curve beyond your data.

The standard error and confidence interval of the AUC

If you enter data with replicate Y values, or as Mean and SD or SEM,
Prism reports a SE and confidence interval for the AUC using the method
described by Gagnon (1). If you entered replicate Y values in subcolumns,
Prism assumes these are replicate measurements in one experiment. If
each subcolumn is in fact a different repeated experiment, Prism does not
compute one AUC per subcolumn, and then average those values. The
95% confidence interval equals the AUC plus or minus 1.96 times the SE.
It uses the z distribution (so always 1.96) rather than the t distribution
(where the value would depend on sample size) because this was used in
references 1-3. With more than a few dozen points defining the curve, the
t and z methods will be nearly indistinguishable anyway. 

Prism does not compare peaks to provide a confidence interval for the
difference or the corresponding P value. But you could do this with a bit of
work. Create a new Grouped table, formatted for entry of mean, sem and
n. Enter the AUC values as means. Enter the SE of the AUC values as
"SEM". For n, enter one more than the df (defined above, not reported by
Prism). Then click analyze and choose the t test. Prism subtracts 1 from
the entered n to obtain the df, which will now be correct. 

What counts as a peak?

By default, Prism only considers points above the baseline to be part of
peaks, so only reports peaks that stick above the baseline. You can
choose to consider peaks that go below the baseline.
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By default, Prism ignores any peaks whose height is less than 10% of the
distance from minimum to maximum Y value, but you can change this
definition in the area under the curve parameters dialog. You can also tell
it to ignore peaks that are very narrow.

Total peak area vs. total area vs. net area

Prism reports the area under the peaks in two or three ways:

· Total Area. This sums positive peaks, negative peaks, peaks that are
not high enough to count, and peaks that are too narrow to count. The
only choice you make in the analysis dialog that affects the definition of
total area is the definition of the baseline. 

· Total Peak Area. The sum of the peaks you asked Prism to consider.
This value is affected by several choices in the analysis dialog: The
definition of baseline, your choice about including or ignoring negative
peaks, and your definition of peaks too small to count. 

· Net Area. You'll only see this value if you ask Prism to define peaks
below the baseline as peaks. It is the difference computed by
subtracting the area of peaks below the baseline from the area of peaks
above the baseline.

Reference

1. Robert C. Gagnon and John J. Peterson, Estimation of Confidence
Intervals for Area Under the Curve from Destructively Obtained
Pharmacokinetic Data, Journal of Pharmacokinetics and
Pharmacodynamics, 26: 87-102, 1998.

2. Bailer A. J. (1988). Testing for the equality of area under the curves
when using destructive measurement techniques. Journal of
Pharmacokinetics and Biopharmaceutics, 16(3):303-309.

3. Jaki T. and Wolfsegger M. J. (2009). A theoretical framework for
estimation of AUCs in complete and incomplete sampling designs.
Statistics in Biopharmaceutical Research, 1(2):176-184.

http://www.springerlink.com/content/x558320624n07j18/
http://www.springerlink.com/content/x558320624n07j18/
http://www.springerlink.com/content/x558320624n07j18/
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4.2.4 Row statistics

4.2.4.1 Overview: Side-by-side replicates

When entering data into tables formatted for XY or Grouped data,
replicates go into side-by-side subcolumns. Prism then can plot these
individually, or plot mean and error bar. 

You can also format the table to enter mean, SD or SEM, and N. This is
useful if you have already averaged the data in another program or if you
have more than 52 replicates. Otherwise, it is best to enter the raw data
into Prism, so you can plot every replicate. 

Prism can take your raw data, and create graphs with mean (or median)
and error bars (defined in several ways). There is no need to run an
analysis to compute the SD or SEM. But if you want to see the descriptive
stats for each set of replicates, use the Row Means and Totals
analysis. 

4.2.4.2 Row means and totals

Calculate a total/mean for each data set

If you enter data onto XY or two-way tables with replicate Y values in
subcolumns, and want to view a table of mean and SD (or SEM) values,
click Analyze and choose to do a built-in analysis. Then choose Row
means/totals, and choose one total/mean for each data set. 

Note that you rarely need this analysis. Prism will automatically create
graphs with the mean and SD (or SEM). You don't have to choose any
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analyses to make these graphs. Prism computes the error bars
automatically. Use settings on the Format Graph dialog (double-click on
any symbol to see it) to plot individual points or to choose SD, SEM, 95%
CI or range error bars. The only purpose of this analysis is if you want to
see the SD or SEM values. 

Calculate a total/mean for the entire data table

This choice is used rarely, but it helps you consolidate a larger table into
a single data set. 

If the data were entered onto a single subcolumn for each data set, then
there is no ambiguity.

 But what if you entered data on a table with subcolumns? In this case,
the calculated total/mean values are based on the mean value of each
data set for corresponding row. For example, let's calculate "Row means
with SD" for three datasets with 3, 2 and 3 replicates in each. Here are
the data for the first row.

Data set A: (2, 3, 4)
Data set B: (4, 6)
Data set C: (7, 8, 9)

Prism will first compute the mean values for each data set, which are 3, 5
and 8. It then computes the grand mean of those three values (and their
standard deviation) so the results are Mean = 5.333, SD = 2.517, N = 3. 

If Prism simply looked at those data as eight independent values, the
mean would be 5.375, but since the values in different data sets are
unlikely to be independent, Prism does not do this calculation. 

Note:

· When Prism computes the grand mean, it does not account for the fact
that data sets A and C are in triplicate, while data set B is only in
duplicate. 

· If you entered your data as mean, n and SD or SEM, these calculations
use only the mean value you entered and ignore n and SD or SEM.
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4.3 Normality tests

Prism can test for normality as part of the Column

Statistics analysis. It can also test for normality of

residuals from nonlinear regression, as part of the

nonlinear regression analysis.

4.3.1 How to: Normality test

Analyzing column data

1. Create a Column data table.

2. Enter each data set in a single Y column. 

3. Click "Analyze... Statistical analyses... Column statistics"

4. Prism offers three options for testing for normality. Check one, or
more than one, of these options.

Analyzing residuals from nonlinear regression

A residual is the distance of a point from the best-fit curve. One of the
assumptions of linear and nonlinear regression is that the residuals follow
a Gaussian distribution. You can test this with Prism. When setting up the
nonlinear regression, go to the Diagnostics tab, and choose one (or more
than one) of the normality tests. 

Analyzing residuals from linear regression

Prism's linear regression analysis does not offer the choice of testing the
residuals for normality. But this limitation is easy to work around. Run
nonlinear regression, choose a straight line model, and you'll get the
same results as linear regression with the opportunity to choose
normality testing. This is just one of many reasons to fit straight lines
using the nonlinear regression analysis.
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4.3.2 Choosing a normality test

Prism offers three normality tests. 

We recommend the D'Agostino-Pearson normality test. It first
computes the skewness and kurtosis  to quantify how far the
distribution is from Gaussian in terms of asymmetry and shape. It then
calculates how far each of these values differs from the value expected
with a Gaussian distribution, and computes a single P value from the sum
of these discrepancies. It is a versatile and powerful normality test, and is
recommended. Note that D'Agostino developed several normality tests.
The one used by Prism is the "omnibus K2" test.

An alternative is the Shapiro-Wilk normality test. We prefer the
D'Agostino-Pearson test for two reasons. One reason is that, while the
Shapiro-Wilk test works very well if every value is unique, it does not
work as well when several values are identical. The other reason is that
the basis of the test is hard to understand. There are several ways to
compute the Shapiro-Wilk test. Prism uses the method of Royston (1). 

Earlier versions of Prism offered only the Kolmogorov-Smirnov test. We
still offer this test (for consistency) but no longer recommend it. It
computes a P value from a single value: the largest discrepancy between
the cumulative distribution of the data and a cumulative Gaussian
distribution. This is not a very sensitive way to assess normality, and we
now agree with this statement1: "The Kolmogorov-Smirnov test is only a
historical curiosity. It should never be used." (2)

The Kolmogorov-Smirnov method as originally published assumes that
you know the mean and SD of the overall population (perhaps from prior
work). When analyzing data, you rarely know the overall population mean
and SD. You only know the mean and SD of your sample. To compute the
P value, therefore, Prism uses the Dallal and Wilkinson approximation to
Lilliefors' method (3). Since that method is only accurate with small P
values, Prism simply reports “P>0.10” for large P values. In case you
encounter any discrepancies, you should know that we fixed a bug in this
test many years ago in Prism 4.01 and 4.0b. 
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4.3.3 Interpreting results: Normality tests

What question does the normality test answer?

The normality tests all report a P value. To understand any P value, you
need to know the null hypothesis. In this case, the null hypothesis is that
all the values were sampled from a population that follows a Gaussian
distribution. 

The P value answers the question:

If that null hypothesis were true, what is the chance that a random
sample of data would deviate from the Gaussian ideal as much as
these data do?

Prism also uses the traditional 0.05 cut-off to answer the question
whether the data passed the normality test. If the P value is greater than
0.05, the answer is Yes. If the P value is less than or equal to 0.05, the
answer is No.  

What should I conclude if the P value from the normality test is high?

All you can say is that the data are not inconsistent with a Gaussian
distribution. A normality test cannot prove the data were sampled from a
Gaussian distribution. All the normality test can do is demonstrate that
the deviation from the Gaussian ideal is not more than you’d expect to
see with chance alone. With large data sets, this is reassuring. With
smaller data sets, the normality tests don’t have much power to detect
modest deviations from the Gaussian ideal.

http://www.jstor.org/stable/2986146
http://www.jstor.org/stable/2986146


STATISTICS WITH PRISM 7 239

© 1995-2016 GraphPad Software, Inc.

What should I conclude if the P value from the normality test is low?

The null hypothesis is that the data are sampled from a Gaussian
distribution. If the P value is small enough, you reject that null hypothesis
and so accept the alternative hypothesis that the data are not sampled
from a Gaussian population. The distribution could be close to Gaussian
(with large data sets) or very far form it. The normality test tells you
nothing about the alternative distributions.

If you P value is small enough to declare the deviations from the Gaussian
idea to be "statistically significant", you then have four choices:

· The data may come from another identifiable distribution. If so, you
may be able to transform your values to create a Gaussian distribution.
For example, if the data come from a lognormal distribution, transform
all values to their logarithms.

· The presence of one or a few outliers might be causing the normality
test to fail. Run an outlier test. Consider excluding the outlier(s).

· If the departure from normality is small, you may choose to do nothing.
Statistical tests tend to be quite robust to mild violations of the
Gaussian assumption.

· Switch to nonparametric tests that don’t assume a Gaussian
distribution. But the decision to use (or not use) nonparametric tests is
a big decision. It should not be based on a single normality test and
should not be automated .

4.3.4 Q&A: Normality tests

 Expand all answers
      

Collapse all answers

Why the term "normality"?

Because Gaussian distributions are also called Normal distributions.

Which normality test is best?

Prism offers three normality tests (offered as part of the Column
Statistics analysis):
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 We recommend using the  D'Agostino-Pearson omnibus test. The
Shapiro-Wilk test also works very well if every value is unique, but does
not work well when there are ties. The basis of the test is hard for
nonmathematicians to understand. For these reasons, we prefer the
D'Agostino-Pearson test, even though the Shapiro-Wilk test works well in
most cases.

The Kolmogorov-Smirnov test, with the Dallal-Wilkinson-Lilliefor
corrected P value, is included for compatibility with older versions of
Prism, but is not recommended. 

Why do the different normality tests give different results?

All three tests ask how far a distribution deviates from the Gaussian ideal.
 Since the tests quantify deviations from Gaussian using different
methods, it isn't surprising they give different results. The fundamentai
problem is that these tests do not ask which of two defined distributions
(say, Gaussian vs. exponential) better fit the data. Instead, they compare
Gaussian vs. not Gaussian. That is a pretty vague comparison. Since the
different tests approach the problem differently, they give different
results.

How many values are needed to compute a normality test?

The Kolmogorov-Smirnov test requires 5 or more values. The Shapiro-
Wilk test requires 3 or more values. The D'Agostino test requires 8 or
more values.

What question does the normality test answer?

The normality tests all report a P value. To understand any P value, you
need to know the null hypothesis. In this case, the null hypothesis is that
all the values were sampled from a Gaussian distribution. The P value
answers the question:

If that null hypothesis were true, what is the chance that a random
sample of data would deviate from the Gaussian ideal as much as these
data do?
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What cut-off does Prism use when deciding whether or not a data set
passed a normality test?

Prism uses the traditional 0.05 cut-off. If P<0.05, the data do not pass
the normality test. If P> 0.05, the data do pass the normality test. This
cut-off, of course, is totally arbitrary.

So it tells me whether a data set is Gaussian?

No. A population has a distribution that may be Gaussian or not. A sample
of data cannot be Gaussian or not Gaussian. That term can only apply to
the entire population of values from which the data were sampled.

Are any data sets truly sampled from ideal Gaussian distributions?

Probably not. In almost all cases, we can be sure that the data were not
sampled from an ideal Gaussian distribution. That is because an ideal
Gaussian distribution includes some very low negative numbers and some
superhigh positive values.Those values will comprise a tiny fraction of all
the values in the Gaussian population, but they are part of the
distribution. When collecting data, there are constraints on the possible
values. Pressures, concentrations, weights, enzyme activities, and many
other variables cannot have negative values, so cannot be sampled from
perfect Gaussian distributions. Other variables can be negative, but have
physical or physiological limits that don’t allow super large values (or
have extremely low negative values).

But don't t tests, ANOVA, and regression assume Gaussian
distributions?

Yes, but plenty of simulations have shown that these tests work well even
when the population is only approximately Gaussian.

So do the normality tests figure out whether the data are close
enough to Gaussian to use one of those tests?

Not really. It is hard to define what "close enough" means, and the
normality tests were not designed with this in mind.
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Isn't the whole point of a normality test to decide when to use
nonparametric tests?

No. Deciding whether to use a parametric or nonparametric test is a hard
decision that should not be automated based on a normality test .

How should I interpet the K2, KS or W values reported by the
normality test?

Each normality test reports an intermediate value that it uses to compute
the P value. Unfortunately, there is no obvious way to interpret K2
(computed by the D'Agostino test), KS (computed by the Kolmogorov-
Smirnov test), or W (computed by Shapiro-Wilk test). As far as I know,
there is no straightforward way to use these values to decide if the
deviation from normality is severe enough to switch away from
parametric tests. Prism only reports these values so you can compare
results with texts and other programs.

How useful are normality tests?

Not very useful, in most situations. With small samples, the normality
tests don't have much power to detect nongaussian distributions. With
large samples, it doesn't matter so much if data are nongaussian, since
the t tests and ANOVA are fairly robust to violations of this standard. 

What you would want is a test that tells you whether the deviations from
the Gaussian ideal are severe enough to invalidate statistical methods
that assume a Gaussian distribution. But normality tests don't do this. 

References
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4.4 Identifying outliers

Prism can identify outliers in each column using

either the Grubbs' or ROUT method. Outlier

detection can be a useful way to screen data for

problems, but it can also be misused. 

4.4.1 How to: Identify outliers

Identifying outliers in a stack of data is simple. Click Analyze from a
Column data table, and then choose Identify outliers from the list of
analyses for Column data. Prism can perform outlier tests with as few as
three values in a data set. 

Note: This page explains how to identify an outlier from a stack of values
in a data table formatted for Column data. Prism can also identify outliers
during nonlinear regression.

Which method?

Prism offers three methods for identifying outliers:
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ROUT

We developed the ROUT method  to detect outliers while fitting a curve
with nonlinear regression. Prism adapts this method to detecting outliers
from a stack of values in a column data table. The ROUT method can
identify one or more outliers.

Grubbs' method

Grubbs' test  is probably the most popular method to identify an outlier.
This method is also called the ESD method (Extreme Studentized
Deviate). It can only identify one outlier in each data set. Prism uses the
two-sided Grubbs' test, which means it will detect a value much larger
than the rest, or a value much smaller than the rest. 

Iterative Grubbs'

While it was designed to detect one outlier, Grubbs' method is often
extended to detect multiple outliers. This is done using a simple method.
If an outlier is found, it is removed and the remaining values are tested
with Grubbs' test again. If that second test finds an outlier, then that
value is removed, and the test is run a third time ...

While Grubb's test does a good job of finding one outlier in a data set, it
does not work so well with multiple outliers. The presence of  a second
outlier in a small data set can prevent the first one from being detected.
This is called masking.  Grubbs' method identifies an outlier by calculating
the difference between the value and the mean, and then dividing that
difference by the standard deviation of all the values. When that ratio is
too large, the value is defined to be an outlier. The problem is that the
standard deviation is computed from all the values, including the outliers.
With two outliers, the standard deviation can become large, which
reduces that ratio to a value below the critical value used to define
outliers. See an example of masking . 

Recommendation

· If you somehow knew for sure that the data set had either no outliers or
one outlier, then choose Grubbs' test.

· If you want to allow for the possibility of more than one outlier, choose
the ROUT method. Compare the Grubbs' and ROUT methods.
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· Avoid the iterative Grubbs' method.

· When you create a box-and-whiskers plot with Prism, you can choose to
show Tukey whiskers, which shows points individually when their
distance from the median exceeds 1.5 times the interquartile range
(difference between the 75th and 25th percentiles). Some people define
these points to be outliers We did not implement this method of outlier
detection in Prism (beyond creating box-and-whiskers plots) because it
seems to not be widely used, and has no real theoretical basis. Let us
know if you'd like us to include this method of detecting outliers. 

How aggressive?

There is no way to cleanly separate outliers from values sampled from a
Gaussian distribution. There is always a chance that some true outliers
will be missed, and that some "good points" will be falsely identified as
outliers. You need to decide how aggressively to define outliers. The
choice is a bit different depending on which method of outlier detection
you choose.

Grubbs's test. Choose alpha.

With the Grubbs' test, you specify alpha. This has an interpretation
familiar from any tests of statistical significance. If there are no outliers,
alpha is the chance of mistakenly identifying an outlier.

Note that alpha applies to the entire experiment, not to each value.
Assume that  you set alpha to 5% and test a data set with 1000 values, 
all sampled from a Gaussian distribution. There  is a 5% chance that the
most extreme value will be identified as an outlier. That 5% applies to the
entire data set, no matter how many values it has. It would be a mistake
to multiply 5% by the sample size of 1000, and conclude that you'd
expect 50 outliers to be identified.

Alpha is two-tailed, because the Grubbs test in Prism identifies outliers
that are either "too large" or "too small". 

Rout method. Choose Q.

The ROUT method is based on the False Discovery Rate (FDR), so you
specify Q, which is the maximum desired FDR. 
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When there are no outliers (and the distribution is Gaussian), Q can be
interpreted just like alpha. When all the data are sampled from a
Gaussian distribution (so no outliers are present), Q is the chance of
identifying one or more outliers.

When there are outliers in the data, Q is the desired maximum false
discovery rate. If you set Q to 1%, then you are aiming for no more than
1% of the identified outliers to be false (are in fact just the tail of a
Gaussian distribution) and thus for at least 99% identified outliers to
actually be outliers (from a different distribution). If you set Q to 5%,
then you are expecting no more than 5% of the identified outliers to be
false and for at least 95% of the identified outliers to be real.

Recommendation

The trade-off is clear. If you set alpha or Q too high, then many of the
identified "outliers" will be actually be data points sampled from the same
Gaussian distribution as the others. If you set alpha or Q too low, then
you won't identify all the outliers. 

There are no standards for outlier identification. We suggest that you
start by setting Q to 1% or alpha to 0.01.

How Prism presents the results

The results are presented on three pages:

· Cleaned data (outliers removed). You could use this page as the input to
another analysis, such as a t test or one-way ANOVA.

· Outliers only.

· Summary. This page lists the number of outliers detected in each data
set. 

4.4.2 Analysis checklist: Outliers

If the outlier test identifies one or more values as being an outlier, ask
yourself these questions:
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Was the outlier value entered into the computer incorrectly?

If the "outlier" is in fact a typo, fix it. It is always worth going back to the
original data source, and checking that outlier value entered into Prism is
actually the value you obtained from the experiment. If the value was the
result of calculations, check for math errors.

Is the outlier value scientifically impossible?

Of course you should remove outliers from your data when the value is
completely impossible. Examples include a negative weight, or an age (of
a person) that exceed 150 years. Those are clearly errors, and leaving
erroneous values in the analysis would lead to nonsense results.

Is the assumption of a Gaussian distribution dubious?

Both the Grubbs' and ROUT tests assume that all the values are sampled
from a Gaussian distribution, with the possible exception of one (or a few)
outliers from a different distribution. If the underlying distribution is not
Gaussian, then the results of the outlier test is unreliable. It is especially
important to beware of lognormal distributions . If the data are sampled
from a lognormal distribution, you expect to find some very high values
which can easily be mistaken for outliers. Removing these values would
be a mistake.

Is the outlier value potentially scientifically interesting?

 If each value is from a different animal or person, identifying an outlier
might be important. Just because a value is not from the same Gaussian
distribution as the rest doesn't mean it should be ignored. You may have
discovered a polymorphism in a gene. Or maybe a new clinical syndrome.
Don't throw out the data as an outlier until first thinking about whether
the finding is potentially scientifically interesting. 

Does your lab notebook indicate any sort of experimental problem with
that value

It is easier to justify removing a value from the data set when it is not
only tagged as an "outlier" by an outlier test, but you also recorded
problems with that value when the experiment was performed.
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Do you have a policy on when to remove outliers?

Ideally, removing an outlier should not be an ad hoc decision. You should
follow a policy, and apply that policy consistently.

If you are looking for two or more outliers, could masking be a
problem?

Masking  is the name given to the problem where the presence of two
(or more) outliers, can make it harder to find even a single outlier.

If you answered no to all those questions...

If you've answered no to all the questions above, there are two
possibilities:

· The suspect value came from the same Gaussian population as the
other values. You just happened to collect a value from one of the tails
of that distribution.

· The suspect value came from a different distribution than the rest.
Perhaps it was due to a mistake, such as bad pipetting, voltage spike,
holes in filters, etc.  

If you knew the first possibility was the case, you would keep the value in
your analyses. Removing it would be a mistake.

If you knew the second possibility was the case, you would remove it,
since including an erroneous value in your analyses will give invalid
results. 

The problem, of course, is that you can never know for sure which of
these possibilities is correct. An outlier test cannot answer that question
for sure. Ideally, you should create a lab policy for how to deal with such
data, and follow it consistently.

If you don't have a lab policy on removing outliers, here is suggestion:
Analyze your data both with and without the suspected outlier. If the
results are similar either way, you've got a clear conclusion. If the results
are very different, then you are stuck. Without a consistent policy on
when you remove outliers, you are likely to only remove them when it
helps push the data towards the results you want. 
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4.5 One sample t test and Wilcoxon signed rank test

You've measured a variable in one group, and the

means (or median) is not the same as expected by

theory (or by the null hypothesis). Is that due to

chance? Or does it tell you the mean (or median)

of the values is really different from the

hypothetical value?

4.5.1 How to: One-sample t test and Wilcoxon signed rank test

The one-sample t test and the Wilcoxon rank sum tests are computed as
part of Prism's Column Statistics analysis. Follow these steps 

1. Create a Column data table.

2. Enter each data set in a single Y column. So all values from each
group are stacked into a column. Prism will perform a one-sample t
test (or Wilcoxon rank sum test) on each column you enter. 

3. Click "Analyze... Statistical analyses... Column statistics"

4.  At the bottom of the Column Statistics dialog, in the section labeled
Inferences, check the option to perform either the one-sample t test
or the Wilcoxon rank sum test.

5. To the right of that option, enter the hypothetical value to which you
wish to compare the mean (t test) or median (Wilcoxon test). This
value is often 0, or 100 (when values are percentages), or 1.0 (when
values are ratios).

4.5.2 Interpreting results: One-sample t test

A one-sample t test compares the mean of a single column of numbers
against a hypothetical mean that you provide. 

The P value answers this question: 
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If the data were sampled from a Gaussian population with a mean
equal to the hypothetical value you entered, what is the chance of
randomly selecting N data points and finding a mean as far (or further)
from the hypothetical value as observed here?

If the P value is large , the data do not give you any reason to conclude
that the population mean differs from the hypothetical value you entered.
This is not the same as saying that the true mean equals the hypothetical
value. You just don't have evidence of a difference.

If the P value is small  (usually defined to mean less than 0.05), then it
is unlikely that the discrepancy you observed between sample mean and
hypothetical mean is due to a coincidence arising from random sampling.
You can reject the idea that the difference is a coincidence, and conclude
instead that the population has a mean different than the hypothetical
value you entered. The difference is statistically significant. But is the
difference scientifically important? The confidence interval helps you
decide .

Prism also reports the 95% confidence interval for the difference between
the actual and hypothetical mean. You can be 95% sure that this range
includes the true difference.

Assumptions

The one sample t test assumes that you have sampled your data from a
population that follows a Gaussian distribution. While this assumption is
not too important with large samples, it is important with small sample
sizes, especially when N is less than 10. If your data do not come from a
Gaussian distribution, you have three options. Your best option is to
transform the values to make the distribution more Gaussian, perhaps by
transforming all values to their reciprocals or logarithms. Another choice
is to use the Wilcoxon signed rank nonparametric test instead of the t
test. A final option is to use the t test anyway, knowing that the t test is
fairly robust to departures from a Gaussian distribution with large
samples.

The one sample t test also assumes that the “errors” are independent .
The term “error” refers to the difference between each value and the
group mean. The results of a t test only make sense when the scatter is
random – that whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this assumption. 
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How the one-sample t test works

Prism calculates the t ratio by dividing the difference between the actual
and hypothetical means by the standard error of the mean. 

A P value is computed from the t ratio and the numbers of degrees of
freedom (which equals sample size minus 1). 

4.5.3 Interpreting results: Wilcoxon signed rank test

The nonparametric  Wilcoxon signed rank test compares the median of
a single column of numbers against a hypothetical median. Don't confuse
it with the Wilcoxon matched pairs test  which compares two paired or
matched groups. 

Interpreting the confidence interval

The signed rank test compares the median of the values you entered with
a hypothetical population median you entered. Prism reports the
difference between these two values, and the confidence interval of the
difference. Prism subtracts the median of the data from the hypothetical
median, so when the hypothetical median is higher, the result will be
positive. When the hypothetical median is lower, the result will be
negative

Since the nonparametric test works with ranks, it is usually not possible
to get a confidence interval with exactly 95% confidence. Prism finds a
close confidence level, and reports what it is. So you might get a 96.2%
confidence interval when you asked for a 95% interval.

Interpreting the P value 

 The P value answers this question: 

If the data were sampled from a population with a median equal to the
hypothetical value you entered, what is the chance of randomly
selecting N data points and finding a median as far (or further) from
the hypothetical value as observed here?

If the P value is small , you can reject the idea that the difference is a
due to chance and conclude instead that the population has a median
distinct from the hypothetical value you entered.
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If the P value is large , the data do not give you any reason to conclude
that the population median differs from the hypothetical median. This is
not the same as saying that the medians are the same. You just have no
compelling evidence that they differ. If you have small samples, the
Wilcoxon test has little power. In fact, if you have five or fewer values,
the Wilcoxon test will always give a P value greater than 0.05, no matter
how far the sample median is from the hypothetical median. 

Assumptions

The Wilcoxon signed rank test does not assume that the data are sampled
from a Gaussian distribution. However it does assume that the data are
distributed symmetrically around the median. If the distribution is
asymmetrical, the P value will not tell you much about whether the
median is different than the hypothetical value. 

Like all statistical tests, the Wilcoxon signed rank test assumes that the
errors are independent . The term “error” refers to the difference
between each value and the group median. The results of a Wilcoxon test
only make sense when the scatter is random – that any factor that causes
a value to be too high or too low affects only that one value.

How the Wilcoxon signed rank test works

1. Calculate how far each value is from the hypothetical median.

2. Ignore values that exactly equal the hypothetical value. Call the
number of remaining values N.

3. Rank these distances, paying no attention to whether the values are
higher or lower than the hypothetical value. 

4. For each value that is lower than the hypothetical value, multiply the
rank by negative 1.

5. Sum the positive ranks. Prism reports this value.

6. Sum the negative ranks. Prism also reports this value.

7. Add the two sums together. This is the sum of signed ranks, which
Prism reports as W. 
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If the data really were sampled from a population with the hypothetical
median, you would expect W to be near zero. If W (the sum of signed
ranks) is far from zero, the P value will be small.

With fewer than 200 values, Prism computes an exact P value, using a
method explained in Klotz(2). With 200 or more values, Prism uses a
standard approximation that is quite accurate.

Prism calculates the confidence interval for the discrepancy between the
observed median and the hypothetical median you entered  using the
method explained on page 234-235 of Sheskin (1) and 302-303 of Klotz
(2).

How Prism deals with values that exactly equal the hypothetical median

What happens if a value is identical to the hypothetical median?

When Wilcoxon developed this test, he recommended that those data
simply be ignored. Imagine there are ten values. Nine of the values are
distinct from the hypothetical median you entered, but  the tenth is
identical to that hypothetical median (to the precision recorded). Using
Wilcoxon's original method, that tenth value would be ignored and the
other nine values would be analyzed.This is how InStat and previous
versions of Prism (up to version 5) handle the situation.

Pratt(3,4) proposed a different method that accounts for the tied values.
Prism 6 offers the choice of using this method. 

Which method should you choose? Obviously, if no value equals the
hypothetical median, it doesn't matter. Nor does it matter much if there
is, for example, one such value out of 200.

It makes intuitive sense that data should not be ignored, and so Pratt's
method must be better.  However, Conover (5) has shown that the
relative merits of the two methods depend on the underlying distribution
of the data, which you don't know. 

Why results in Prism 6 can be different than from previous versions of
Prism

Results from Prism 6 can differ from prior versions because Prism 6 does
exact calculations in two situations where Prism 5 did approximate

http://www.google.com/url?sa=t&source=web&cd=2&ved=0CCAQFjAB&url=http%3A%2F%2Fwww.amazon.com%2FHandbook-Parametric-Nonparametric-Statistical-Procedures%2Fdp%2F0849331196&ei=qtTnTdXlMMXmiALoj5GVDA&usg=AFQjCNHGi87lO0-0Wb8-FH1-uKtpAgCmcw&sig2=JzI6YF_WjzrG2jHhK3Z3ew
http://www.stat.wisc.edu/~klotz/Book.pdf
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calculations. All versions of Prism report whether it uses an approximate
or exact methods. 

· Prism 6 can perform the exact calculations much faster than did Prism
5, so does exact calculations with some sample sizes that earlier
versions of Prism could only do approximate calculations. 

· If two values are the same, prior versions of Prism always used the
approximate method. Prism 6 uses the exact method unless the sample
is huge.   

Another reason for different results between Prism 6 and prior versions is
if a value exactly matches the hypothetical value you are comparing
against. Prism 6 offers a new option (method of Pratt) which will give
different results than prior versions did. See the previous section.
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4.6 t tests, Mann-Whitney and Wilcoxon matched pairs test

You've measured a variable in two groups, and the

means (and medians) are distinct. Is that due to
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chance? Or does it tell you the two groups are

really different?

4.6.1 Paired or unpaired? Parametric or nonparametric?

4.6.1.1 Entering data for a t test

Setting up the data table 

From the Welcome (or New Table and graph) dialog, choose the Column
tab. 

If you aren't ready to enter your own data, choose one of the sample data
sets. 

If you want to enter data, note that there are two choices. You can enter
raw data or summary data (as mean, SD or SEM, and n).

Entering raw data

Enter the data for each group into a separate column . The two groups
do not have be the same size (it's OK to leave some cells empty). If the
data are unpaired, it won't make sense to enter any row titles.

If the data are matched, so each row represents a different subject of
experiment, then you may wish to use row titles  to identify each row.

Enter mean and SD or SEM

Prism can compute an unpaired t test (but not a paired t test, and not
nonparametric comparisons) with data entered as mean, SD (or SEM),
and n . This can be useful if you are entering data from another
program or publication. 
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From the Column tab of the Welcome dialog, choose that you wish to
enter and plot error values computed elsewhere. Then choose to enter
mean, n, and either SD, SEM or %CV (coefficient of variation). Entering
sample size (n) is essential. It is not possible to compute a t test if you
only enter the mean and SD or SEM without n.

Even though you made your choice on the Column tab of the Welcome
dialog, Prism will show you a Grouped data table. Enter your data  on the
first row of this table.  

Q&A: Entering data for t tests and related tests

Is it possible to define the two groups with a grouping variable?

Some programs expect (or allow) you to enter all the data into one
column, and enter a grouping variable into a second column to define
which rows belong to which treatment group. Prism does not use this way
to organize data. Instead, the two groups must be defined by two
columns. Enter data for one group into column A and the other group into
column B. 

Can I enter data in lots of columns and then choose two to compare with
a t test?

Yes. After you click Analyze, you'll see a list of all data sets on the right
side of the dialog. Select the two you wish to compare.

Can I enter data as mean, SD (or SEM) and N?

Yes. Follow this example  to see how. With data entered this way, you
can only choose an unpaired t test. It is impossible to run a paired t test
or a nonparametric test from data entered as mean, SD (or SEM) and N. 

Can I enter data for many t tests on one table, and ask Prism to run them
all at once?

Yes!

4.6.1.2 Choosing a test to compare two columns

Prism offers seven related tests that compare two groups. To choose
among these tests, answer three questions in the Experimental Design
tab of the t test parameters dialog:
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Experimental design: unpaired or paired

Choose a paired test when the columns of data are matched. That means
that values on the same row are related to each other. 

Here are some examples:

· You measure a variable in each subject before and after an
intervention.

· You recruit subjects as pairs, matched for variables such as age,
ethnic group, and disease severity. One of the pair gets one
treatment; the other gets an alternative treatment.

· You run a laboratory experiment several times, each time with a
control and treated preparation handled in parallel.

· You measure a variable in twins or child/parent pairs.

Matching should be determined by the experimental design, and definitely
should not be based on the variable you are comparing. If you are
comparing blood pressures in two groups, it is OK to match based on age
or postal code, but it is not OK to match based on blood pressure. 

Assume Gaussian distribution?

Nonparametric tests , unlike t tests, are not based on the assumption
that the data are sampled from a Gaussian distribution . But
nonparametric tests have less power . Deciding when to use a
nonparametric test is not straightforward .

Choose test

After defining the experimental design, and the general approach
(parametric or nonparametric), you need to decide exactly what test you
want Prism to perform.

Parametric, not paired 

Decide whether to accept the assumption that the two samples come
from populations with the same standard deviations (same variances).
This is a standard assumption of the unpaired t test. If don't wish to make
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this assumption, Prism will perform the unequal variance (Welch)
unpaired t test . 

Parametric, paired

Choose the paired t test (which is standard in this situation) or the ratio t
test  (which is less standard). Choose the paired t test when you expect
the differences between paired values to be a consistent measure of
treatment effect. Choose the ratio paired t test when you expect the ratio
of paired values to be a consistent measure of treatment effect. 

Nonparametric, not paired

Prism 6 offers two choices: The Mann-Whitney test (which Prism has
always offered) and the Kolmogorov-Smirnov test  (which is new). It is
hard to offer guidelines for choosing one test vs. the other except to
follow the tradition of your lab or field. The main difference is that the
Mann-Whitney test has more power to detect a difference in the median,
but the Kolmogorov-Smirnov test has more power to detect differences in
the shapes of the distributions. 

 Mann-Whitney test Kolmogorov-Smirnov
test

Power to detect a shift
in the median

More power Less power

Power to detect
differences in the shape
of the distributions

Less power More power

Nonparametric, paired

In this case there is no choice.  Prism will perform the Wilcoxon matched
pairs test. 

4.6.1.3 Options for comparing two groups

The second tab of the parameters dialog for t tests and nonparmaetric
tests is labeled Options. The choices on this tab vary a bit depending on
which test you chose on the first tab.
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Calculations

The default choices for the calculation options will be fine for most people
(two-tailed P values, 95% confidence intervals, and difference computed
as the first column minus the second). 

· One- or two-tailed P value . Choose a two-tailed P value, unless you
have a strong reason not to.

· Report differences as. This determines the sign of the difference
between means or medians that Prism reports. Do you want to
subtract the second mean from the first, or the first from the second?

· Confidence level. 95% is standard, but you can pick other degrees of
confidence. 

Graphing options

All four options are new to Prism 6, and by default they are not selected.
They can be useful to view the data with more depth, but none are
essential to beginners.

· Graph residuals. This option is only offered for unpaired data. To
create the new residuals table, Prism computes the difference between
each value and the mean (or median) of that column.  Inspecting a
graph of residuals can help you assess the assumption that all the data
are sampled from populations with the same SD.

· Graph ranks. The Mann-Whitney test first ranks all the values from low
to high, and then compares the mean rank of the two groups. This
option creates a table and graph showing those ranks. The Wilcoxon
first computes the difference between each pair, and then ranks the
absolute value of those differences, assigning negative values when
the difference is negative. 

· Graph differences. The paired t test and Wilcoxon matched pairs test
first compute the difference between the two values on each row. This
option creates a table and graph showing this list of differences. 

· Graph correlation. Graph one variable vs. the other to visually assess
how correlated they are. 
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Additional results

These four choices are all new to Prism 6, and are not selected by default.
The second choice (AIC) is for special purposes. The other three might be
useful even to beginners.

· Descriptive statistics. Check this option, and Prism will create a new
table of descriptive statistics for each data set.

· Also compare models using AICc.  Most people will not want to use
this, as it is not standard. The unpaired t test essentially compares the
fit of two models to the data  (one shared mean, vs. two separate
group means). The t test calculations are equivalent to the  extra sum-
of-squares F test. When you check this option, Prism will report the
usual t test results, but will also compare the fit of the two models by
AICc, and report the percentage chance that each model is correct. 

· Nonparametric tests. Compute the 95% CI for the difference between
medians (Mann-Whitney) or the median of the paired differences
(Wilcoxon). You can only trust this confidence interval if you make an
additional assumption not required to interpret the P value. For the
Mann-Whitney test, you must assume that the two populations have
the same shape (whatever it is). For the Wilcoxon test, you must
assume that the distribution of differences is symmetrical. Statistical
analyses are certainly more useful when reported with confidence
intervals, so it is worth thinking about whether you are willing to
accept those assumptions. Calculation details. 

· Wilcoxon test. What happens when the two matching values in a row
are identical? Prism 5 handled this as Wilcoxon said to when he
created the test. Prism 6 offers the option of using the Pratt method
instead . If your data has lots of ties, it is worth reading about the
two methods and deciding which to use.

4.6.1.4 What to do when the groups have different standard deviations?

The t test assumes equal variances

The standard unpaired t test (but not the Welch t test)  assumes that the
two sets of data are sampled from populations that have identical
standard deviations, and thus identical variances, even if their means are
distinct.
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Testing whether two groups are sampled from populations with equal
variances

As part of the t test analysis, Prism tests this assumption using an F test
to compare the variance of two groups. Note that a  bug in earlier
versions of Prism and InStat gave a P value for the F test that was too
small by a factor of two.

Don’t mix up the P value testing for equality of the standard deviations of
the groups with the P value testing for equality of the means. That latter
P value is the one that answers the question you most likely were thinking
about when you chose the t test or one-way ANOVA. The P value that
tests for equality of variances answers this question:

If the populations really had identical standard deviations, what is the
chance of observing as large a discrepancy among sample standard
deviations as occurred in the data (or an even larger discrepancy)?

What to do if the variances differ

If the P value is small, you reject the null hypothesis that both groups
were sampled from populations with identical standard deviations (and
thus identical variances).

Then what? There are five possible answers.

· Conclude that the populations are different. In many experimental
contexts, the finding of different standard deviations is as important as
the finding of different means. If the standard deviations are different,
then the populations are different regardless of what the t test
concludes about differences between the means. Before treating this
difference as a problem to workaround, think about what it tells you
about the data. This may be the most important conclusion from the
experiment! Also consider whether the group with the larger standard
deviation is heterogeneous. If a treatment was applied to this group,
perhaps it only worked on about half of the subjects.

· Transform your data. In many cases, transforming the data can
equalize the standard deviations. If that works, you can then run the
the t test on the transformed results. Logs are especially useful. (See
Chapter 46 of Intuitive Biostatistics for an example). The log transform
is appropriate when  data are sampled from a lognormal distribution.
In other situations, a reciprocal or square root transform may prove
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useful. Ideally, of course, the transform should have been planned as
part of the experimental design.

· Ignore the result. With equal, or nearly equal, sample size (and
moderately large samples), the assumption of equal standard
deviations is not a crucial assumption. The t test  work pretty well
even with unequal standard deviations. In other words, the t test is
robust to violations of that assumption so long as the sample size isn’t
tiny and the sample sizes aren’t far apart. If you want to use ordinary t
tests, run some simulations with the sample size you are actually
using and the difference in variance you are expecting, to see how far
off the t test results are.

· Go back and rerun the t test, checking the option to do the Welch t
test that allows for unequal variance. While this sounds sensible,
Moser and Stevens (1) have shown that it isn't. If you use the F test to
compare variances to decide which t test to use (regular or Welch),
you will have increased your risk of a Type I error. Even if the
populations are identical, you will conclude that the populations are
different more than 5% of the time. Hayes and Cai reach the same
conclusion (2). The Welch test must be specified as part of the
experimental design.

· Use a permutation test. No GraphPad program offers such a test. The
idea is to treat the observed values as a given, and to ask about the
distribution of those values to the two groups. Randomly shuffle the
values between the two groups, maintaining the original sample size.
What fraction of those shuffled data sets have a difference between
means as large (or larger) than observed. That is the P value. When
the populations have different standard deviations, this test still
produces reasonably accurate P values (Good, reference below, page
55). The disadvantage of these tests is that they don't readily yield a
confidence interval. Learn more in Wikipedia, or Hyperstat.  

What about switching to the nonparametric Mann-Whitney test? At first
glance, this seems to be a good solution to the problem of unequal
standard deviations. But it isn't! The Mann-Whitney test tests  whether
the distribution of ranks is different. If you know the standard deviations
are different, you already know that the distributions are different. What
you may still want to know is whether the means or medians are distinct.
But when the groups have different distributions, nonparametric tests do
not test whether the medians differ. This is a common misunderstanding. 

http://en.wikipedia.org/wiki/Resampling_(statistics)
http://davidmlane.com/hyperstat/B163479.html
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How to avoid the problem

None of the solutions above are great. It is better to avoid the problem. 

One approach to avoiding the problem is to think clearly about the
distribution of your data, and transform the data as part of routine data
processing. If you know a system creates lognormal data, analyze the
logarithms always. 

Another solutions is to use the unequal variance (Welch) t test routinely.
As mentioned above, it is not a good idea to first test for unequal
standard deviations, and use that results as the basis to decide whether
to use the ordinary or modified (unequal variance, Welch) t test. But does
it make sense to always use the modified test? Ruxton suggests that this
is the best thing to do (3). You lose some power when the standard
deviations are, in fact, equal but gain power in the cases where they are
not.

The Welch t test makes a strange set of assumptions. What would it
mean for two populations to have the same mean but different standard
deviations? Why would you want to test for that? Swailowsky points out
that this situation simply doesn't often come up in science (4). I prefer to
think about the unequal variance t test as a way to create a confidence
interval. Your prime goal is not to ask whether two populations differ, but
to quantify how far apart the two means are. The unequal variance t test
reports a confidence interval for the difference between two means that is
usable even if the standard deviations differ.
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4.6.1.5 Q&A: Choosing a test to compare two groups

If I have data from three or more groups, is it OK to compare two groups
at a time with a t test?

No. You should analyze all the groups at once with one-way ANOVA ,
and then follow up with multiple comparison tests . The only exception
is when some of the 'groups' are really controls to prove the assay
worked, and are not really part of the experimental question you are
asking. 

I know the mean, SD (or SEM) and sample size for each group. Which
tests can I run?

You can enter data  as mean, SD (or SEM) and N, and Prism can
compute an unpaired t test. Prism cannot perform an paired test, as that
requires analyzing each pair. It also cannot do any nonparametric tests,
as these require ranking the data.

I only know the two group means, and don't have the raw data and don't
know their SD or SEM. Can I run a t test?

No. The t test compares the difference between two means and compares
that difference to the standard error of the difference, computed from the
standard deviations and sample size. If you only know the two means,
there is no possible way to do any statistical comparison.

Can I use a normality test to make the choice of when to use a
nonparametric test?

It is not a good idea  to base your decision solely on the normality test.
Choosing when to use a nonparametric test is not a straightforward
decision, and you can't really automate the process.

I want to compare two groups. The outcome has two possibilities, and I
know the fraction of each possible outcome in each group. How can I
compare the groups?

Not with a t test. Enter your data into a contingency table  and analyze
with Fisher's  exact test. 
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I want to compare the mean survival time in two groups. But some
subjects are still alive so I don't know how long they will live. How can I
do a t test on survival times?

You should use special methods designed to compare survival curves .
Don't run a t test on survival times. 

I don't know whether it is ok to assume equal variances. Can't a
statistical test tell me whether or not to use the Welch t test?

While that sounds like a good idea, in fact it is not. The decision really
should be made as part of the experimental design and not based on
inspecting the data. 

I don't know whether it is better to use the regular paired t test or the
ratio test. Is it ok to run both, and report the results with the smallest P
value?

No. The results of any statistical test can only be interpreted at face value
when the choice of analysis method was part of the experimental design.

4.6.1.6 The advantage of pairing

This set of graphs shows the importance of designing experiments where
pairing or matching is part of the experimental design, and of accounting
for that pairing when analyzing the data.
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These data compare a result in the left and right eye of the same person.
The two data tables show two different sets of results, and the figure
below show the data and results.

The data for the left eye is the same in both cases. The data for the right
eye differs. Actually, the values are the same values, but the order is
different. Since the values are the same, an unpaired t test would look
identical results for both experiments. A bar graph showing the mean and
SD (or SEM) of each group would also be identical for both groups.

The before-after graph, which shows the pairing, looks very different for
the two experiments, and the results of a paired t test are very different.
The experiment on the left shows a consistent difference between left and
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right, with a small P value. The experiment on the right leads to no clear
conclusion. 

This example makes these points:

· When the experiment had a paired design, it is really important to do a
paired test.

· When the experiment has a paired design, it is important to use a
before-after graph to show the results. A graph showing only the mean
and SD (or SEM) separately for each eye would not really give you a
good idea of what's going on.

· It doesn't really help to report the mean and SD (or SEM) of each
treatment (left and right in the experiments shown above). These
results are identical for the two experiments shown above. Instead, it
makes sense to show the mean difference with its SD, SEM or
confidence interval.

4.6.2 Unpaired t test

4.6.2.1 How to: Unpaired t test from raw data

1. Create data table and enter data 

From the Welcome (or New Table and graph) dialog, choose the Column
tab.

Choose to enter replicate values stacked in columns. Or, if you are not
ready to enter your own data, choose sample data and choose: t test -
unpaired. 

Enter the data for each group into a separate column. The two groups do
not have to have the same number of values, and it's OK to leave some
cells empty. 
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2. Choose the unpaired t test

1. From the data table, click  on the toolbar. 

2. Choose t tests from the list of column analyses.

3. On the first (Experimental Design) tab of t test dialog, make these
choices:

· Experimental design: Unpaired

· Assume Gaussian distribution: Yes.

· Choose test:  Unpaired t test. Choose the Welch's correction if you
don't want to assume the two sets of data are sampled from
populations with equal variances, and you are willing to accept the
loss of power that comes with that choice. That choice is used
rarely, so don't check it unless you are quite sure. 

4.  On the options tab, make these choices:

· Choose a one- or two-sided P value . If in doubt, choose a two-tail
P value.

· Choose the direction of the differences. This choice only affects the
sign of the difference and the confidence interval of the difference,
without affecting the P value. 

· Choose a confidence level. Leave this set to 95%, unless you have a
good reason to change it.

3. Review the results

71
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The t test investigates the likelihood that the difference between the
means of the two groups could have been caused by chance. So the most
important results are the 95% confidence interval for that difference and
the P value. 

Learn more about interpreting  and graphing  the results.

Before accepting the results, review the analysis checklist . 

4.6.2.2 How to: Unpaired t test  from averaged data

1. Enter data

From the Welcome (or New Table and graph) dialog, choose the Column
tab.

Choose to enter and plot error values computed elsewhere.

Enter the data all on one row.  

2. Choose the unpaired t test

1. From the data table, click  on the toolbar. 

2. Choose t tests from the list of column analyses.

3. On the first (Experimental Design) tab of t test dialog, make these
choices:

· Experimental design: Unpaired

· Assume Gaussian distribution: Yes.

· Choose test:  Unpaired t test. Choose the Welch's correction if you
don't want to assume the two sets of data are sampled from
populations with equal variances, and you are willing to accept the
loss of power that comes with that choice. That choice is used
rarely, so don't check it unless you are quite sure. 
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4.  On the options tab, make these choices:

· Choose a one- or two-sided P value . If in doubt, choose a two-tail
P value.

· Choose the direction of the differences. This choice only affects the
sign of the difference and the confidence interval of the difference,
without affecting the P value. 

· Choose a confidence level. Leave this set to 95%, unless you have a
good reason to change it.

3. Review the results

The t test investigates the likelihood that the difference between the
means of the two groups could have been caused by chance. So the most
important results are the 95% confidence interval for that difference and
the P value. 

Learn more about interpreting the results of a t test . 

Before accepting the results, review the analysis checklist .

4. Polish the graph
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· Be sure to mention on the figure, figure legend or methods section
whether the error bars represent SD or SEM (what's the difference?
).

· To add the asterisks representing significance level  copy from the
results table and paste onto the graph. This creates a live link, so if
you edit or replace the data, the number of asterisks may change (or
change to 'ns'). Use the drawing tool to add the line below the
asterisks, then right-click and set the arrow heads to "half tick down'. 

· To make your graph simple to understand, we strongly recommend
avoiding log axes, starting the Y axis at any value other than zero, or
having a discontinuous Y axis.

4.6.2.3 Interpreting results: Unpaired t

Confidence Interval 

The unpaired t test compares the means of two groups. The most useful
result is the confidence interval for the difference between the means. If
the assumptions of the analysis are true , you can be 95% sure that the
95% confidence interval contains the true difference between the means.
The point of the experiment was to see how far apart the two means are.
The confidence interval tells you how precisely you know that difference.

For many purposes, this confidence interval is all you need. Note that you
can change the sign of the differences in the Options tab of the t test
dialog, where you can tell Prism to subtract column B from A, or A from
B. 

P value

The P value is used to ask whether the difference between the mean of
two groups is likely to be due to chance. It answers this question: 

If the two populations really had the same mean, what is the chance
that random sampling would result in means as far apart (or more so)
than observed in this experiment? 

It is traditional, but not necessary and often not useful, to use the P value
to make a simple statement about whether or not the difference is
“statistically significant ”.
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You will interpret the results differently depending on whether the P value
is small  or large .

t ratio

To calculate a P value for an unpaired t test, Prism first computes a t
ratio. The t ratio is the difference between sample means divided by the
standard error of the difference, calculated by combining the SEMs of the
two groups. If the difference is large compared to the SE of the
difference, then the t ratio will be large (or a large negative number), and
the P value is small. The sign of the t ratio indicates only which group had
the larger mean. The P value is derived from the absolute value of t.
Prism reports the t ratio so you can compare with other programs, or
examples in text books. In most cases, you'll want to focus on the
confidence interval and P value, and can safely ignore the value of the t
ratio.

For the unpaired t test, the number of degrees of freedom (df) equals the
total sample size minus 2. Welch's t test (a modification of the t test
which doesn't assume equal variances) calculates df from a complicated
equation. 

F test for unequal variance

The unpaired t test depends on the assumption that the two samples
come from populations that have identical standard deviations (and thus
identical variances). Prism tests this assumption using an F test.

First compute the standard deviations of both groups, and square them
both to obtain variances. The F ratio equals the larger variance divided by
the smaller variance. So F is always greater than (or possibly equal to)
1.0.

The P value then asks:

If the two populations really had identical variances, what is the chance
of obtaining an F ratio this big or bigger?

Don't mix up the P value testing for equality of the variances (standard
deviations) of the groups with the P value testing for equality of the
means. That latter P value is the one that answers the question you most
likely were thinking about when you chose the t test. 

What to do when the groups have different standard deviations?
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R squared from unpaired t test

Prism, unlike most statistics programs, reports a R2 value as part of the
unpaired t test results. It quantifies the fraction of all the variation in the
samples that is accounted for by a difference between the group means.
If R2=0.36, that means that 36% of all the variation among values is
attributed to differences between the two group means, leaving 64% of
the variation that comes from scatter among values within the groups. 

If the two groups have the same mean, then none of the variation
between values would be due to differences in group means so R2 would
equal zero. If the difference between group means is huge compared to
the scatter within the group, then almost all the variation among values
would be due to group differences, and the R2 would be close to 1.0. 

4.6.2.4 The unequal variance Welch t test

Two unpaired t tests 

When you choose to compare the means of two nonpaired groups with a t
test, you have two choices:

· Use the standard unpaired t test. It assumes that both groups of data
are sampled from Gaussian populations with the same standard
deviation.

· Use the unequal variance t test, also called the Welch t test. It assues
that both groups of data are sampled from Gaussian populations, but
does not assume those two populations have the same standard
deviation.

The usefulness of the unequal variance t test

To interpret any P value, it is essential that the null hypothesis be
carefully defined. For the unequal variance t test, the null hypothesis is
that the two population means are the same but the two population
variances may differ. If the P value is large, you don't reject that null
hypothesis, so conclude that the evidence does not persuade you that the
two population means are different, even though you assume the two
populations have (or may have) different standard deviations. What a
strange set of assumptions. What would it mean for two populations to
have the same mean but different standard deviations? Why would you
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want to test for that? Swailowsky points out that this situation simply
doesn't often come up in science (1). 

I think the unequal variance t test is more useful when you think about it
as a way to create a confidence interval. Your prime goal is not to ask
whether two populations differ, but to quantify how far apart the two
means are. The unequal variance t test reports a confidence interval for
the difference between two means that is usable even if the standard
deviations differ.

How the unequal variance t test is computed

Both t tests report both a P value and confidence interval. The
calculations differ in two ways:

Calculation of the standard error of the difference between means. The t
ratio is computed by dividing the difference between the two sample
means by the standard error of the difference between the two means.
This standard error is computed from the two standard deviations and
sample sizes. When the two groups have the same sample size, the
standard error is identical for the two t tests. But when the two groups
have different sample sizes, the t ratio for the Welch t test is different
than for the ordinary t test. This standard error of the difference  is also
used to compute the confidence interval for the difference between the
two means. 

Calculation of the df. For the ordinary unpaired t test, df is computed as
the total sample size (both groups) minus two. The df for the unequal
variance t test is computed by a complicated formula that takes into
account the discrepancy between the two standard deviations. If the two
samples have identical standard deviations, the df for the Welch t test will
be identical to the df for the standard t test. In most cases, however, the
two standard deviations are not identical and the df for the Welch t test is
smaller than it would be for the unpaired t test. The calculation usually
leads to a df value that is not an integer. Prism 6 reports and uses this
fractional value for df. Earlier versions of Prism, as well as  InStat  and
our QuickCalc all round the df down to next lower integer (which is
common). For this reason, the P value reported by Prism 6 can be a bit
smaller than the P values reported by prior versions of Prism.

When to chose the unequal variance (Welch) t test 

Deciding when to use the unequal variance t test is not straightforward. 
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It seems sensible to first test whether the variances are different, and
then choose the ordinary or Welch t test accordingly. In fact, this is not a
good plan. You should decide to use this test as part of the experimental
planning.

Reference

1. S.S. Sawilowsky.  Fermat, Schubert, Einstein, and Behrens-Fisher: The
Probable Difference Between Two Means With Different Variances. J.
Modern Applied Statistical Methods (2002) vol. 1 pp. 461-472

4.6.2.5 Graphing tips: Unpaired t

Points or bars?

 

The graphs above plot the sample data for an unpaired t test. We prefer
the graph on the left which shows each individual data point. This shows
more detail, and is easier to interpret, than the bar graph on the right.

http://www.graphpad.com/faq/viewfaq.cfm?faq=1349
http://www.graphpad.com/faq/viewfaq.cfm?faq=1349
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Graphing tips

· The scatter plot shows a horizontal line at the mean. If you choose the
nonparametric Mann-Whitney test, you'll probably want to plot the
median instead (a choice in the Format Graph dialog). Prism lets you
turn off the horizontal line altogether. 

·  The horizontal line with caps is easy to draw. Draw a line using the
tool in the Draw section of the toolbar. Then double click that line to
bring up the Format Object dialog, where you can add the caps.

· The text objects "P=" and "95% CI of Difference" were created
separately than the values pasted from the results. Click the text "T"
button, then click on the graph and type the text. 

· Don't forget to state somewhere how the error bars are calculated. We
recommend plotting the mean and SD if you analyze with an unpaired
t test, and the median and Interquartile range if you use the
nonparametric Mann-Whitney test.

· If you choose a bar graph, don't use a log scale on the Y axis. The
whole point of a bar graph is that viewers can compare the height of
the bars. If the scale is linear (ordinary), the relative height of the
bars is the same as the ratio of values measured in the two groups. If
one bar is twice the height of the other, its value is twice as high. If
the axis is logarithmic, this relationship does not hold. If your data
doesn't show well on a linear axis, either show a table with the values,
or plot a graph with individual symbols for each data point (which work
fine with a log axis). 

· For the same reason, make sure the axis starts at Y=0 and has no
discontinuities. The whole idea of a bar graph is to compare height of
bars, so don't do anything that destroys the relationship between bar
height and value. 

Including results on the graph

You can copy and paste any results from the results table onto the graph.
The resulting embedded table is linked to the results. If you edit the data,
Prism will automatically recalculate the results and update the portions
pasted on the graph. 
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The graph on the left shows the exact P value. The graph on the right just
shows the summary of significance ("ns" in this case, but one or more
asterisks with different data). I recommend you show the exact P value.

The most useful information from an unpaired t test is the confidence
interval for the difference between the two means, and this range is
pasted onto the graph on the left.

4.6.2.6 Advice: Don't pay much attention to whether error bars overlap

When two SEM error bars overlap

When you view data in a publication or presentation, you may be tempted
to draw conclusions about the statistical significance of differences
between group means by looking at whether the error bars overlap. It
turns out that examining whether or not error bars overlap tells you less
than you might guess. However, there is one rule worth remembering:

When SEM bars for the two groups overlap, and the sample sizes are
equal, you can be sure the difference between the two means is not
statistically significant (P>0.05).

When two SEM error bars do not overlap

The opposite is not true. Observing that the top of one standard error
(SE) bar is under the bottom of the other SE error bar does not let you
conclude that the difference is statistically significant. The fact that two
SE error bars do not overlap does not let you make any conclusion about
statistical significance. The difference between the two means might be
statistically significant or the difference might not be statistically
significant. The fact that the error bars do not overlap doesn't help you
distinguish the two possibilities.

Other kinds of error bars

SD error bars

If the error bars represent standard deviation rather than standard error,
then no conclusion is possible. The difference between two means might
be statistically significant or the difference might not be statistically
significant. The fact that the SD error bars do or do not overlap doesn't
help you distinguish between the two possibilities.
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Confidence interval error bars

Error bars that show the 95% confidence interval (CI) are wider than SE
error bars. It doesn’t help to observe that two 95% CI error bars overlap,
as the difference between the two means may or may not be statistically
significant.

Useful rule of thumb: If two 95% CI error bars do not overlap, and the
sample sizes are nearly equal, the difference is statistically significant
with a P value much less than 0.05 (Payton 2003).

With multiple comparisons following ANOVA, the significance level usually
applies to the entire family of comparisons. With many comparisons, it
takes a much larger difference to be declared "statistically significant".
But the error bars are usually graphed (and calculated) individually for
each treatment group, without regard to multiple comparisons. So the
rule above regarding overlapping  CI error bars does not apply in the
context of multiple comparisons. 

Summary of rules of thumb (assuming equal, or nearly equal, sample size
and no multiple comparisons)

Type of error
bar

Conclusion if they
overlap

Conclusion if they don’t
overlap

SD No conclusion No conclusion

SEM P > 0.05 No conclusion

95% CI
No conclusion P < 0.05

(assuming no multiple
comparisons)

There are two ways to think about this. If what you really care about is
statistical significance, then pay no attention to whether error bars
overlap or not. But if what you really care about is the degree to which
the two distributions overlap, pay little attention to P values and
conclusions about statistical significance. 
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 Unequal sample sizes

The  rules of thumb listed above are true only when the sample sizes are
equal, or nearly equal.

Here is an example where the rule of thumb about confidence intervals is
not true (and sample sizes are very different).

Sample 1: Mean=0, SD=1, n=10

Sample 2: Mean=3, SD=10, n=100

The confidence intervals do not overlap, but the P value is high (0.35). 

And here is an example where the rule of thumb about SE is not true (and
sample sizes are very different).

Sample 1: Mean=0, SD=1, n=100, SEM=0.1

Sample 2: Mean 3, SD=10, n=10, SEM=3.33

The SEM error bars overlap, but the P value is tiny (0.005). 

 

4.6.2.7 Analysis checklist: Unpaired t test

The unpaired t test compares the means of two unmatched groups,
assuming that the values follow a Gaussian distribution. Read
elsewhere to learn about choosing a t test , and interpreting the
results .

Are the populations distributed according to a Gaussian distribution?

The unpaired t test assumes that you have sampled your data from
populations that follow a Gaussian distribution. Prism can perform
normality tests as part of the Column Statistics  analysis. Learn
more .  
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Do the two populations have the same variances?

The unpaired t test assumes that the two populations have the same
variances (and thus the same standard deviation).

Prism tests for equality of variance with an F test. The P value from this
test answers this question: If the two populations really have the same
variance, what is the chance that you would randomly select samples
whose ratio of variances is as far from 1.0 (or further) as observed in
your experiment? A small P value suggests that the variances are
different.

Don't base your conclusion solely on the F test. Also think about data
from other similar experiments. If you have plenty of previous data that
convinces you that the variances are really equal, ignore the F test
(unless the P value is really tiny) and interpret the t test results as
usual.

In some contexts, finding that populations have different variances may
be as important as finding different means.

Are the data unpaired? 

The unpaired t test works by comparing the difference between means
with the standard error of the difference, computed by combining the
standard errors of the two groups. If the data are paired or matched,
then you should choose a paired t test instead. If the pairing is effective
in controlling for experimental variability, the paired t test will be more
powerful than the unpaired test.

Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of a t test only make sense when the scatter is
random – that whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low.
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Are you comparing exactly two groups?

Use the t test only to compare two groups. To compare three or more
groups, use one-way ANOVA  followed by multiple comparison tests. It
is not appropriate to perform several t tests, comparing two groups at a
time. Making multiple comparisons increases the chance of finding a
statistically significant difference by chance and makes it difficult to
interpret P values and statements of statistical significance. Even if you
want to use planned comparisons to avoid correcting for multiple
comparisons, you should still do it as part of one-way ANOVA to take
advantage of the extra degrees of freedom that brings you. 

Do both columns contain data?

If you want to compare a single set of experimental data with a
theoretical value (perhaps 100%) don't fill a column with that theoretical
value and perform an unpaired t test. Instead, use a one-sample t test
.

Do you really want to compare means?

The unpaired t test compares the means of two groups. It is possible to
have a tiny P value – clear evidence that the population means are
different – even if the two distributions overlap considerably. In some
situations – for example, assessing the usefulness of a diagnostic test –
you may be more interested in the overlap of the distributions than in
differences between means.

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value , you should have predicted which
group would have the larger mean before collecting any data. Prism does
not ask you to record this prediction, but assumes that it is correct. If
your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50.

4.6.3 Paired or ratio t test

4.6.3.1 How to: Paired t test

1. Enter data 

351

208

71
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From the Welcome (or New Table and graph) dialog, choose the Column
tab.

If you are not ready to enter your own data, choose sample data and
choose: t test - Paired.

Enter the data for each group into a separate column, with matched
values on the same row. If you leave any missing values, that row will
simply be ignored. Optionally, enter row labels to identify the source of
the data for each row (i.e. subject's initials). 

2. Choose the paired t test

1. From the data table, click  on the toolbar. 

2. Choose t tests from the list of column analyses.

3. On the first (Experimental Design) tab of t test dialog, make these
choices:

· Experimental design: Paired

· Assume Gaussian distribution: Yes.

· Choose test:  Paired t test

4.  On the options tab, make these choices:

· Choose a one- or two-sided P value . If in doubt, choose a two-tail
P value.

· Choose the direction of the differences. This choice only affects the
sign of the difference and the confidence interval of the difference,
without affecting the P value. 

71
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· Choose a confidence level. Leave this set to 95%, unless you have a
good reason to change it.

3. Review the results

The t test investigates the likelihood that the difference between the
means of the two groups could have been caused by chance. So the most
important results are the 95% confidence interval for that difference and
the P value. 

Learn more about interpreting the results of a paired t test . 

Before accepting the results, review the analysis checklist .

4. Polish the graph

· A before-after graph shows all the data. This example plots each
subject as an arrow to clearly show the direction from 'before' to
'after', but you may prefer to plot just lines, or lines with symbols. 

· Avoid using a bar graph, since it can only show the mean and SD of
each group, and not the individual changes. 

· To add the asterisks representing significance level  copy from the
results table and paste onto the graph. This creates a live link, so if
you edit or replace the data, the number of asterisks may change (or
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change to 'ns'). Use the drawing tool to add the line below the
asterisks, then right-click and set the arrow heads to "half tick down'. 

· Read more about graphing a paired t test . 

 

4.6.3.2 Testing if pairs follow a Gaussian distribution

The paired t test assumes that you have sampled your pairs of values
from a population of pairs where the difference between pairs follows a
Gaussian distribution. If you want to test this assumption with a
normality test, you need to go through some extra steps:

1. On the Options tab of the t test dialog, choose the option to graph the
differences.

2. View the results table (part of the t test results) showing the
differences. Click Analyze and choose Column statistics. 

3. Choose the normality test(s) you want. We recommend D'Agostino's
test. Note that none of the normality tests are selected by default, so
you need to select at least one.

4. If the P value for the normality test is low, you have evidence that
your pairs were not sampled from a population where the differences
follow a Gaussian distribution. Read more about interpreting
normality tests .

If your data fail the normality test, you have two options. One option is to
transform the values (perhaps to logs or reciprocals) to make the
distributions of differences follow a Gaussian distribution. Another choice
is to use the Wilcoxon matched pairs nonparametric test instead of the t
test. 

Note that the assumption is about the set of differences. The paired t test
does not assume that the two sets of data are each sampled from a
Gaussian distribution, but only that the differences are consistent with a
Gaussian distribution.

289
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4.6.3.3 Interpreting results: Paired t

Confidence Interval

The paired t test compares the means of two paired groups, so look first
at the difference between the two means. Prism also displays the
confidence interval for that difference. If the assumptions of the analysis
are true , you can be 95% sure that the 95% confidence interval
contains the true difference between means. 

P value

The P value is used to ask whether the difference between the mean of
two groups is likely to be due to chance. It answers this question: 

If the two populations really had the same mean, what is the chance
that random sampling would result in means as far apart (or more so)
than observed in this experiment? 

It is traditional, but not necessary and often not useful, to use the P value
to make a simple statement about whether or not the difference is
“statistically significant ”.

You will interpret the results differently depending on whether the P value
is small  or large .

t ratio

The paired t test compares two paired groups. It calculates the difference
between each set of pairs and analyzes that list of differences based on
the assumption that the differences in the entire population follow a
Gaussian distribution. 

First, Prism calculates the difference between each set of pairs, keeping
track of sign. The t ratio for a paired t test is the mean of these
differences divided by the standard error of the differences. If the t ratio
is large (or is a large negative number) the P value will be small. The
direction of the differences (Column A minus B, or B minus A) is set in the
Options tab of the t test dialog.

The number of degrees of freedom equals the number of pairs minus 1.
Prism calculates the P value from the t ratio and the number of degrees of
freedom.
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Test for adequate pairing

The whole point of using a paired experimental design and a paired test is
to control for experimental variability. Some factors you don't control in
the experiment will affect the before and the after measurements equally,
so they will not affect the difference between before and after. By
analyzing only the differences, a paired test corrects for those sources of
scatter. 

If pairing is effective, you expect the before and after measurements to
vary together. Prism quantifies this by calculating the Pearson correlation
coefficient, r. From r, Prism calculates a P value that answers this
question: 

If the two groups really are not correlated at all, what is the chance
that randomly selected subjects would have a correlation coefficient as
large (or larger) as observed in your experiment? The P value has one-
tail, as you are not interested in the possibility of observing a strong
negative correlation.

If the pairing was effective, r will be positive and the P value will be small.
This means that the two groups are significantly correlated, so it made
sense to choose a paired test. 

If the P value is large (say larger than 0.05), you should question whether
it made sense to use a paired test. Your choice of whether to use a paired
test or not should not be based on this one P value, but also on the
experimental design and the results you have seen in other similar
experiments.

If r is negative, it means that the pairing was counterproductive! You
expect the values of the pairs to move together – if one is higher, so is
the other. Here, the opposite is true – if one has a higher value, the other
has a lower value. Most likely this is just a matter of chance. If r is close
to -1, you should review your experimental design, as this is a very
unusual result.

4.6.3.4 Analysis checklist:  Paired t test

The paired t test compares the means of two matched groups,
assuming that the distribution of the before-after differences follows a
Gaussian distribution.
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Are the differences distributed according to a Gaussian distribution?

The paired t test assumes that you have sampled your pairs of values
from a population of pairs where the difference between pairs follows a
Gaussian distribution.  

While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism .

Note that the paired t test, unlike the unpaired t test, does not assume
that the two sets of data (before and after, in the typical example) are
sampled from populations with equal variances. 

Was the pairing effective? 

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, and a
corresponding P value. If the P value is small, the two groups are
significantly correlated. This justifies the use of a paired test. 

If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.

Are the pairs independent? 

The results of a paired t test only make sense when the pairs are 
independent  – that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent. 
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Are you comparing exactly two groups? 

Use the t test only to compare two groups. To compare three or more
matched groups, use repeated measures one-way ANOVA followed by
post tests. It is not appropriate  to perform several t tests, comparing
two groups at a time. 

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted  which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50. 

Do you care about differences or ratios? 

The paired t test analyzes the differences between pairs. With some
experiments, you may observe a very large variability among the
differences. The differences are larger when the control value is larger.
With these data, you'll get more consistent results if you perform a ratio
t test .

111

71

290



STATISTICS WITH PRISM 7 289

© 1995-2016 GraphPad Software, Inc.

4.6.3.5 Graphing tips: Paired t

Paired t test or Wilcoxon matched pairs test

The graph above shows the sample data for a paired t test. Note the
following:

· Since the data are paired, the best way to show the data is via a
before after graph, as shown on the left. A bar graph showing the
average value before and the average value after really doesn't
properly display the results from a paired experiment. 

· The graph uses arrows to show the sequence from Before to After. You
may prefer to just show the lines with no arrowheads. Choose in the
Format Graph dialog. 

· The P value is copy and pasted from the paired t test analysis. 

· The paired t test first computes the difference between pairs. The
graph on the right shows these differences. These values can be
computed using the Remove Baseline analysis, but there is no need to
do so. On the options tab of the analysis dialog, check the option to
graph the differences. 
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· The confidence interval for the difference between means shown on
the right graph was copy and pasted from the paired t test results. 

4.6.3.6 Paired or ratio t test?

Paired vs. ratio t tests

The paired t test analyzes the differences between pairs. For each pair, it
calculates the difference. Then it calculates the average difference, the
95% CI of that difference, and a P value testing the null hypothesis that
the mean difference is really zero. 

The paired t test makes sense when the difference is consistent. The
control values might bounce around, but the difference between treated
and control is a consistent measure of what happened.

With some kinds of data, the difference between control and treated is
not a consistent measure of effect. Instead, the differences are larger
when the control values are larger. In this case, the ratio
(treated/control) may be a much more consistent way to quantify the
effect of the treatment. 

Analyzing ratios can lead to problems because ratios are intrinsically
asymmetric – all decreases are expressed as ratios between zero and
one; all increases are expressed as ratios greater than 1.0. Instead it
makes more sense to look at the logarithm of ratios. Then no change is
zero (the logarithm of 1.0), increases are positive and decreases are
negative. 

A ratio t test averages the logarithm of the ratio of treated/control and
then tests the null hypothesis that the population mean of that set of
logarithms is really zero. 

Because the ratio t test works with logarithms, it cannot be computed if
any value is zero or negative.  If all the values are negative, and you
really want to use a ratio t test, you could transform all the values by
taking their absolute values, and doing the ratio t test on the results. If
some values are negative and some are positive, it makes no sense really
to think that a ratio would be a consistent way to quantify effect. 

How the ratio t test calculations work

1. Transform all the values to their logarithm:  Y=log(Y). 
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2. Perform a paired t test on the logarithms.

3. The antilogarithm of the difference between logarithms is the geometric
mean of the ratios.

4. Calculate the antilogarithm of each confidence limit of the difference
between the means of the logarithms. The result is the 95% confidence
interval of the geometric mean of the ratios. Be sure to match the base
of the logarithm and antilogarithm transform. If step 1 used common
(base 10) logs, then this step should take 10 to the power of each
confidence limit.

4.6.3.7 How to: Ratio t test

Prism can easily perform a ratio t test from two columns of data entered
into a Column data table.

1. Create a column data table and enter two columns of data, with
matched values on the same row. For example:

Control Treated

4.2 8.7

2.5 4.9

6.5 13.1

2. From the data table, click  on the toolbar. 

3. Choose t tests from the list of column analyses.

4. On the first (Experimental Design) tab of t test dialog, make these
choices:

· Experimental design: Paired

· Assume Gaussian distribution: Yes. (Actually you are assuming a
lognormal distribution of differences.)

· Choose test: Ratio paired t test  

5. On the second tab of the t test dialog, choose to compute Treated -
Control, rather than Control - Treated. Note that even though the ratio
t test computes a ratio, the choice on the dialog is worded as if the
values were subtracted.
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4.6.3.8 Interpreting results: Ratio t test

You measure the Km of a kidney enzyme (in nM) before and after a
treatment. Each experiment was done with renal tissue from a different
animal.

Control Treated Difference Ratio

4.2 8.7 4.5 2.09

2.5 4.9 2.4 1.96

6.5 13.1 6.6 2.02

Using a conventional paired t test, the 95% confidence interval for the
mean difference between control and treated Km value is -0.72 to 9.72,
which includes zero. The P value 0.07. The difference between control and
treated is not consistent enough to be statistically significant. This makes
sense because the paired t test looks at differences, and the differences
are not very consistent.

The ratios are much more consistent, so it makes sense to perform the
ratio t test. The  geometric mean of the ratio treated/control is 2.02, with
a 95% confidence interval ranging from 1.88 to 2.16. The data clearly
show that the treatment approximately doubles the Km of the enzyme. 

Analyzed with a paired t test, the results were ambiguous. But when the
data are analyzed with a ratio t test, the results are very persuasive – the
treatment doubled the Km of the enzyme.

The P value is 0.0005, so the effect of the treatment is highly statistically
significant. 

The P value answers this question: 

If there really were no differences between control and treated
values, what is the chance of obtaining a ratio as far from 1.0 as was
observed? If the P value is small, you have evidence that the ratio
between the paired values is not 1.0. 
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4.6.3.9 Analysis checklist: Ratio t test

The ratio t test compares the means of two matched groups, assuming
that the distribution of the logarithms of the before/after ratios follows
a Gaussian distribution.

Are the log(ratios) distributed according to a Gaussian distribution?

The ratio t test assumes that you have sampled your pairs of values
from a population of pairs where the log of the ratios follows a Gaussian
distribution.  

 While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism .

Was the pairing effective? 

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, between the
logarithms of the two columns of data. If the corresponding P value. If
the P value is small, the two groups are significantly correlated. This
justifies the use of a paired test. 

If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.

Are the pairs independent? 

The results of a ratio t test only make sense when the pairs are 
independent  – that whatever factor caused a rato (of paired values) to
be too high or too low affects only that one pair. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have six pairs of values,
but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent. 

284

30



GraphPad Statistics Guide294

© 1995-2016 GraphPad Software, Inc.

Are you comparing exactly two groups? 

Use the t test only to compare two groups. To compare three or more
matched groups, transform the values to their logarithms, and then use
repeated measures one-way ANOVA followed by post tests.  It is not
appropriate  to perform several t tests, comparing two groups at a
time. 

If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted  which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50. 

Do you care about differences or ratios? 

The ratio t test analyzes the logarithm of the ratios of paired values. The
assumption is that the ratio is a consistent measure of experimental
effect. With many experiments, you may observe that the difference
between pairs is a consistent measure of effect, and the ratio is not. In
these cases, use a paired t test , not the ratio t test. 

4.6.4 Mann-Whitney or Kolmogorov-Smirnov test

4.6.4.1 Choosing between the Mann-Whitney and Kolmogorov-Smirnov tests

Both the Mann-Whitney and the Kolmogorov-Smirnov tests are
nonparametric tests to compare two unpaired groups of data. Both
compute P values that test the null hypothesis that the two groups have
the same distribution. But they work very differently:

· The Mann-Whitney test  first ranks all the values from low to high, and
then computes a P value that depends on the discrepancy between the
mean ranks of the two groups.

· The Kolmogorov-Smirnov test  compares the cumulative distribution
of the two data sets, and computes a P value that depends on the
largest discrepancy between distributions. 

Here are some guidelines for choosing between the two tests:
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· The KS test is sensitive to any differences in the two distributions.
Substantial differences in shape, spread or median will result in a
small P value. In contrast, the MW test is mostly sensitive to changes
in the median.

· The MW test is used more often and is recognized by more people, so
choose it if you have no idea which to choose.

· The MW test has been extended to handle tied values. The KS test
does not handle ties so well. If your data are categorical, so has many
ties, don't choose the KS test.

· Some fields of science tend to prefer the KS test over the MW test. It
makes sense to follow the traditions of your field.

4.6.4.2 How to: MW or KS test

1. Enter data 

From the Welcome (or New Table and graph) dialog, choose the Column
tab. 

If you are not ready to enter your own data, choose sample data and
choose: t test - unpaired.

Enter the data for each group into a separate column. The two groups do
not have to have the same number of values, and it's OK to leave some
cells empty. Since the data are unmatched, it makes no sense to enter
any row titles. 

Note: The KS test works by comparing two cumulative frequency
distributions. But you enter two stacks of data. Prism creates the
frequency distributions as part of its analysis, but you can not enter
frequency distributions and get Prism to compare them with the KS
test. 
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2. Choose a test

1. From the data table, click  on the toolbar. 

2. Choose t tests from the list of column analyses.

3. On the t test dialog, choose the an unpaired experimental design, and
that you do not wish to assume a Gaussian distribution. 

4. At the bottom of the first tab, choose either the Mann-Whitney (MW)
or the Kolmogorov-Smirnov (KS) test. Here are some guidelines .294
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3. Choose options

These options, with the exception of the option to tabulate descriptive
statistics, only apply to the MW test and not the KS test. 

· Choose a one- or two-tail P value . If in doubt, choose a two-tail P
value.

· If  you chose the option below to compute the 95% CI of the difference
between medians, specify how Prism will compute that difference (A-B
or B-A).

· The MW test works by comparing ranks. Check an option to graph
those ranks.

· Create a table of descriptive statistics for each column.

· Compute the 95% confidence interval for the difference between
medians. This calculation is only meaningful if you assume that the
two population distributions have the same shape.

71
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 4. Review the results

Learn more about interpreting the results of a Mann-Whitney test . 

Before accepting the results, review the analysis checklist . 

5. Polish the graph

Graphing notes:

· A scatter plot shows every point. If you have more than several
hundred points, a scatter plot can become messy, so it makes sense to
plot a box-and-whiskers graph instead. We suggest avoiding bar
graphs, as they show less information than a scatter plot, yet are no
easier to comprehend. 

·  The horizontal lines mark the medians. Set this choice (medians
rather than means) on the Welcome dialog, or change on the Format
Graph dialog. 

· To add the asterisks representing significance level  copy from the
results table and paste onto the graph. This creates a live link, so if
you edit or replace the data, the number of asterisks may change (or
change to 'ns'). Use the drawing tool to add the line below the
asterisks, then right-click and set the arrow heads to "half tick down'. 
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4.6.4.3 Interpreting results: Mann-Whitney test

How it works

The Mann-Whitney test, also called the Wilcoxon rank sum test, is a
nonparametric test that compares two unpaired groups. To perform the
Mann-Whitney test, Prism first ranks all the values from low to high,
paying no attention to which group each value belongs. The smallest
number gets a rank of 1. The largest number gets a rank of n, where n is
the total number of values in the two groups. Prism then averages the
ranks in each group, and reports the two averages. If the means of the
ranks in the two groups are very different, the P value will be small.

P value

You can't interpret a P value until you know the null hypothesis being
tested. For the Mann-Whitney test, the null hypothesis is a bit hard to
understand. The null hypothesis is that the distributions of both groups
are identical, so that there is a 50% probability that an observation from
a value randomly selected from one population exceeds an observation
randomly selected from the other population.

The P value answers this question: 

If the groups are sampled from populations with identical distributions,
what is the chance that random sampling would result in the mean
ranks being as far apart (or more so) as observed in this experiment?

In most cases (including when ties are present), Prism calculates an
exact P value(2). If your samples are large (the smaller group has more
than 100 values), it approximates the P value from a Gaussian
approximation. Here, the term Gaussian has to do with the distribution of
sum of ranks and does not imply that your data need to follow a Gaussian
distribution. The approximation is quite accurate with large samples and
is standard (used by all statistics programs).

Note that Prism 6 computes the exact P value much faster than did prior
versions, so does so with moderate size data sets where Prism 5 would
have used an approximate method. It computes an exact P value when
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the size of the smallest sample is less than or equal to 100, and otherwise
computes an approximate one (with such large samples, the
approximation is excellent).

If the P value is small, you can reject the null hypothesis that the
difference is due to random sampling, and conclude instead that the
populations are distinct.

If the P value is large, the data do not give you any reason to reject the
null hypothesis. This is not the same as saying that the two populations
are the same. You just have no compelling evidence that they differ. If
you have small samples, the Mann-Whitney test has little power . In
fact, if the total sample size is seven or less, the Mann-Whitney test will
always give a P value greater than 0.05 no matter how much the groups
differ.

Mann-Whitney U and U'

Prism reports the value of the Mann-Whitney U value, in case you want to
compare calculations with those of another program or text. To compute
the U value, pick one value from group A and also pick a value from group
B. Record which group has the larger value. Repeat for all values in the
two groups.  Total up the number of times that the value in A is larger
than B, and the number of times the value in B is larger than the value in
A. The smaller of these two values is U. The larger of the two values is
U' (see below). 

When computing U, the number of comparisons equals the product of the
number of values in group A times the number of values in group B. If the
null hypothesis is true, then the value of U should be about half that
value. If the value of U is much smaller than that, the P value will be
small. The smallest possible value of U is zero. The largest possible value
is half the product of the number of values in group A times the number
of values in group B.

Some programs also report U', but Prism doesn't. It can be easily
computed as n1*n2 - U, where n1 and n2 are the two sample sizes, and U
is reported by Prism. Prism defines U to be the smaller of the two values,
so U' is the larger of the two. Some programs define U and U' based on
which data set is entered first, so may reverse the definitions of U and U'
for some analyses.
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The difference between medians and its confidence interval

The Mann-Whitney test compares the distributions of ranks in two groups.
If you assume that both populations have distributions with the same
shape (which doesn't have to be Gaussian), it can be viewed as a
comparison of two medians. Note that if you don't make this assumption,
the Mann-Whitney test does not compare medians. 

Prism reports the difference between medians only if you check the box to
compare medians (on the Options tab). It reports the difference in two
ways. One way is the obvious one -- it subtracts the median of one group
from the median of the other group. The other way is to compute the
Hodges-Lehmann estimate. Prism systematically computes the difference
between each value in the first group and each value in the second group.
The Hodges-Lehmann estimate is the median of this set of differences.
Many think it is the best estimate for the difference between population
medians.

Prism computes the confidence interval for the difference using the
method explained on page 521-524 of Sheskin (1) and 312-313 of Klotz
(3). This method is based on the Hodges-Lehmann method.

Since the nonparametric test works with ranks, it is usually not possible
to get a confidence interval with exactly 95% confidence. Prism finds a
close confidence level, and reports what it is. For example, you might get
a 96.2% confidence interval when you asked for a 95% interval. Prism
reports the confidence level it uses, which is as close as possible to the
level you requested. When reporting the confidence interval, you can
either report the precise confidence level ("96.2%") or just report the
confidence level you requested ("95%"). I think the latter approach is
used more commonly.

Prism computes an exact confidence interval when the smaller sample
has 100 or fewer values, and otherwise computes an approximate
interval. With samples this large, this approximation is quite accurate.

Tied values in the Mann-Whitney test

The Mann-Whitney test was developed for data that are measured on a
continuous scale. Thus you expect every value you measure to be unique.
But occasionally two or more values are the same. When the Mann-
Whitney calculations convert the values to ranks, these values tie for the

http://www.stat.wisc.edu/~klotz/Book.pdf
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same rank, so they both are assigned the average of the two (or more)
ranks for which they tie.

Prism uses a standard method to correct for ties when it computes U (or
the sum of ranks; the two are equivalent). 

Unfortunately, there isn't a standard method to get a P value from these
statistics when there are ties. When the smaller sample has 100 or fewer
values, Prism 6 computes the exact P value, even with ties(2). It
tabulates every possible way to shuffle the data into two groups of the
sample size actually used, and computes the fraction of those shuffled
data sets where the difference between mean ranks was as large or larger
than actually observed. When the samples are large (the smaller group
has more than 100 values), Prism uses the approximate method, which
converts U or sum-of-ranks to a Z value, and then looks up that value on
a Gaussian distribution to get a P value. 

Why Prism 6 and later can report different results than prior versions

There are two reasons why Prism 6 and later can report different results
than prior versions:

· Exact vs. approximate P values. When samples are small, Prism
computes an exact P value. When samples are larger, Prism computes
an approximate P value. This is reported in the results. Prism 6 is much
(much!) faster at computing exact P values, so will do so with much
larger samples. It does the exact test whenever the smaller group has
fewer than 100 values.

· How to handle ties? If two values are identical, they tie for the same
rank. Prism 6, unlike most programs,  computes an exact P value even in
the presence of ties. Prism 5 and earlier versions always computed an
approximate P value, and different approximations were used in different
versions. Details. 

Reference

1. DJ Sheskin, Handbook of parametric and nonparametric statistical
procedures, 4th edition, 2007, ISBN=1584888148.

2. Ying Kuen Cheung and Jerome H. Klotz, The Mann-Whitney Wilcoxon
distribution using linked lists,  Statistical Sinica 7:805-813, 1997.
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3. JH Klotz, A computational Approach to Statistics, 2006,
http://www.stat.wisc.edu/~klotz/Book.pdf

4.6.4.4 The Mann-Whitney test doesn't really compare medians

You'll sometimes read that the Mann-Whitney test compares the medians
of two groups. But this is not exactly true, as this example
demonstrates. 

The graph shows each value obtained from control and treated subjects.
The two-tail P value from the Mann-Whitney test is 0.0288, so you
conclude that there is a statistically significant difference between the
groups. But the two medians, shown by the horizontal lines, are identical.
The Mann-Whitney test ranked all the values from low to high, and then
compared the mean ranks. The mean of the ranks of the control values is
much lower than the mean of the ranks of the treated values, so the P
value is small, even though the medians of the two groups are identical.

It is also not entirely correct to say that the Mann-Whitney test asks
whether the two groups come from populations with different
distributions. The two groups in the graph below clearly come from
different distributions, but the P value from the Mann-Whitney test is high
(0.46). The standard deviation of the two groups is obviously very
different. But since the Mann-Whitney test analyzes only the ranks, it
does not see a substantial difference between the groups.

http://www.stat.wisc.edu/~klotz/Book.pdf
http://www.stat.wisc.edu/~klotz/Book.pdf
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The Mann-Whitney test compares the mean ranks -- it does not compare
medians and does not compare distributions. More generally, the P value
answers this question: What is the chance that a randomly selected value
from the population with the larger mean rank is greater than a randomly
selected value from the other population?

If you make an additional assumption -- that the distributions of the two
populations have the same shape, even if they are shifted (have different
medians) -- then the Mann-Whiteny test can be considered a test of
medians. If you accept the assumption of identically shaped distributions,
then a small P value from a Mann-Whitney test leads you to conclude that
the difference between medians is statistically significant. But Michael J.
Campbell pointed out, "However, if the groups have the same
distribution, then a shift in location will move medians and means by the
same amount and so the difference in medians is the same as the
difference in means. Thus the Mann-Whitney test is also a test for the
difference in means."

The Kruskal-Wallis test is the corresponding nonparametric test for
comparing three or more groups. Everything on this page about the
Mann-Whitney test applies equally to the Kruskal-Wallis test.

 1. A. Hart. Mann-Whitney test is not just a test of medians: differences
in spread can be important. BMJ (2001) vol. 323 (7309) pp. 391

http://www.stat.auckland.ac.nz/~iase/publications/17/3F3_CAMP.pdf
http://www.stat.auckland.ac.nz/~iase/publications/17/3F3_CAMP.pdf
http://www.bmj.com/content/323/7309/391.full
http://www.bmj.com/content/323/7309/391.full
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4.6.4.5 Analysis checklist: Mann-Whitney test

The Mann-Whitney test  is a nonparametric test that compares the
distributions of two unmatched groups. It is sometimes said to compare
medians, but this is not always true . 

Are the “errors” independent? 

The term “error” refers to the difference between each value and the
group median. The results of a Mann-Whitney test only make sense
when the scatter is random – that whatever factor caused a value to be
too high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent  if you have six values in each
group, but these were obtained from two animals in each group (in
triplicate). In this case, some factor may cause all triplicates from one
animal to be high or low. 

Are the data unpaired?

The Mann-Whitney test works by ranking all the values from low to high,
and comparing the mean rank in the two groups. If the data are paired
or matched, then you should choose a Wilcoxon matched pairs test
instead. 

Are you comparing exactly two groups? 

Use the Mann-Whitney test only to compare two groups. To compare
three or more groups, use the Kruskal-Wallis test followed by post tests.
It is not appropriate to perform several Mann-Whitney (or t) tests,
comparing two groups at a time.

Do the two groups follow data distributions with the same shape?

If the two groups have distributions with similar shapes, then you can
interpret the Mann-Whitney test as comparing medians. If the
distributions have different shapes, you really cannot interpret  the
results of the Mann-Whitney test. 
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Do you really want to compare medians? 

The Mann-Whitney test compares the medians of two groups (well, not
exactly ). It is possible to have a tiny P value – clear evidence that the
population medians are different – even if the two distributions overlap
considerably.

If you chose a one-tail P value, did you predict correctly? 

If you chose a one-tail P value, you should have predicted which group
would have the larger median before collecting any data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the P value reported by Prism and
state that P>0.50. One- vs. two-tail P values.

Are the data sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), and that difference is quite noticeable with small sample sizes.

4.6.4.6 Why the results of Mann-Whitney test can differ from prior versions of Prism

The results of the Mann-Whitney test will not always match the results
reported by previous version of Prism for two reasons.

· Exact vs. approximate P values. When samples are small, Prism
computes an exact P value. When samples are larger, Prism computes
an approximate P value. This is reported in the results. Prism 6 is much
(much!) faster at computing exact P values, so will do so with much
larger samples. It does the exact test whenever the smaller group has
fewer than 100 values.

· How to handle ties? If two values are identical, they tie for the same
rank. Prism 6 and later, unlike most programs,  computes an exact P
value even in the presence of ties. Prism 5 an earlier versions always
computed an approximate P value, and different approximations were
used in different versions. Details. Bergmann and colleagues (1)
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published a challenging example data set (with two variations) for the
Mann-Whitney test, and Prism 6 matches the results of StatXact, which
they considered to be the gold standard (correct).

· Bugs. This page lists fixed bugs in Prism regarding this test. 

1. Bergmann R, Ludbrook J. Different outcomes of the Wilcoxon—Mann—Whitney
test from different statistics packages. The American …. 2000;54(1):72–7. 

4.6.4.7 Interpreting results: Kolmogorov-Smirnov test

Key facts about the Kolmogorov-Smirnov test

· The two sample Kolmogorov-Smirnov test is a  nonparametric test that
compares the cumulative distributions of two data sets(1,2).

· The test is nonparametric. It does not assume that data are sampled
from Gaussian distributions (or any other defined distributions).

· The results will not change if you transform all the values to logarithms
or reciprocals or any transformation. The KS test report the maximum
difference between the two cumulative distributions, and calculates a P
value from that and the sample sizes. A transformation will stretch (even
rearrange if you pick a strange transformation) the X axis of the
frequency distribution, but cannot change the maximum distance
between two frequency distributions.

· Converting all values to their ranks also would not change the maximum
difference between the cumulative frequency distributions (pages 35-36
of Lehmann, reference 2). Thus, although the test analyzes the actual
data, it is equivalent to an analysis of  ranks. Thus the test is fairly
robust to outliers (like the Mann-Whitney test). 

· The null hypothesis is that both groups were sampled from populations
with identical distributions. It tests for any violation of that null
hypothesis -- different medians, different variances, or different
distributions.

· Because it tests for more deviations from the null hypothesis than does
the Mann-Whitney test, it has less power to detect a shift in the median

http://www.graphpad.com/support/faqid/1983/
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but more power to detect changes in the shape of the distributions
(Lehmann, page 39). 

· Since the test does not compare any particular parameter (i.e. mean or
median), it does not report any confidence interval.

·  Don't use the Kolmogorov-Smirnov test if the outcome (Y values) are
categorical, with many ties. Use it only for ratio or interval data, where
ties are rare.  

· The concept of one- and two-tail P values only makes sense when you
are looking at an outcome that has two possible directions (i.e.
difference between two means). Two cumulative distributions can differ
in lots of ways, so the concept of tails is not really appropriate. the P
value reported by Prism essentially has many tails. Some texts call this a
two-tail P value.

Interpreting the P value

The P value is the answer to this question:

If the two samples were randomly sampled from identical populations,
what is the probability that the two cumulative frequency distributions
would be as far apart as observed? More precisely, what is the chance
that the value of the Komogorov-Smirnov D statistic would be as large
or larger than observed?

If the P value is small, conclude that the two groups were sampled from
populations with different distributions. The populations may differ in
median, variability or the shape of the distribution. 

Graphing the cumulative frequency distributions

The KS test works by comparing the two cumulative frequency
distributions, but it does not graph those distributions. To do that, go
back to the data table, click Analyze and choose the Frequency
distribution analysis. Choose that you want to create cumulative
distributions and tabulate relative frequencies.  

Don't confuse with the KS normality test

It is easy to confuse the two sample Kolmogorov-Smirnov test (which
compares two groups) with the one sample Kolmogorov-Smirnov test,
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also called the Kolmogorov-Smirnov goodness-of-fit test, which tests
whether one distribution differs substantially from theoretical
expectations. 

The one sample test is most often used as a normality test to compare
the distribution of data in a single dat  aset with the predictions of a
Gaussian distribution. Prism performs this normality test  as part of the
Column Statistics analysis.  

Comparison with the Mann-Whitney test

The Mann-Whitney test is also a nonparametric test to compare two
unpaired groups. The Mann-Whitney test works by ranking all the values
from low to high, and comparing the mean rank of the values in the two
groups.

How Prism computes the P value

Prism first generates the two cumulative relative frequency distributions,
and then asks how far apart those two distributions are at the point
where they are furthest apart. Prism uses the method explained by
Lehmann (2). This distance is reported as Kolmogorov-Smirnov D. 

The P value is computed from this maximum distance between the
cumulative frequency distributions, accounting for sample size in the two
groups. With larger samples, an excellent approximation is used (2, 3). 

An exact method is used when the samples are small, defined by Prism to
mean when the number of permutations of n1 values from n1+n2 values
is less than 60,000, where n1 and n2 are the two sample sizes. Thus an
exact test is used for these pairs of group sizes (the two numbers in
parentheses are the numbers of values in the two groups):

(2, 2), (2, 3) ... (2, 346)
(3, 3), (3, 4) ... (3, 69)
(4, 4), (4, 5) ... (4, 32)
(5, 5), (5, 6) ... (5, 20)
(6, 6), (6, 7) ... (6, 15)
(7, 7), (7, 8) ... (7, 12)
(8, 8), (8, 9), (8, 10)
(9, 9)

Prism accounts for ties in its exact algorithm (developed in-house). It
systematically shuffles the actual data between two groups (maintaining
sample size). The P value it reports is the fraction of these reshuffled data
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sets where the D computed from the reshuffled data sets is greater than
or equal than the D computed from the actual data.

References

1. Kirkman, T.W. (1996) Statistics to Use: Kolmogorov-Smirnov test.
(Accessed 10 Feb 2010)

2. Lehmann, E.  (2006), Nonparametrics: Statistical methods based on
ranks.  ISBN: 978-0387352121

3.  WH Press, et. al, Numerical Recipes, third edition, Cambridge Press,
ISBN: 0521880688 

4.6.4.8 Analysis checklist: Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test  is a nonparametric test that compares
the distributions of two unmatched groups.

Are the values independent? 

The results of a Kolmogorov-Smirnov test only make sense when the
scatter is random – that whatever factor caused a value to be too high or
too low affects only that one value. Prism cannot test this assumption. You
must think about the experimental design. For example, the values are
not independent  if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case, some
factor may cause all triplicates from one animal to be high or low. 

Are the data unpaired?

The Kolmogorov-Smirnov test works by comparing the cumulative
frequency distributions of the two groups.It does not account for any
matching or pairing. If the data are paired or matched, consider using a
Wilcoxon matched pairs test instead. 

Are you comparing exactly two groups? 

Use the Kolmogorov-Smirnov test only to compare two groups. To
compare three or more groups, use the Kruskal-Wallis test followed by
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post tests. It is not appropriate to perform several Kolmogorov-Smirnov
tests, comparing two groups at a time without doing some correction for
multiple comparisons.

Are the data sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes.

 Have you entered raw data f(and not frequency distributions)? 

The Kolmogorov-Smirnov test compares two cumulative frequency
distributions. Prism creates these distributions from raw data. Prism
cannot run the Kolmogorov-Smirnov test from distributions you enter,
only from raw data entered into two columns of a Column data table.

4.6.5 Wilcoxon matched pairs test

4.6.5.1 "The Wilcoxon test" can refer to several statistical tests

Wilcoxon's name is used to describe several statistical tests.

· The Wilcoxon matched-pairs signed-rank test  is a nonparametric
method to compare before-after, or matched subjects. It is sometimes
called simply the Wilcoxon matched-pairs test.

· The Wilcoxon signed rank test  is a nonparametric test that compares
the median of a set of numbers against a hypothetical median. 

· The Wilcoxon rank sum test is a nonparametric test to compare two
unmatched groups. It is equivalent to the Mann-Whitney test .

· The Gehan-Wilcoxon test  is a method to compare survival curves.

The first two tests listed above are related. The matched-pairs signed-
rank test works by first computing the difference between each set of
matched pairs, and then using the Wilcoxon signed rank test to ask if the
median of these differences differs from zero. Often the term "Wilcoxon
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signed rank" test is used to refer to either test. This is not really
confusing as it is usually obvious whether the test is comparing one set of
numbers against a hypothetical median, or comparing a set of differences
between matched values against a hypothetical median difference of zero.

 

4.6.5.2 How to: Wilcoxon matched pairs test

1. Enter data 

From the Welcome (or New Table and graph) dialog, choose the Column
tab.

If you are not ready to enter your own data, choose sample data and
choose: t test - Paired.

Enter the data for each group into a separate column, with matched
values on the same row. If you leave any missing values, that row will
simply be ignored. Optionally, enter row labels to identify the source of
the data for each row (i.e. subject's initials). 

2. Choose the Wilcoxon matched pairs test

1. From the data table, click  on the toolbar. 

2. Choose t tests from the list of column analyses.

3. On the first (Experimental Design) tab of t test dialog, make these
choices:
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· Experimental design: Paired

· Assume Gaussian distribution:No

· Choose test:  Wilcoxon matched pairs test

4.  On the options tab, make these choices:

· Choose a one- or two-sided P value . If in doubt, choose a two-tail
P value.

· Choose the direction of the differences. This choice only affects the
sign of the difference and the confidence interval of the difference,
without affecting the P value. 

· Choose a confidence level. Leave this set to 95%, unless you have a
good reason to change it.

· Choose which graphs to make. Graph differences? Graph correlation?

· Choose how to handle  rows where both values are identical. 

3. Review the results

Learn more about interpreting the results of Wilcoxon's matched pairs
test . 

Before accepting the results, review the analysis checklist .

4. Polish the graph
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· A before-after graph shows all the data. This example plots each
subject as an arrow to clearly show the direction from 'before' to
'after', but you may prefer to plot just lines, or lines with symbols. 

· Avoid using a bar graph, since it can only show the mean and SD of
each group, and not the individual changes. 

· To add the asterisks representing significance level  copy from the
results table and paste onto the graph. This creates a live link, so if
you edit or replace the data, the number of asterisks may change (or
change to 'ns'). Use the drawing tool to add the line below the
asterisks, then right-click and set the arrow heads to "half tick down'. 

4.6.5.3 Results: Wilcoxon matched pairs test

Interpreting the P value

The Wilcoxon test is a nonparametric test that compares two paired
groups. Prism first computes the differences between each set of pairs
and ranks the absolute values of the differences from low to high. Prism
then sums the ranks of the differences where column A was higher
(positive ranks), sums the ranks where column B was higher (it calls
these negative ranks), and reports the two sums. If the average sums of
ranks are very different in the two groups, the P value will be small. 

The P value answers this question:

80
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If the median difference in the entire population is zero (the treatment
is ineffective), what is the chance that random sampling would result
in a median change as far from zero (or further) as observed in this
experiment?

If the P value is small, you can reject the idea that the difference is due to
chance, and conclude instead that the populations have different
medians. 

If the P value is large, the data do not give you any reason to conclude
that the overall medians differ. This is not the same as saying that the
medians are the same. You just have no compelling evidence that they
differ. If you have small samples, the Wilcoxon test has little power to
detect small differences.

How the P value is calculated

If there are fewer than 200 pairs, Prism calculates an exact P value. See
more details in the page about the Wilcoxon signed rank test . Prism 6
can do this even if there are ties. With more than 200 pairs, it calculates
the P value from a Gaussian approximation. The term Gaussian, as used
here, has to do with the distribution of sum of ranks and does not imply
that your data need to follow a Gaussian distribution.

How Prism deals with pairs that have exactly the same value

What happens if  some of the subjects have exactly the same value
before and after the intervention (same value in both columns)?

When Wilcoxon developed this test, he recommended that those data
simply be ignored. Imagine there are ten pairs. Nine of the pairs have
distinct before and after values, but  the tenth pair has identical values so
the difference equals zero. Using Wilcoxon's original method, that tenth
pairs would be ignored and the other nine pairs would be analyzed.This is
how InStat and previous versions of Prism (up to version 5) handle the
situation.

Pratt(1,2) proposed a different method that accounts for the tied values.
Prism 6 offers the choice of using this method. 

Which method should you choose? Obviously, if no pairs have identical
before and after values, it doesn't matter. Nor does it matter much if
there is, for example, only one such identical pair out of 200.

209
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It makes intuitive sense that data should not be ignored, and so Pratt's
method must be better.  However, Conover (3) has shown that the
relative merits of the two methods depend on the underlying distribution
of the data, which you don't know. 

95% Confidence interval for the median difference

Prism can compute a 95% confidence interval for the median of the paired
differences (choose on the options tab). This can only be interpreted
when you assume that the distribution of differences is symmetrical.
Prism 6 uses the method explained in page 234-235 of Sheskin (Fourth
Edition) and 302-303 of Klotz.

Test for effective pairing

The whole point of using a paired test is to control for experimental
variability. Some factors you don't control in the experiment will affect
the before and the after measurements equally, so they will not affect the
difference between before and after. By analyzing only the differences,
therefore, a paired test corrects for these sources of scatter. 

If pairing is effective, you expect the before and after measurements to
vary together. Prism quantifies this by calculating the nonparametric
Spearman correlation coefficient, rs. From rs, Prism calculates a P value

that answers this question: If the two groups really are not correlated at
all, what is the chance that randomly selected subjects would have a
correlation coefficient as large (or larger) as observed in your
experiment? The P value is one-tail, as you are not interested in the
possibility of observing a strong negative correlation.

If the pairing was effective, rs will be positive and the P value will be

small. This means that the two groups are significantly correlated, so it
made sense to choose a paired test. 

If the P value is large (say larger than 0.05), you should question whether
it made sense to use a paired test. Your choice of whether to use a paired
test or not should not be based on this one P value, but also on the
experimental design and the results you have seen in other similar
experiments (assuming you have repeated the experiments several
times).

If rs is negative, it means that the pairing was counterproductive! You

expect the values of the pairs to move together – if one is higher, so is

http://www.amazon.com/David-J.-Sheskin/e/B004CNNLZ2/ref=ntt_athr_dp_pel_1
http://www.stat.wisc.edu/~klotz/Book.pdf
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the other. Here the opposite is true – if one has a higher value, the other
has a lower value. Most likely this is just a matter of chance. If rs is close

to -1, you should review your procedures, as the data are unusual.

Why results might differ from those reported by earlier versions of Prism

Results from Prism 6 can differ from prior versions because Prism 6 does
exact calculations in two situations where Prism 5 did approximate
calculations. All versions of Prism report whether it uses an approximate
or exact methods. 

· Prism 6 can perform the exact calculations much faster than did Prism
5, so does exact calculations with some sample sizes that earlier
versions of Prism could only do approximate calculations. 

· If the before-after differences for two pairs are the same, prior versions
of Prism always used the approximate method. Prism 6 uses the exact
method unless the sample is huge.   

Prism reports whether it uses an approximate or exact method, so it is
easy to tell if this is the reason for different results.

Reference

1. Pratt JW (1959) Remarks on zeros and ties in the Wilcoxon signed rank
procedures. Journal of the American Statistical Association, Vol. 54, No.
287 (Sep., 1959), pp. 655-667

2. Pratt, J.W. and Gibbons, J.D. (1981), Concepts of Nonparametric
Theory, New York: Springer Verlag.

3. WJ Conover, On Methods of Handling Ties in the Wilcoxon Signed-Rank
Test, Journal of the American Statistical Association, Vol. 68, No. 344
(Dec., 1973), pp. 985-988

4.6.5.4 Analysis checklist: Wilcoxon matched pairs test

The Wilcoxon test is a nonparametric test that compares two paired
groups.  Read elsewhere to learn about choosing a t test , and
interpreting the results .
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Are the pairs independent? 

The results of a Wilcoxon test only make sense when the pairs are 
independent  – that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs (but not the other four), so these two are
not independent. 

Is the pairing effective? 

If the P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results you have seen in
other similar experiments.

Are you comparing exactly two groups? 

Use the Wilcoxon test only to compare two groups. To compare three or
more matched groups, use the Friedman test followed by post tests. It is
not appropriate  to perform several Wilcoxon tests, comparing two
groups at a time. 

If you chose a one-tail P value, did you predict correctly? 

If you chose a one-tail P value , you should have predicted which
group would have the larger median before collecting any data. Prism
does not ask you to record this prediction, but assumes that it is correct.
If your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50. 

Are the data clearly sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions. But there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
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value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using a t test.

Are the differences distributed symmetrically?

The Wilcoxon test first computes the difference between the two values
in each row, and analyzes only the list of differences. The Wilcoxon test
does not assume that those differences are sampled from a Gaussian
distribution. However it does assume that the differences are distributed
symmetrically around their median.

4.6.5.5 How to handle rows where the before and after values are identical

The Wilcoxon matched pairs test is a nonparametric test to compare two
paired groups. 

Like the paired t test, the first step in calculating this test is to subtract
one paired value from the other. If the values are before and after a
treatment, the difference is the change with treatment. 

The next step is to rank the absolute value of those differences.

But what happens if, for one particular pair of values, the two values are
identical, so the before value is identical to the after value. 

When Wilcoxon developed this test, he recommended that those data
simply be ignored. Imagine there are ten pairs of values. In nine pairs,
the before and after values are distinct, but in the tenth pair those two
values are identical (to the precision recorded). Using Wilcoxon's original
method, that tenth pair would be ignored and the data from the other
nine pairs would be analyzed.This is how InStat and Prism (up to version
5) handle the situation.

Pratt(1) proposed a different method that accounts for the tied values.
Prism 6 offers the choice of using this method. 

Which method should you choose? Obviously, if there are no ties among
paired values (no differences equal to zero), it doesn't matter. Nor does it
matter much if there is, for example, one such pair out of 200.
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It makes intuitive sense that data should not be ignored, and that Pratt's
method is better.  Connover (2) has shown that the relative merits of the
two methods depend on the underlying distribution of the data, which you
don't know. 

1. Pratt, J.W. and Gibbons, J.D. (1981), Concepts of Nonparametric
Theory, New York: Springer Verlag.

2. WJ Conover, On Methods of Handling Ties in the Wilcoxon Signed-Rank
Test, Journal of the American Statistical Association, Vol. 68, No. 344
(Dec., 1973), pp. 985-988

4.6.6 Multiple t tests

4.6.6.1 How to: Multiple t tests

Distinguish the t test analysis from the multiple t test analysis

· The t test (and nonparametric) analysis compares two data set
columns. Each set of replicate values are usually entered into a column,
although Prism can also enter replicates entered into side-by-side
subcolumns all on one row.

· The multiple t test analysis  performs many t tests at once -- one per
row. Replicates are entered into side-by-side subcolumns.

How to perform a multiple t test analysis with Prism

1. Create a Grouped data table. Format the table either for entry of
replicate values into subcolumns, or for entry of mean, SD (or SEM)
and n. 

2. Enter the data on two data set columns. One unpaired t test will be
performed on each row of data. 

3. Click Analyze, and choose "Multiple t tests -- one per row"  from the
list of analyses for Grouped data. 

4. Choose how to compute each test, and when to flag a comparison for
further analysis.
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4.6.6.2 Options for multiple t tests

How to compute the individual P values

Prism computes an unpaired t test for each row, and reports the
corresponding two-tailed P value. There are two ways it can do this
calculation. 

· Fewer assumptions. With this choice, each row is analyzed
individually. The values in the  other rows have nothing at all to do with
how the values in a particular row are analyze. There are fewer df, so
less power, but you are making fewer assumptions. Note that while you
are not assuming that data on different rows are sampled from
populations with identical standard deviations, you are assuming that 
data from the two columns on each row are sampled from populations
with the same standard deviation. This is the standard assumption of an
unpaired test -- that the two samples being compared are sampled from
populations with identical standard deviations.

· More power. You assume that all the data from both columns and all
the rows are sampled from populations with identical standard
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deviations. This is the assumption of homoscedasticity. Prism therefore
computes one pooled SD, as it would by doing two-way ANOVA. This
gives you more degrees of freedom and thus more power. 

Choosing between these options is not always straightforward. Certainly if
the data in the different rows represent different quantities, perhaps
measured in different units, then there would be no reason to assume
that the scatter is the same in all. So if the different rows represent
different gene products, or different measures of educational achievement
(to pick two very different examples), then choose the "few assumptions"
choice.  If the different rows represent different conditions, or perhaps
different brain regions, and all the data are measurements of the same
outcome, then it might make sense to assume equal standard deviation
and choose the "more power" option.

How to decide which P values are small enough to investigate further

When performing a whole bunch of t tests at once, the goal is usually to
come up with a subset of comparisons where the difference seems
substantial enough to be worth investigating further. Prism offers two
approaches to decide when a two-tailed P value is small enough to make
that comparison worthy of further study. 

One approach is based on the familiar idea of statistical significance.

The other choice is to base the decision on the False Discovery Rate
(FDR; recommended).  The whole idea of controlling the FDR is quite
different than that of declaring certain comparisons to be "statistically
significant".   This method doesn't use the term "significant" but rather
the term "discovery".  You set Q, which is the desired maximum percent
of "discoveries" that are false discoveries. In other words, it is the
maximum desired FDR. 

Of all the rows of data flagged as "discoveries", the goal is that no more
than Q% of them will be false discoveries (due to random scatter of data)
while at least 100%-Q% of the discoveries are true differences between
population means. Read more about FDR.  Prism offers three methods
to control the FDR.

How to deal with multiple comparisons

If you chose the False Discovery Rate approach, you need to choose a
value for Q, which is the acceptable percentage of discoveries that will
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prove to be false. Enter a percentage, not a fraction. If you are willing to
accept 5% of discoveries to be false positives, enter 5 not 0.05. You also
need tochoose which method to use . 

If you choose to use the approach of statistical significance, you need to
make an additional decision about multiple comparisons. You have three
choices:

· Correct for multiple comparisons using the Holm-Šídák method
(recommended).  You specify the significance level, alpha, you want to
apply to the entire family of comparisons. The definition of "significance"
is designed so that if all the null hypotheses were true for every single
row, the chance of declaring one or more row's comparison to be
significant is alpha.

· Correct for multiple comparisons using the Šídák-Bonferroni method
(not recommended). The  Bonferroni method is much simpler to
understand and is better known than the Holm-Šídák method, but it has
no other advantages. The Holm-Šídák method has more power, and we
recommend it. Note that if you choose the Bonferroni approach, Prism
always uses the Šídák-Bonferroni method , often just called the Šídák
method, which has a bit more power than the plain Bonferroni
(sometimes called Bonferroni-Dunn) approach -- especially when you
are doing many comparisons.

· Do not correct for multiple comparisons (not recommended). Each P
value is interpreted individually without regard to the others. You set a
value for the significance level, alpha, often set to 0.05. If a P value is
less than alpha, that comparison is deemed to be "statistically
significant". If you use this approach, understand that you'll get a lot of
false positives (you'll get a lot of "significant" findings that turn out not
to be true). That's ok in some situations, like drug screening, where the
results of the multiple t tests are used merely to design the next level of
experimentation.

4.6.6.3 Interpreting results: Multiple t tests

The results are presented on two pages.

348
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t tests page

This page shows the t test for each row. The P value for each comparison
is shown, and also the multiplicity adjusted P value , which is higher.  

If you chose the statistical significance approach, the first column is 
labeled "Significant?" shows an asterisk if this comparison is declared to
be statistically significant, after any adjustments you requested for
multiple comparisons, and is otherwise blank. This column either contains
a single asterisk or not. It never shows several asterisks. 

If you chose the FDR approach, then the first column is labeled
"Discovery?" and contains an asterisk for those rows deemed to be
"discoveries" and otherwise is blank. 

Significant results page or Discoveries page

This page only shows the rows whose results meet the definition of a
"statistically significant result" or a "discovery" based on your choices in
the dialog. The rows are sorted by P value, with the smallest P value on
top.

4.7 Multiple comparisons after ANOVA

Interpreting multiple comparisons after ANOVA is

tricky. It is important to know exactly what

statistical significance means in this situation.

4.7.1 Overview on followup tests after ANOVA

 .

4.7.1.1 Which multiple comparisons tests does Prism offer?

Overview

The followup multiple comparison tests that Prism offer differ a  depend
on which kind of ANOVA you are using, so there are separate instructions
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for one-way ANOVA , two-way ANOVA , and  three-way ANOVA .
Note that the multiple comparisons choices are on two tabs of each
ANOVA dialog:

· The Multiple Comparisons tab is where you set your goal, and this is
quite different for each kind of ANOVA.

· The Options tab is where you choose the test you want to use, and
these choices are similar for the three kinds of ANOVA and this page
provides an overview that pertains to all three kinds of ANOVA. 

The Options tab of all three ANOVA dialogs offers three big choices,
corresponding to the three headings below, and additional choices within.

Correct for multiple comparisons using statistical hypothesis testing

The choices for multiple comparisons that Prism makes available to you
depends on three questions:

· Your goal. Which comparisons do you want to make? Answer this
question, based on your experimental goals, on the multiple
comparisons tab  of the one-way ANOVA dialog.

· Do you want to include confidence intervals with your results? Not all
multiple comparisons tests can compute confidence intervals. Answer
this question, which is a personal preference not really linked to
particular experimental designs, on the options tab  of the one-way
ANOVA dialog.

· Nonparametric?

 Goal Report CI as well as
significance?

Method

Compare every mean to every other mean Yes Tukey  (recommended)

Bonferroni

Sidak

356 408 449
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No Holm-Sidak  (preferred)

Newman-Keuls

Dunn (nonparametric)

Compare every mean to a control mean Yes Dunnettt

Sidak

Bonferroni

No Holm-Sidak

Dunn (nonparametric)

Compare selected pairs of means (up to
40)

Yes Bonferroni-Dunn 

Sidak-Bonferroni

No Holm-Sidak

Dunn (nonparametric)

Linear trend? Do column mean correlate
with column order?

No Test for linear trend . Only
available with one-way
ANOVA.

Correct for multiple comparisons by controlling the False Discovery Rate

Prism offers three methods  to control the false discovery rate . All
decide which (if any) comparisons to label as "discoveries" and do so in a
way that controls the false discovery rate to be less than a value Q you
enter. 

When you choose to control the False discovery rate, Prism first computes
an exact P value for each comparison. For regular ANOVA, it uses the
Fishers LSD method. For nonparametric ANOVA, it uses Dunn's method
without correcting for multiple comparisons. Then it takes this set of P
value, and uses the method to control the false discovery rate that you
chose and reports which comparisons are large enough to be tagged as
"discoveries".
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Don't correct for multiple comparisons. Each comparison stands alone. 

For regular (parametric) ANOVA, Prism computes these with the Fisher
LSD test.  

With nonparametric ANOVA, Prism uses uncorrected Dunn's test  which
does not correct for multiplicity. 

These P values, which do not account for multiple comparisons, will be
smaller than multiplicity adjusted P values. If you report these P values,
explain that they are not adjusted for multiple comparisons. 

4.7.1.2 Relationship between overall ANOVA and multiple comparisons tests

If the overall ANOVA finds a significant difference among groups, am I
certain to find a significant post test?

If one-way ANOVA reports a P value of <0.05, you reject the null
hypothesis that all the data come from populations with the same mean.
In this case, it seems to make sense that at least one of the folow-up
multiple comparisons tests will find a significant difference between pairs
of means. 

This is not necessarily true.

It is possible that the overall mean of group A and group B combined
differs significantly from the combined mean of groups C, D and E.
Perhaps the mean of group A differs from the mean of groups B through
E. Scheffe's post test detects differences like these (but this test is not
offered by Prism). If the overall ANOVA P value is less than 0.05, then
Scheffe's test will definitely find a significant difference somewhere (if you
look at the right comparison, also called contrast). The multiple
comparisons tests offered by Prism only compare group means, and it is
quite possible for the overall ANOVA to reject the null hypothesis that all
group means are the same yet for the followup tests to find no significant
difference among group means. 
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If the overall ANOVA finds no significant difference among groups, are
the multiple comparisons test results valid?

You may find it surprising, but all the multiple comparisons tests offered
by Prism are valid even if the overall ANOVA did not find a significant
difference among means. It is certainly possible that any of the tests
offered by Prism can find significant differences even when the overall
ANOVA showed no significant differences among groups. These tests are
more focused, so have power to find differences between groups even
when the overall ANOVA is not significant. 

"An unfortunate common practice is to pursue multiple comparisons
only when the null hypothesis of homogeneity is rejected." (Hsu, page
177)

"...these methods [e.g., Bonferroni, Tukey, Dunnet, etc.] should be
viewed as substitutes for the omnibus test because they control
alphaEW at thee desired level all by themselves. Requiring a
significant omnibus test before proceeding to perform any of these
analyses, as is sometimes done, only serves to lower alphaEW below
the desired level (Bernhardson, 1975) and hence inappropriately
decreases power" (Maxwell and Delaney, p. 236)

There are two exceptions, but both are tests not offered by Prism.

· Scheffe's test (not available in Prism) is intertwined with the overall F
test. If the overall ANOVA has a P value greater than 0.05, then no
post test using Scheffe's method will find a significant difference.

· Restricted Fisher's Least Significant Difference (LSD) test (not
available in Prism). In this form of the LSD test, the multiple
comparisons tests are performed only if the overall ANOVA finds a
statistically significant difference among group means. But this
restricted LSD test is outmoded, and no longer recommended. The 
LSD test in Prism  is unrestricted -- the results don't depend on the
overall ANOVA P value and don't correct for multiple comparisons. 

Are the results of the overall ANOVA useful at all? Or should I only look at
multiple comparisons tests?

ANOVA tests the overall null hypothesis that all the data come from
groups that have identical means. If that is your experimental question --
does the data provide convincing evidence that the means are not all

121
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identical -- then ANOVA is exactly what you want. More often, your
experimental questions are more focused and answered by multiple
comparison tests. In these cases, you can safely ignore the overall
ANOVA results and jump right to the multiple comparisons results (some
people disagree with this statement). 

Note that the multiple comparison calculations all use the mean-square
result from the ANOVA table. So even if you don't care about the value of
F or the P value, the post tests still require that the ANOVA table be
computed.

1.  J. Hsu, Multiple Comparisons, Theory and Methods. ISBN:
0412982811.  

2.  SE Maxwell, HD Delaney, Designing Experiments and Analyzing
Data: A Model Comparison Perspective, Second Edition, ISBN: 978-
0805837186

4.7.1.3 Relationship between multiple comparisons tests and t tests

Fishers LSD method

The only difference a set of t tests and the Fisher's LSD test , is that t
tests compute the pooled SD from only the two groups being compared,
while the Fisher's LSD test computes the pooled SD from all the groups
(which gains power). Note that unlike the Bonferroni, Tukey, Dunnett and
Holm methods, Fisher's LSD does not correct for multiple comparisons. 

Tukey, Dunnet, Bonferroni

Multiple comparisons use a familywise definition of alpha. The significance
level doesn't apply to each comparison, but rather to the entire family of
comparisons. In general, this makes it harder to reach significance. This
is really the main point of multiple comparisons, as it reduces the chance
of being fooled by differences that are due entirely to random sampling.
Here is an example:

121

http://www.stat.osu.edu/~jch/mc.html
http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183
http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183


GraphPad Statistics Guide330

© 1995-2016 GraphPad Software, Inc.

Group 1 Group 2 Group 3

34 43 48

16 37 43

25 47 69

An unpaired t test comparing Groups 1 and 2 computes a P values of
0.0436, which is less than 0.05 so deemed statistically significant. But a
Tukey multiple comparison test after ANOVA computes a multiplicity
adjusted P value of 0.1789, which is not statistically significant. 

In some cases, the effect of increasing the df (by pooling the SD of all
groups, even when only comparing two) overcomes the effect of
controlling for multiple comparisons. In these cases, you may find a
'significant' difference in a multiple comparisons test where you wouldn't
find it doing a simple t test. Here is an example: 

Group 1 Group 2 Group 3

34 43 48

38 45 49

29 47 47

Comparing groups 1 and 2 by unpaired t test yields a two-tail P value of
0.0164, while the Tukey multiple comparisons test calculates a
multiplicity adjusted P value of 0.0073. If we set our threshold of
'significance' for this example to 0.01, the results are not 'statistically
significant' with a t test but are statistically significant with the multiple
comparisons test.

FDR approach

When you ask Prism to use the FDR approach (using any of the three
methods), it first computes the P values using the Fisher LSD method (if
you assume sampling from Gaussian distributions) or the uncorrected
Dunn's test  (nonparametric). These methods do not correct for multiple
comparisons. 
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Then the three methods decide which of these P values are small enough
to be called a "discovery", with the threshold depending on the
distribution of P values, the number of P values, and which of the three
methods you chose. 

The first step, computing the P value is very close to what a conventional
t test does. The second step, deciding which are "discoveries" is very
different. 

4.7.1.4 Correcting the main ANOVA P values for multiple comparisons

Not considering followup multiple comparisons tests (post tests), how
many P values does ANOVA compute in its main calculations?

· One-way ANOVA reports only  one main P value.

· Two-way ANOVA reports three P value , one for each of the two
factors and one for their interaction. 

· Three-way ANOVA reports seven P values , one for each of the three
factors, one for each of three  two-way interaction and one for the
three-way interaction.

Should one take multiple comparisons into account when interpreting the
main P values from two- and three-way ANOVA? Statistical tradition has
been to not do any correction, and GraphPad Prism follows this tradition
(so only corrects for multiple comparisons for the followup tests that
compare one treatment or cell with another.

Lakens argues (1) that a correction should be applied, to prevent too
many false positives. 

To correct for multiple comparisons of the main ANOVA P values in Prism,
you should  copy all the P values from the ANOVA results table and paste
into one column of a Column table. If you did a three-way ANOVA, you
would copy-paste seven P values into one new column. Then run the 
Analyze a stack of P values analysis  to correct for multiple
comparisons. You can correct for multiple comparisons using Bonferroni,
Holm or by controlling the false discovery rate (FDR). 
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1. D. Lakens, Error Control in Exploratory ANOVA's: The How and the
Why. Posted in his blog, The 20% statistician. 

4.7.2 Interpreting results from multiple comparisons after ANOVA

 .

Confidence intervals from multiple comparisons tests

Exact P values from multiple comparisons tests

False Discovery Rate approach to multiple comparisons

4.7.2.1 Statistical significance from multiple comparisons

If you correct for multiple comparisons using statistical hypothesis
testing, one of the main results will be a decision for each comparison as
to whether it is statistically significant or not. With all the methods except
Fisher's LSD, these decisions correct for multiple comparisons. If all the
data in all groups were really sampled from the same population, then
there is a 5% (if you pick the traditional value for alpha) that any one (or
more) of the comparisons would be designated as statistically significant.
Note that the 5% probability is for the family of comparisons, not just for
one comparison. 

“Statistically significant” is not the same as “scientifically important”.:

·  It is better in many cases to focus on the the size of the difference
and the precision of that value quantified as a confidence interval .

· Rather than just report which comparisons are, or are not,
"statistically significant", Prism can report multiplicity adjusted P
values  for many tests, and these can be more informative than a
simple statement about which comparisons are statistically significant
or not. 

· Don't get mislead into focusing on whether whether or not error bars
overlap. That doesn't tell you much about whether multiple
comparisons tests will be statistically significant or not. If two SE error
bars overlap, you can be sure that a multiple comparison test
comparing those two groups will find no statistical significance.
However if two SE error bars do not overlap, you can't tell whether a
multiple comparison test will, or will not, find a statistically significant
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difference. And if you plot SD error bars, rather than SEM, the fact
that they do (or don't) overlap does not let you reach any conclusion
about statistical significance. Details. 

· With one-way ANOVA, you can choose to test for linear trend between
column mean and column order and Prism will report the slope. Details
here . This test will tell you whether or not the trend is statistically
significant or not.

4.7.2.2 Confidence intervals from multiple comparisons tests

If you don't need to make a decision from each comparison, you don't
need each comparison to be reported as "statistically significant" or not.
In this situation, ignore the conclusions about statistical significance and
the P values. Instead focus  on how large each difference is and how wide
each confidence interval is. When thinking about confidence intervals, you
need to think about how large a difference you would consider to be
scientifically important. How small a difference would you consider to be
scientifically trivial? Use scientific judgment and common sense to answer
these questions. Statistical calculations cannot help, as the answers
depend on the context and goals of the experiment.

If you do want to focus on confidence intervals, then make sure you pick
a multiple comparisons method that can report them: The methods of
Tukey, Dunnett, Bonferroni, and Sidak.

Note that the confidence intervals reported with multiple comparisons
tests (except for Fisher's LSD) adjust for multiple comparisons. Given the
usual assumptions, you can be 95% confident that all the the true
population values are contained within the corresponding confidence
interval, which leaves a 5% chance that any one or more of the intervals
do not include the population value. They are sometimes called 
simultaneous confidence intervals. 

4.7.2.3 Exact P values from multiple comparisons tests

Prism reports exact P values from multiple comparisons tests using two
different approaches that are quite different.
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Multiplicity adjusted P values

Prism can compute a multiplicity adjusted P value for each comparison for
many multiple comparison methds: The methods of Tukey, Dunnett,
Bonferroni, Sidak, Dunn, and Holm. Since adjusted P values are not
reported by most programs, and are not widely reported in scientific
papers (yet), be sure you fully understand what they mean  before
reporting these values.

A  multiplicity adjusted P value   is the family-wise significance level at
which that particular comparison would just barely be considered
statistically significant. That is a hard concept to grasp. You can set the
threshold of significance, for the whole family of comparisons, to any
value you want.  Usually, it is set to 0.05 or 0.01 or perhaps 0.10. But it
can be set to any value you want, perhaps 0.0345. The adjusted P value
is the smallest significance threshold, for the entire family of
comparisons, at which this one comparison would be declared
"statistically significant".

The adjusted P value for each comparison depends on all the data, not
just the data in the two groups that P value compares. If you added one
more comparison to the study (or took one away), all the adjusted P
values would change. The adjusted P value can be thought of as a
measure of the strength of evidence. 

P values that don't correct for multiple comparisons

Fisher's Least Significant Difference (LSD) test  computes a P value
(and confidence interval) for each comparison, without adjusting for
multiple comparisons. The results will be similar to performing
independent t tests for each comparison, except the Fishers LSD test
uses all the data to compute a pooled standard deviation (rather than
using the variation only in the two groups being compared). This will
usually give it more power than independent t tests. When reporting P
values from the Fishers LSD test, be sure to explain that these do not
account for multiple comparisons, the reader must do so when evaluating
the results.

The uncorrected Dunn's test  is the nonparametric test that computes a
P value for each comparison without correcting for multiple comparisons. 
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Adjusted P values are very different than P values that don't account for
multiple comparisons

Multiplicity adjusted P values, as the name suggests, accounts for
multiple comparisons. 

The Fisher LSD test and the uncorrected Dunn's test (nonparametric) do
not account for multiple comparisons. 

The "exact" P values computed by the two approaches are not the same.
If you report either, be sure to be very explicit about exactly what P value
you are reporting. 

4.7.2.4 False Discovery Rate approach to multiple comparisons

When you choose the False Discovery Rate (FDR) approach  to multiple
comparisons after ANOVA, Prism does the following:

1. Perform the comparisons you requested using the unprotected
Fisher's LSD test. This results in a P value for each comparison. These
P values do not correct for multiple comparisons. They are not
multiplicity adjusted P values. 

2. Use the FDR approach you chose (Prism offers three variants ) to
decide which P values are small enough to be deemed "discoveries".
This calculation depends on which method you chose, and the value of
Q you chose (the desired false discovery rate, as a percentage). 

3. For each comparison, also compute a q value. The q values will be
different for each comparison. If you had set Q to this value (what
Prism reported as q) then this comparison would have been right on
the border of being a "discovery" or not. 

Notes:

· When you choose the FDR approach, Prism will not report anything
about statistical significance, and will not (cannot) report confidence
intervals or multiplicity adjusted P values. But it does report q
values , which are similar to adjusted P values. 
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· While the FDR approach is often used to deal with many P values such
as those computed by Prism's multiple t test analysis , they are not
commonly used as followup tests for ANOVA. 

· The variable q is used as part of the results of the FDR approach to
multiple comparisons, and as part of the Tukey and Dunnett multiple
comparisons tests. The three tests define the variable q differently so
they should not be compared.

4.7.3 Interpreting results: Test for trend

 .

4.7.3.1 Overview: Test for trend

What is the test for trend?

Prism can test for linear trend as part of the followup testing after one-
way (but not two- or three-way) ANOVA. It is a choice on the Multiple
Comparisons tab of the parameters dialog for one-way ANOVA.

This test makes sense when the columns represent ordered and equally
spaced (or nearly so) groups. For example, the columns might represent
age groups, or doses or times.  The test for linear trend asks whether the
column means increase (or decrease) systematically as the columns go
from left to right. 

Alternative names are testing for a linear contrast, post-test for trend,
and test for linear trend. 

Are you sure you don't want to do regression?

Note that ANOVA calculations (except for this trend test) completely
ignore the order of the columns. You could randomly scramble the column
order, and get exactly the same ANOVA results. So if the columns
represent time points or concentrations or anything that can be
quantified, think hard about whether ANOVA is the best way to analyze
your data. Rather than do ANOVA followed by a test for linear trend, you
may want to fit the data with linear (or nonlinear) regression. 
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After you've entered your data for ANOVA, you'll need to rearrange
(transpose) the data if you want to analyze the same data with
regression. 

1. From the column table used for ANOVA, click Analyze and choose the
Transpose analysis. 

2. Select that the results should be an XY results table with sequential X
values.  

3. From the completed XY table, click Analyze and choose linear
regression. 

4.7.3.2 Results from test for trend

Interpreting the results

Slope

This is the change in the mean value per column as you move one column
to the right. In other words, it assumes that the X values corresponding
to column order are separated by 1 (we call this the span). Note that
prior versions of Prism used a span of 1 when there were an odd number
of columns, but a span of 2 when there were an even number of columns
(this was not made clear in the results). With an even number of



GraphPad Statistics Guide338

© 1995-2016 GraphPad Software, Inc.

columns, therefore, the slope reported by prior versions is twice the slope
that Prism now reports. 

R square

Prism reports two different R2 in the context of testing for linear trend
after ANOVA.  

· The effect size R2  is the fraction of the total variance accounted for by
the linear trend.This was the only R2 reported by Prism 6 which labeled
it simply R2. 

· The alerting R2 is the fraction of the variance between group means that
is accounted for by the linear trend.  Because the variance between
group means is always less than the total variance, the alerting R2 is
always higher than the effect size R2. 

P values

Prism reports two P values.

· Test for linear trend. The P value tests the null hypothesis that there is
no linear trend between the population means and group order. It
answers the question: If there really is no linear trend between column
number and column mean, what is the chance that random sampling
would result in a slope as far from zero (or further) than you obtained
here? If the P value is small, conclude that there is a statistically
significant linear trend. As you go from left to right in the data table, the
column means tend to get higher (or lower). 

· Test for nonlinear trend. If you have four or more groups (data set
columns), then Prism also reports a P value testing nonlinear trend. The
null hypothesis is that the entire relationship between the column
means and column order is linear. A small P value tells you there is also
a nonlinear trend.

4.7.3.3 How the test for trend works

How it works

The overall ANOVA table partitions the variation among values into a
portion that is variation within groups and a portion that is between
groups. The test for trend further divides the variation between group
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means into a portion that is due to a linear relationship between column
mean and column order, and the rest that is due to a nonlinear
relationship between column mean and column order. Prism computes an
F ratio as the ratio of the mean square for linear trend divided by the
mean square within groups, and computes the P value from that. 

The test for trend only "sees" the column means and does not "see" the
individual values. Since it doesn't look at the raw data, the results don't
match linear regression of the raw data (which would require you to
transpose the data onto an XY table). Because the method accounts for
sample size, the results also don't match linear regression of just column
means vs column order either. The calculation Prism does is standard as a
followup to ANOVA, but it isn't clear if there is any advantage this test for
trend vs. simply computing linear regression on transposed data(3). 
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4.7.4 How the various multiple comparisons methods work

 .

4.7.4.1 The pooled standard deviation

When computing most multiple comparisons tests (not nonparametric or
repeated measures one-way ANOVA), Prism assumes that all the data are
sampled from populations with the same standard deviation, so the
multiple comparison tests use a pooled standard deviation from all the
groups.

Prism does not report this pooled standard deviation, but it is easy to
calculate. Find the MSerror, also called MSresidual, and take its square
root (MS stands for Mean Square, one of the columns in the ANOVA
table). 
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For one-way ANOVA or two-way ANOVA with no repeated measures,
there is only one MSerror (or MSresidual) in the ANOVA table. For two-
way ANOVA with repeated measures, see this document for the details of
which MS value is used. 

The pooled standard deviation is expressed in the same units as the data.

4.7.4.2 The SE of the difference between means

For most multiple comparisons tests, the first step is to compute the
standard error of the difference between two mean using the equation
below, where n1 and n2 are the sample sizes of the two means being
compared and MSerror is the appropriate mean-square value from the
ANOVA table. 

For one-way ANOVA or two-way ANOVA with no repeated measures,
there is only one MSerror (or MSresidual) in the ANOVA table. For two-
way ANOVA with repeated measures, see this document for the details of
which MS value is used. 

The equation above can be simplified a bit by first computing the pooled
standard deviation :

Note that the MSerrror (and the pooled standard deviation) are computed
from all the data in all the groups. The SE of the difference between
means will the be same for all pairs of means if the samples sizes are
equal. 

4.7.4.3 How the Tukey and Dunnett methods work

To compute the Tukey or Dunnett test, divide the difference between the
means you are comparing with the standard error of the difference  and
call the quotient q.
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The critical values of q for Tukey multiple comparisons is explained in
reference 2. C code can be found here. The critical values of q for
Dunnett's test are calculated according to methods explained in reference
3 and an appendix in reference 4.

It is critical in all cases to use the correct number of degrees of freedom,
which is the df that corresponds with the mean square value used. 

References

1.  Scott E. Maxwell, Harold D. Delaney, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, Second
Edition,IBSN:0805837183  

2.  Margaret Diponzio, Copenhaver, and Burt Holland.  Computation of
the distribution of the maximum studentized range statistic with
application to multiple significance testing of simple effects. Journal of
Statistical Computation and Simulation, 1563-5163, Volume 30, Issue
1, 1988, Pages 1 – 15

3.  K.S. Kwong and W. Liu. Calculation of critical values for Dunnett and
Tamhane's step-up multiple test procedure. Statistics and Probability
Letters, Volume 49, Number 4, 1 October 2000 , pp. 411-416(6)

4.  J. Hsu, Multiple Comparisons, Theory and Methods. ISBN:
0412982811.  

4.7.4.4 How the Fisher LSD method works

The Fisher's LSD test works just like a t test  with one exception. A t
test computes a pooled standard deviation from the two groups being
compared. The Fisher LSD test uses the pooled standard deviation .
This pooled SD comes from all the groups, which gives it more degrees of
freedom and more power. 
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Note that the Fisher's LSD test does not account for multiple
comparisons. It is rarely recommended. 

4.7.4.5 How the Holm-Sidak method works

How to decide which P values are small enough to be deemed statistically
significant

Here is a brief description of how the Holm multiple comparison test
works:

1. If you are using the test as a followup to ANOVA, P values for each
comparison are computed as they are for the Fisher's LSD test .
These are not corrected for multiple comparisons. 

2. The P values are ranked from smallest to largest.

3. Set a value for the significance level, alpha. This is often set to 5%. 

4. Define K equal to the number of comparisons you are making.

5. Start with the smallest P value and set i=K. Ask: Is the smallest P
value less than alpha/i?

If No: Conclude that none of the comparisons are statistically
significant, and you are done.

If Yes: Conclude that this comparison is statistically significant, and
continue.

6. The second to smallest P value is compared next. Set i=K-1. Is the P
value less than alpha/i?

If No: Conclude that this  comparison (and all with larger P values)
is not statistically significant. You  are done.

If Yes: Conclude that this comparison is statistically significant, and
continue.

7. The third to smallest P value is compared next. Set i=K-2. Compare
the P value to alpha/i...
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8. Continue until you find a comparison that is not statistically
significant.

Prism actually uses the Šídák modification, so computes the Holm-Šídák
test. At steps 5-7 above, the P value is not compared to to alpha/i but
rather to 1-(1-alpha)(1/i)

Multiplicity adjusted P values from the Holm-Sidak method

To compute the adjusted P value, called Padj(i), from the P value, called
P(i), use the equations below where, the P values are sorted so P(1) is
the smallest,  k is the number of comparisons (number of P values) and
max is a function that returns the larger of two values. 

PAdj(1) = 1 - (1 - P(1))^k
PAdj(2) = max(PAdj(1), 1 - (1 - P(2))^(k-1))
..........
PAdj(j) = max(PAdj(j-1), 1 - (1 - P(j))^(k-j+1))
..........
PAdj(k) = max(PAdj(k-1), 1 - (1 - P(k))^(k-k+1)) = max(PAdj(k-1), P(k))

Note that in some cases successive adjusted P values will be identical,
even when the original P values are not.

4.7.4.6 How the Bonferroni and Sidak methods work

The calculations use a pooled SD

The first step for the Bonferroni and Sidak tests used as a followup to
ANOVA is to compute the Fisher LSD test. Note two important points:

· The P values from this test are not corrected for multiple comparisons,
so the correction for multiple comparisons is done as a second step. 

· The P values are computed from difference between the two means
being compared and the overall pooled SD . When you compare
columns A and B, the values in columns C, D, E, etc. affect the
calculation of the pooled SD so affect the P value for the comparison of
A and B. Using a pooled SD makes sense if all the values are sampled
from populations with the same SD, as use of the pooled SD gives the
Bonferroni or Sidak test more degrees of freedom, and therefore more
power. 
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How the Šídák multiple comparison test works

The logic is simple(1). If you perform three independent comparisons
(with the null hypothesis actually true for each one), and use the
conventional significance threshold of 5% for each comparison without
correcting for multiple comparisons, what is the chance that one or more
of those tests will be declared to be statistically significant? The best way
to approach that question, is to ask the opposite question -- what is the
chance that all three comparisons will reach a conclusion that the
differences are not statistically significant? The chance that each test will
be not significant is 0.95, so the chance that all three independent
comparisons will be not statistically significant is 0.95*0.95*0.95, which
equals 0.8574.  Now switch back to the original question. The chance that
one or more of the comparisons will be statistically significant is 1.0000 -
0.8574, which is 0.1426. 

You can also start with the significance threshold that you want to apply
to the entire family of comparisons, and use the Šídák-Bonferroni method
to compute the significance threshold that you must use for each
individual comparison.

Call the significance threshold for the family of comparisons, the
familywise alpha, alphaFW, and the number of comparisons K. The
significance threshold to use for each individual comparisons, the per
comparison alpha (alphaPC), is defined to be:

alphaPC = 1.0  -  (1.0 - alphaFW)1/K

If you are making three comparisons, and wish the significance threshold
for the entire family to be 0.05, then the threshold for each comparison
is:

alphaPC = 1.0  -  (1.0 - alphaFW)1/K = 1.0 - (1.0 - 0.05)1/3= 0.0170

If you are making ten comparisons, and wish the significance threshold
for the entire family of comparisons to be 0.05, then the threshold for
each comparison is:

alphaPC = 1.0  -  (1.0 - alphaFW)1/K = 1.0 - (1.0 - 0.05)0.10=  0.0051
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How the Bonferroni multiple comparison test works

The Bonferroni method uses a simpler equation to answer the same
questions as the Šídák method. If you perform three independent
comparisons (with the null hypothesis actually true for each one), and use
the conventional significance threshold of 5% for each one without
correcting for multiple comparisons, what is the chance that one or more
of those tests will be declared to be statistically significant? 

The Bonferroni method simply multiplies the individual significance
threshold (0.05) by the number of comparisons (3), so the answer is
0.15. This is close, but not the same as the more accurate calculations
above, which computed the answer to be 0.1426. (With many
comparisons, the product of the significance threshold times the number
of comparisons can exceed 1.0; in this case, the result is reported as
1.0.)

To use the Bonferroni method to compute the significance threshold to
use for each comparison (alphaPC) from the number of comparisons and
the significance threshold you wish to apply to the entire family of
comparisons (alphaFW), use this simple equation:

alphaPC = alphaFW/K

Let's say you set the significance threshold for the entire family of
comparisons to 0.05 and that you are making three comparisons. The
threshold for determining significance for any particular comparison is
reduced to 0.05/3, or 0.0167. Note that this is a bit more strict than the
result computed above for the Šídák method, 0.0170. 

If you are making ten comparisons, the Bonferroni threshold for each
comparisons is 0.05/10 = 0.0050. Again this is a bit more strict (smaller)
than the value computed by the Šídák method above, which is 0.0051. 
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4.7.4.7 How the Dunn method for nonparametric comparisons works

Dunn's test that corrects for multiple comparisons

Prism performs the Dunn's multiple comparison test(1), which is
standard. One source is Daniel's Applied nonparametric statistics, second
edition page 240-241. Some books and programs don't use Dunn's name,
but simply refer to this test as the post test following a Kruskal-Wallis
test, and don't give it an exact name.

1. Compute the value of alpha that accounts for multiple comparisons.
Divide the family significance threshold,usually  0.05, by the number of
comparisons you are making. If you compare each group with every
other group, you are making K*(K-1)/2 comparisons, where K is the
number of groups. If you are comparing each group to a control group,
you are making K-1 comparisons. If you only comparing a set of
preselected pairs of groups or treatments, K is the number of
comparisons.

2. Find the value of z from the normal distribution that corresponds to
that two-tailed probability. This free calculator will help. For example, if
there are 4 groups, you are making 6 comparisons, and the critical
value of z (using the usual 0.05 significance level for the entire family
of comparisons) is the z ratio that corresponds to a probability of
0.05/6 or 0.008333. That z ratio is  2.638.

3. The next step differs for ordinary and repeated measures ANOVA.

For ordinary (not matched, not repeated measures)
nonparametric ANOVA: To compare group i and j, find the absolute
value of the difference between the mean rank of group i and the mean
rank of group j. If there are no ties, compute z by dividing this
difference in mean ranks by the square root of [(N*(N+1)/12)*(1/Ni +
1/Nj)]. Here N is the total number of data points in all groups, and Ni
and Nj are the number of data points in the two groups being
compared. If there are ties, calculate z by dividing the difference in
mean ranks by the square root of [(N*(N+1) - Sum(Ti^3 - Ti) / (N -
1)) / 12 * (1/Ni + 1/Nj), where Ti is the number of ties in the i-th
group of ties. 

For repeated measures nonparametric ANOVA (Friedman's
test): To compare treatment i and j, find the absolute value of the
difference between the mean rank of group i and the mean rank of
group j. Calculate z by dividing this difference in mean ranks by the

http://graphpad.com/quickcalcs/Statratio1.cfm
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square root of [K(K+1)/(6N)]. Here N is the number of matched sets
of data, which is the number of rows in the data table, and K is the
number of treatment groups (number of columns).

4. If the z ratio calculated in the preceding paragraph is larger that the
critical value of z computed in the paragraph before that, then conclude
that the difference is statistically significant.

Uncorrected Dunn's test (does not correct for multiple comparisons)

1. The details differ for ordinary and repeated measures ANOVA.

For ordinary (not matched, not repeated measures)
nonparametric ANOVA: To compare group i and j, find the absolute
value of the difference between the mean rank of group i and the mean
rank of group j. If there are no ties, compute z by dividing this
difference in mean ranks by the square root of [(N*(N+1)/12)*(1/Ni +
1/Nj)]. Here N is the total number of data points in all groups, and Ni
and Nj are the number of data points in the two groups being
compared. If there are ties, calculate z by dividing the difference in
mean ranks by the square root of [(N*(N+1) - Sum(Ti^3 - Ti) / (N -
1)) / 12 * (1/Ni + 1/Nj), where Ti is the number of ties in the i-th
group of ties. 

For repeated measures nonparametric ANOVA (Friedman's
test): To compare treatment i and j, find the absolute value of the
difference between the mean rank of group i and the mean rank of
group j. Calculate z by dividing this difference in mean ranks by the
square root of [K(K+1)/(6N)]. Here N is the number of matched sets
of data, which is the number of rows in the data table, and K is the
number of treatment groups (number of columns).

2. Compute and report the two-tailed P value that corresponds to the
computed z ratio. When comparing two particular groups, each rank
is determined from the entire data set (all groups), not just the two
groups being compared. But only the two sum of ranks from the two
groups being compared enter into the calculation of z. 

This is the same method used in the R method Dunn.test if you choose
one of the FDR methods to control for multiple comparisons. 

Notes:

https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf
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· When comparing two groups as part of Dunn's test, the ranks are
those for all the values. Rank all the values, compute the mean rank in
each group, and do the calculations above. Don't create ranks just for
the values in those two groups.

·  This method accounts for ties when computing the ranks, and thus
when computing the mean ranks which are compared.

· It would seem sensible to base multiple comparisons tests after
nonparametric ANOVA to be based on the Mann-Whitney or Wilcoxon
method to compute P values, followed by Bonferroni or other method
to correct for multiple comparisons. Prism does not offer this
approach, because it is not commonly used (but we'd appreciate
comments and suggestions). 

1. O.J. Dunn, Technometrics, 5:241-252, 1964

4.7.4.8 How the methods used to control the FDR work

Prism offers a choice of three algorithms for controlling the FDR. The
three algorithms all work in a similar manner. 

1. Rank the P values from low to high. 

2.  Start with the largest P value. 

3. Compute a threshold for the largest P value. That threshold value
depends on the number of P values being looked at.  For the method
of   Benjamini, Krieger and Yekutieli, the threshold also depends on
the estimate of the number of true null hypotheses provided by the
method. 

4.  If the P value is less than the threshold, then all  P values are flagged
as discoveries, and you are done. Otherwise, continue.

5. Go to the second largest P value. 

6. Compute a threshold for the second highest P value. This threshold
will be smaller than the threshold for the largest P value. Computing
the threshold (see below) depends on the rank of the P value, the
number of P values and (for the method of   Benjamini, Krieger and
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Yekutieli) the estimate of the number of true null hypotheses
(computed by the method; nothing for you to think about). 

7.  If the P value is less than the  threshold, that P value and all smaller
ones are flagged as discoveries and you are done.  Otherwise
continue. 

8. Go to the next P lower value.

9. Compute a threshold for this rank. It will be smaller than the previous
threshold.

10. If the P value is less than the  threshold, that P value and all smaller
ones are flagged as discoveries and you are done.  Otherwise repeat
steps 9-10 until done. 

The difference between the three methods is how they compute the
threshold values. The table below gives the details, where Q is the
desired false discovery rate (as a percentage), N is the number of P
values in the set, and Ntrue is the number of the null hypotheses
estimated to be true (part of the second method below). Define q to equal
Q/100. This converts the value you enter as a percentage into a fraction. 

Method Threshold for
smallest P value

Threshold for largest P value

Original
method of
Benjamini and
Hochberg (1)

q/n q

Two-stage
step-up
method of
Benjamini,
Krieger and
Yekutieli (2)

q/[(1+q)Ntrue] [q/(1+q)] *  (N / Ntrue)

Corrected
method of 
Benjamini &
Yekutieli (3)

q/[N* (1 + 1/2 + 1/3 +
... + 1/N)]

q /(1 + 1/2 + 1/3 + ... + 1/N)



GraphPad Statistics Guide350

© 1995-2016 GraphPad Software, Inc.

Notes:

· The variable q is defined to be Q/100, where Q is the desired false
discovery rate (as a percentage) you enter.  

· The thresholds for the P values between the smallest and largest are
determined by a linear interpolation between those extremes. 

· The threshold is computed as a fraction (not a percentage), to
compare to a P value.  

 Here is a graph showing the thresholds for analyzing 20 P values (N=20),
you set Q=5% and Ntrue=12 (computed by the BKY method from the
data, and only applicable for the red line). You can see that the two-stage
linear step-up method method of Benjamini, Krieger and Yekuteili (red)
has largest thresholds so has the most power, and the corrected method
of Benjamini & Yekutieli (green) has the least power. You can also see
that the methods diverge the most when computing the threshold for the
largest P values and nearly converge for smaller P values. 

References

1. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological) 289–300 (1995).

http://www.jstor.org/stable/10.2307/2346101
http://www.jstor.org/stable/10.2307/2346101
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2. Benjamini, Y., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up
procedures that control the false discovery rate. Biometrika 93, 491–
507 (2006). We use the method defined in section 6 of this paper, the
two-stage linear step-up procedure.

3. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery
rate in multiple testing under dependency. Annals of statistics, 1165–
1188.

4.7.4.9 Mathematical details

All calculations use standard methods detailed in Maxwell and Delaney
(1). The details of how Prism does its calculations for controlling the Type
I error are in  this eight-page document. 

1.  Scott E. Maxwell, Harold D. Delaney, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, Second
Edition,IBSN:0805837183

4.8 One-way ANOVA, Kruskal-Wallis and Friedman tests

You've measured a variable in three or more

groups, and the means (and medians) are distinct.

Is that due to chance? Or does it tell you the

groups are really different? Which groups are

different from which other groups?

4.8.1 How to: One-way ANOVA

 .

4.8.1.1 Entering data for one-way ANOVA and related tests

This page explains how to use Prism perform one-way ANOVA, repeated
measures one-way ANOVA, the Kruskal-Wallis and Friedman tests.

http://www.math.tau.ac.il/~yekutiel/papers/KBY%20--%20adaptive%20FDR.pdf
http://www.math.tau.ac.il/~yekutiel/papers/KBY%20--%20adaptive%20FDR.pdf
http://projecteuclid.org/euclid.aos/1013699998
http://projecteuclid.org/euclid.aos/1013699998
http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0805837183
http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0805837183
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Setting up the data table 

From the Welcome (or New Table and graph) dialog, the Column tab. 

If you aren't ready to enter your own data, choose one of the sample data
sets. 

If you want to enter data, note that there are two choices. You can enter
raw data or summary data (as mean, SD or SEM, and n).

Enter replicate values stacked into columns

Enter the data for each group into a separate column. The two groups do
not have be the same size (it's OK to leave some cells empty). If the data
are unpaired, it won't make sense to enter any row titles.

If the data are matched, so each row represents a different subject of
experiment, then you may wish to use row titles to identify each row.

Enter and plot error values calculated elsewhere

Prism can compute one-way ANOVA (but not repeated measures ANOVA,
and not nonparametric comparisons) with data entered as mean, SD (or
SEM), and n. This can be useful if you are entering data from another
program or publication. 

Create a Grouped table, and enter the data all on one row. 
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Run the ANOVA

1. From the data table, click  on the toolbar. 

2. Choose one-way ANOVA from the list of column analyses.

3. Choose the test  you want to perform on the first tab.

4. Choose the multiple comparisons tests on the Multiple Comparisons
and Options  tabs of the one-way ANOVA dialog. 

4.8.1.2 Experimental design tab: One-way ANOVA

Prism offers four related tests that compare three or more groups. Your
choice of a test depends on these choices:

353
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Experimental Design 

Choose a repeated measures test when the columns of data are matched.
Here are some examples:

· You measure a variable in each subject several times, perhaps before,
during and after an intervention.

· You recruit subjects as matched groups, matched for variables such as
age, ethnic group, and disease severity. 

· You run a laboratory experiment several times, each time with several
treatments handled in parallel. Since you anticipate experiment-to-
experiment variability, you want to analyze the data in such a way that
each experiment is treated as a matched set.

Matching should not be based on the variable you are comparing. If you
are comparing blood pressures in three groups, it is OK to match based
on age or zip code, but it is not OK to match based on blood pressure. 
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The term repeated measures applies strictly when you give treatments
repeatedly to one subject (the first example above). The other two
examples are called randomized block experiments (each set of subjects
is called a block, and you randomly assign treatments within each block).
The analyses are identical for repeated measures and randomized block
experiments, and Prism always uses the term repeated measures.

Assume Gaussian distribution?

Nonparametric tests , unlike ANOVA are not based on the assumption
that the data are sampled from a Gaussian distribution . But
nonparametric tests have less power , and report only P values but not
confidence intervals. Deciding when to use a nonparametric test is not
straightforward .

Assume sphericity?

The concept of sphericity

The concept of sphericity  is tricky to understand. Briefly it means that
you waited long enough between treatments for any treatment effect to
wash away.This concept is not relevant if your data are not repeated
measures, or if you choose a nonparametric test. 

For each subject subtract the value in column B from the value in column
A, and compute the standard deviation of this list of differences. Now do
the same thing for the difference between column A and C, between B
and C, etc. If the assumption of sphericity is true, all these standard
deviations should have similar values, with any differences being due to 
chance. If there are large, systematic differences between these standard
deviations, the assumption of sphericity is not valid. 

How to decide whether to assume sphericity

If each row of data represents a set of matched observations, then there
is no reason to doubt the assumption of sphericity. This is sometimes
called a randomized block experimental design.

If each row of data represents a single subject given successive
treatments, then you have a  repeated measures experimental design.
The assumption of sphericity is unlikely to be an issue if the order of
treatments is randomized for each subject, so one subject gets
treatments A then B then C, while another gets B, then A, then C... But if

142

35

143

146

373



GraphPad Statistics Guide356

© 1995-2016 GraphPad Software, Inc.

all subjects are given the treatments in the same order, it is better to not
assume sphericity.

If you aren't sure, we recommend that you do not assume sphericity.

How your choice affects Prism's calculations

 If you choose to not assume sphericity, Prism will:

· Include the Geisser-Greenhouse correction when computing the
repeated measures ANOVA P value. The resulting P value will be higher
than it would have been without that correction.

· Quantify violations of sphericity by reporting epsilon .

· Compute multiple comparisons tests differently.

If you ask Prism to assume sphericity, but in fact that assumption is
violated, the P value from ANOVA will be too low. For that reason, if you
are unsure whether or not to assume sphericity, we recommend that you
check the option to not assume sphericity.

Test summary

Test Matched Nonparametric

Ordinary one-way
ANOVA

No No

Repeated measures one-
way ANOVA

Yes No

Kruskal-Wallis test No Yes

Friedman test Yes Yes

4.8.1.3 Multiple comparisons tab: One-way ANOVA

Overview of multiple comparisons choices
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Multiple comparisons testing is chosen on two tabs of the analysis
parameters dialog. 

· The Multiple Comparisons tab specifies the questions you want the
multiple comparisons tests to answer. This decision depends on the
experimental design and will vary from experiment to experiment. 

· The next tab (Options)  drills down to choose a test. Those choices
tend to be personal or lab preferences, so we put them on the options
tab. 

These choices should reflect the experimental plan. It is not ok to first
look at the data, and then decide which comparisons you want Prism to
calculate. If you first look at the data, then you effectively have made all
possible comparisons.

How many comparisons?

 

No multiple comparisons

Multiple comparisons are optional. 

Compare each column mean with every other mean

This is probably the most commonly used comparison. Because it makes
more comparisons that the other choices, it will have less power to detect
differences.

359
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Compare the mean of each column with the mean of a control column

It is common to only wish to compare each group to a control group, and
not to every other group. This reduces the number of comparisons
considerably (at least if there are many groups), and so increases the
power to detect differences.

 Compare preselected pairs of columns

Comparing preselected pairs of column means reduces the number of
comparisons, and so increases power. But you must have chosen the
pairs of means to compare as part of the experimental design and your
scientific goals. If you looked at the data first, and then decided which
pairs of means to compare, then you  really compared all means. Read
about these planned comparisons . You can select up to 40 pairs with
Prism 7, but the list may get truncated if you open the file on older
versions of Prism).

Test for linear trend

The test for linear trend is a specialized test that only makes sense if the
columns are arranged in a natural order (e.g. dose or time) and you want
to test whether there is a trend  such that the column means tend to
increase (or decrease) as you move from left to right across columns. The
other multiple comparisons tests pay no attention at all to the order of
the data sets. Note that while this choice is on the Multiple Comparisons
tab, there really is only one comparison. 

Choices Prism doesn't offer

Prism omits two choices that some other programs offer. 

· Prism cannot do comparisons (called contrasts) that involve multiple
groups -- for example, comparing the grand mean of groups A and B,
with the grand mean of groups C, D and E. Scheffe's method is designed
to handle these kinds of contrasts, but Prism does not offer it. 

· While Prism can test for linear trend between column mean and column
order, it cannot test for other trends (quadratic, etc.).

 

117

336

http://www.itl.nist.gov/div898/handbook/prc/section4/prc472.htm


STATISTICS WITH PRISM 7 359

© 1995-2016 GraphPad Software, Inc.

4.8.1.4 Options tab: Multiple comparisons: One-way ANOVA

Multiple comparison approach

Correct for multiple comparisons using statistical hypothesis testing

Some of these methods let you compute confidence intervals and
multiplicity adjusted P values, and some don't. We recommend one of the
tests that compute confidence intervals and multiplicity adjusted P values
for two reasons:

· Confidence intervals  are much easier for most to interpret than
statements about statistical significance. 

· Multiplicity adjusted P values   provide more information that simply
knowing if a difference has been deemed statistically significant or
not. 

Methods than can compute confidence intervals and multiplicity adjusted
P values

The list of tests available on this third tab of the dialog depends on the
goal you specified on the second tab.

· If you are comparing every mean with every other mean, we
recommend the Tukey test .

· If you are comparing a control mean with the other means, we suggest
the Dunnett's test . 

· If you are comparing a bunch of independent comparisons, we
recommend the Sidak  method, which is very similar to Bonferroni
but has a tiny bit more power.

Methods than cannot compute confidence intervals or multiplicity

adjusted P values 

If you don't care about seeing and reporting confidence intervals, you can
gain a bit more power by choosing one of these tests. The list of tests
available on this third tab of the dialog depends on the goal you specified
on the second tab.

· If you are comparing every column mean with every other column
mean, we recommend that you choose the Holm-Šídák test ,  which
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is more powerful than the Tukey method (3). That means that with
some data sets, the Holm-Šídák method can find a statistically
significant difference where the Tukey method cannot. We offer the
Newman-Keuls test for historical reasons (so files made with old
versions of Prism will open) but we suggest you avoid it because it
does not maintain the family-wise error rate at the specified level(1).
In some cases, the chance of a Type I error can be greater than the
alpha level you specified.  

· If you are comparing each column mean to a control mean, Prism only
offers the Holm-Šídák test . Glantz says that Holm's test ought to
have more power than Dunnett's test, but this has not (to his
knowledge) been explored in depth(2). 

· If you are comparing a bunch of independent comparisons, Prism
offers only the the Holm-Šídák test

Correct for multiple comparisons by controlling the False Discovery Rate

Prism offers three methods  to control the false discovery rate . All
decide which (if any) comparisons to label as "discoveries" and do so in a
way that controls the false discovery rate to be less than a value Q you
enter. 

The FDR approach is not often used as a followup test to ANOVA, but
there is not good reason for that. 

Don't correct for multiple comparisons. Each comparison stands alone. 

If you choose this approach, Prism will perform Fisher's Least Significant
Difference (LSD) test .  

This approach (Fisher's LSD) has much more power to detect differences.
But it is more likely to falsely conclude that a difference is statistically
significant. When you correct for multiple comparisons (which Fisher's
LSD does not do), the significance threshold (usually 5% or 0.05) applies
to the entire family of comparisons. With Fisher's LSD, that threshold
applies separately to each comparison.

Only use the Fisher's LSD approach if you have a very good reason, and
are careful to explain what you did when you report the results. 
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Multiple comparisons

Swap direction of comparisons

The only affect of this option is to change the sign of all reported
differences between means. A difference of 2.3 will be -2.3 if the option is
checked. A difference of -3.4 will be 3.4 if you check the option. It is
purely a personal preference that depends on how you think about the
data. 

Report multiplicity adjusted P value for each comparison

If you choose the Bonferroni, Tukey or Dunnett multiple comparisons test,
Prism can also report multiplicity adjusted P values . If you check this
option, Prism reports an adjusted P value for each comparison. These
calculations take into account not only the two groups being compared,
but the total number groups (data set columns) in the ANOVA, and the
data in all the groups. 

The multiplicity adjusted P value is the smallest significance threshold
(alpha) for the entire family of comparisons at which a particular
comparison would be (just barely) declared to be "statistically
significant". 

Until recently, multiplicity adjusted P values have not been commonly
reported. If you choose to ask Prism to compute these values, take the
time to be sure  you understand what they mean. If you include these
values in publications or presentations, be sure to explain what they are.

Confidence and significance level (or desired FDR)

By tradition, confidence intervals are computed for 95% confidence and
statistical significance is defined using an alpha of 0.05. Prism lets you
choose other values. If you choose to control the FDR, select a value for Q
(in percent). If you set Q to 5%, you expect up to 5% of the "discoveries"
to be false positives.

References

1. SA Glantz,  Primer of Biostatistics, sixth edition, ISBN= 978-
0071435093. 

2. MA Seaman, JR Levin and RC Serlin, Psychological Bulletin 110:577-
586, 1991.
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4.8.1.5 Options tab: Graphing and output: One-way ANOVA

Graphing

Prism gives you options to create some extra graphs, each with its own
extra page of results. 

· If you chose a multiple comparison method that computes confidence
intervals (Tukey, Dunnett, etc.) Prism can plot these confidence
intervals. 

· You can choose to plot the residuals. For ordinary ANOVA, each residual
is the difference between a value and the mean value of that group. For
repeated measures ANOVA, each residual is computed as the difference
between a value and the mean of all values from that particular
individual (row).

· If you chose the Kruskal-Wallis nonparametric test, Prism can plot the
ranks of each value, since that is what the test actually analyzes.

· If you chose repeated measures ANOVA, Prism can plot the differences.
If you have four treatments (A, B, C, D), there will be six set of
differences (A-B, A-C, B-C, A-D, B-D, C-D). Seeing these differences
graphed can give you a better feel for the data.

Additional results

· You can choose an extra page of results showing descriptive statistics
for each column, similar to what the Column statistics analysis reports.

· Prism also can report the overall ANOVA comparison using the  
information theory approach (AICc), in addition to the usual P value.
Prism fits two models to the data -- one where all the groups are
sampled from populations with identical means, and one with separate
means -- and tells you the likelihood that each is correct. This is not a
standard way to view ANOVA results, but it can be informative.

Output

Choose how you want P values reported , and how many significant
digits you need.

77
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4.8.1.6 Q&A: One-way ANOVA

Is it possible to define the groups with a grouping variable?

No. The groups must be defined by columns. Enter data for one group
into column A, another group into column B, etc.. 

Can I enter data in lots of columns and then choose which to include
in the ANOVA?

Yes. After you click Analyze, you'll see a list of all data sets on the
right side of the dialog. Select the ones you wish to compare.

Can I enter data as mean, SD (or SEM) and N?

Yes. Follow this example  to see how. It is impossible to run
repeated measures ANOVA or a nonparametric test from data entered
as mean, SD (or SEM) and N. You can only choose an ordinary one-
way ANOVA.

If I have data from three or more groups, but I am particularly
interested in comparing certain groups with other groups. Is it OK to
compare two groups at a time with a t test?

No. You should analyze all the groups at once with one-way ANOVA ,
and then follow up with multiple comparison post tests. An 
exception  is when some of the 'groups' are really controls to prove
the assay worked, and are not really part of the experimental
question you are asking. 

I know the mean, SD (or SEM) and sample size for each group. Which
tests can I run?

You can enter data as mean, SD (or SEM) and N, and Prism can
compute one-way ANOVA. It is not possible to compute repeated
measures ANOVA, or nonparametric ANOVA without access to the raw
data. 
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I only know the group means, and don't have the raw data and don't
know their SD or SEM. Can I run ANOVA?

No. ANOVA compares the difference among group means with the
scatter within the groups, taking into account sample size. If you only
know the means, there is no possible way to do any statistical
comparison.

Can I use a normality test to make the choice of when to use a
nonparametric test?

This is not a good idea . Choosing when to use a nonparametric test
is not straightforward, and you can't really automate the process.

I want to compare three groups. The outcome has two possibilities,
and I know the fraction of each possible outcome in each group. How
can I compare the groups?

Not with ANOVA. Enter your data into a contingency table  and
analyze with a chi-square test .

What does 'one-way' mean?

One-way ANOVA, also called one-factor ANOVA, determines how a
response is affected by one factor. For example, you might measure a
response to three different drugs. In this example, drug treatment is
the factor. Since there are three drugs, the factor is said to have
three levels.

If you measure response to three different drugs, and two time
points, then you have two factors: drug and time. One-way ANOVA
would not be helpful. Use two-way ANOVA instead. 

If you measure response to three different drugs at two time points
with subjects from two age ranges, then you have three factors: drug,
time and age. Prism does not perform three-way ANOVA, but other
programs do.
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If there are only two levels of one factor --say male vs. female, or
control vs. treated --, then you should use a t test. One-way ANOVA
is used when there are three or more groups (although the underlying
math is the same for a t test and one-way ANOVA with two groups). 

What does 'repeated measures' mean? How is it different than
'randomized block'?

The term repeated-measures strictly applies only when you give
treatments repeatedly to each subject, and the term randomized
block is used when you randomly assign treatments within each group
(block) of matched subjects. The analyses are identical for repeated-
measures and randomized block experiments, and Prism always uses
the term repeated-measures.

How should I decide whether or not to assume sphericity?

This question only applies to repeated-measures ANOVA. These tips
might help:

· Previous versions of Prism assumed sphericity . Check the option
to assume sphericity to match results from older versions.

· If you ask Prism not to assume sphericity, the P values will be larger
but probably more accurate. Confidence intervals of multiple
comparisons tests will be computed differently. Some will be wider
and some narrower than they would have been if you had assumed
sphericity. 

· We suggest that, if in doubt, you choose to not assume sphericity. 

· It sounds sensible to measure deviations from sphericity (with
epsilon), and then use that value to decide whether or not the
ANOVA should assume sphericity. But statisticians have shown this
approach works poorly. You need to decide based on experimental
design, not based on the data. 
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Can the overall ANOVA give a statistically significant result,
while no multiple comparison test does?

Yes. 

4.8.2 One-way ANOVA results

4.8.2.1 Interpreting results: One-way ANOVA

One-way ANOVA compares three or more unmatched groups, based on
the assumption that the populations are Gaussian.

P value

The P value tests the null hypothesis that data from all groups are drawn
from populations with identical means. Therefore,  the P value answers
this question: 

If all the populations really have the same mean (the treatments are
ineffective), what is the chance that random sampling would result in
means as far apart (or more so) as observed in this experiment?

If the overall P value is large, the data do not give you any reason to
conclude that the means differ. Even if the population means were equal,
you would not be surprised to find sample means this far apart just by
chance. This is not the same as saying that the true means are the same.
You just don't have compelling evidence that they differ.

If the overall P value is small, then it is unlikely that the differences you
observed are due to random sampling. You can reject the idea that all the
populations have identical means. This doesn't mean that every mean
differs from every other mean, only that at least one differs from the rest.
Look at the results of post tests to identify where the differences are. 

F ratio and ANOVA table

The P value is computed from the F ratio which is computed from the
ANOVA table. 

ANOVA partitions the variability among all the values into one component
that is due to variability among group means (due to the treatment) and
another component that is due to variability within the groups (also called
residual variation). Variability within groups (within the columns) is

http://www.graphpad.com/faq/viewfaq.cfm?faq=782


STATISTICS WITH PRISM 7 367

© 1995-2016 GraphPad Software, Inc.

quantified as the sum of squares of the differences between each value
and its group mean. This is the residual sum-of-squares. Variation among
groups (due to treatment) is quantified as the sum of the squares of the
differences between the group means and the grand mean (the mean of
all values in all groups). Adjusted for the size of each group, this becomes
the treatment sum-of-squares. 

Each sum-of-squares is associated with a certain number of degrees of
freedom (df, computed from number of subjects and number of groups),
and the mean square (MS) is computed by dividing the sum-of-squares
by the appropriate number of degrees of freedom. These can be thought
of as variances. The square root of the mean square residual can be
thought of as the pooled standard deviation.

The F ratio is the ratio of two mean square values. If the null hypothesis
is true, you expect F to have a value close to 1.0 most of the time. A
large F ratio means that the variation among group means is more than
you'd expect to see by chance. You'll see a large F ratio both when the
null hypothesis is wrong (the data are not sampled from populations with
the same mean) and when random sampling happened to end up with
large values in some groups and small values in others. 

The P value is determined from the F ratio and the two values for degrees
of freedom shown in the ANOVA table. 

Tests for equal variances

ANOVA is based on the assumption that the data are sampled from
populations that all have the same standard deviations. Prism tests this
assumption with two tests. It computes the Brown-Forsythe test and also
(if every group has at least five values) computes Bartlett's test. There
are no options for whether to run these tests. Prism automatically does so
and always reports the results. 

Both these tests compute a P value designed to answer this question:

If the populations really have the same standard deviations, what is
the chance that you'd randomly select samples whose standard
deviations are as different from one another (or more different) as
they are in your experiment?
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Bartlett's test

Prism reports the results of the "corrected" Barlett's test as explained in
section 10.6 of Zar(1). Bartlett's test works great if the data really are
sampled from Gaussian distributions. But if the distributions deviate even
slightly from the Gaussian ideal, Bartett's test may report a small P value
even when the differences among standard deviations is trivial. For this
reason, many do not recommend that test. That's why we added the test
of Brown and Forsythe.  It has the same goal as the Bartlett's test, but is
less sensitive to minor deviations from normality. We suggest that you
pay attention to the Brown-Forsythe result, and ignore Bartlett's test
(which we left in to be consistent with prior versions of Prism). 

Brown-Forsythe test

The Brown-Forsythe test is conceptually simple. Each value in the data
table is transformed by subtracting from it the median of that column,
and then taking the absolute value of that difference. One-way ANOVA is
run on these values, and the P value from that ANOVA is reported as the
result of the Brown-Forsythe test. 

How does it work. By subtracting the medians, any differences between
medians have been subtracted away, so the only distinction between
groups is their variability. 

Why subtract the median and not the mean of each group?  If you
subtract the column mean instead of the column median, the test is called
the Levene test for equal variances. Which is better? If the distributions
are not quite Gaussian, it depends on what the distributions are.
Simulations from several groups of statisticians show that using the
median works well with many types of nongaussian data. Prism only uses
the median (Brown-Forsythe) and not the mean (Levene). 

Interpreting the results

If the P value is small, you must decide whether you will conclude that
the standard deviations of the populations are different. Obviously the
tests of equal variances are based only on the values in this one
experiment. Think about data from other similar experiments before
making a conclusion.

If you conclude that the populations have different variances, you have
four choices:
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· Conclude that the populations are different. In many experimental
contexts, the finding of different standard deviations is as important as
the finding of different means. If the standard deviations are truly
different, then the populations are different regardless of what ANOVA
concludes about differences among the means. This may be the most
important conclusion from the experiment.

· Transform the data to equalize the standard deviations, and then rerun
the ANOVA. Often you'll find that converting values to their reciprocals
or logarithms will equalize the standard deviations and also make the
distributions more Gaussian.

· Use a modified ANOVA that does not assume that all standard
deviations are equal. Prism does not provide such a test.

· Switch to the nonparametric Kruskal-Wallis test. The problem with this
is that if your groups have very different standard deviations, it is
difficult to interpret the results of the Kruskal-Wallis test. If the
standard deviations are very different, then the shapes of the
distributions are very different, and the kruskal-Wallis results cannot
be interpreted as comparing medians. 

R squared 

R2 is the fraction of the overall variance (of all the data, pooling all the
groups) attributable to differences among the group means. It compares
the variability among group means with the variability within the groups.
A large value means that a large fraction of the variation is due to the
treatment that defines the groups. The R2 value is calculated from the
ANOVA table and equals the between group sum-of-squares divided by
the total sum-of-squares. Some programs (and books) don't bother
reporting this value. Others refer to it as h2 (eta squared) rather than R2.
It is a descriptive statistic that quantifies the strength of the relationship
between group membership and the variable you measured. 

Reference

J.H. Zar, Biostatistical Analysis, Fifth edition 2010, ISBN:  0131008463.

4.8.2.2 Analysis checklist: One-way ANOVA

One-way ANOVA compares the means of three or more unmatched
groups. Read elsewhere to learn about choosing a test , and
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interpreting the results .

Are the populations distributed according to a Gaussian distribution? 

One-way ANOVA assumes that you have sampled your data from
populations that follow a Gaussian distribution. While this assumption is
not too important with large samples, it is important with small sample
sizes (especially with unequal sample sizes). Prism can test for violations
of this assumption, but normality tests have limited utility. If your data
do not come from Gaussian distributions, you have three options. Your
best option is to transform the values (perhaps to logs or reciprocals) to
make the distributions more Gaussian. Another choice is to use the
Kruskal-Wallis nonparametric test instead of ANOVA. A final option is to
use ANOVA anyway, knowing that it is fairly robust to violations of a
Gaussian distribution with large samples.

Do the populations have the same standard deviation? 

One-way ANOVA assumes that all the populations have the same
standard deviation (and thus the same variance). This assumption is not
very important when all the groups have the same (or almost the same)
number of subjects, but is very important when sample sizes differ.

InStat tests for equality of variance with two tests: The Browne-
Forsythe test and Bartlett's test. The P value from these tests answer
this question: If the populations really have the same variance, what is
the chance that you'd randomly select samples whose variances are as
different from one another as those observed in your experiment. A
small P value suggests that the variances are different.

Don't base your conclusion solely on these tests. Also think about data
from other similar experiments. If you have plenty of previous data that
convinces you that the variances are really equal, ignore these tests
(unless the P value is really tiny) and interpret the ANOVA results as
usual. Some statisticians recommend ignoring tests for equal variance
altogether if the sample sizes are equal (or nearly so).

In some experimental contexts, finding different variances may be as
important as finding different means. If the variances are different, then
the populations are different -- regardless of what ANOVA concludes
about differences between the means.
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Are the data unmatched? 

One-way ANOVA works by comparing the differences among group
means with the pooled standard deviations of the groups. If the data are
matched, then you should choose repeated-measures ANOVA instead. If
the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.

Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of one-way ANOVA only make sense when the
scatter is random – that whatever factor caused a value to be too high or
too low affects only that one value. Prism cannot test this assumption.
You must think about the experimental design. For example, the errors
are not independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low. 

Do you really want to compare means? 

One-way ANOVA compares the means of three or more groups. It is
possible to have a tiny P value – clear evidence that the population
means are different – even if the distributions overlap considerably. In
some situations – for example, assessing the usefulness of a diagnostic
test – you may be more interested in the overlap of the distributions
than in differences between means.

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. These data need
to be analyzed by two-way ANOVA , also called two factor ANOVA.
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Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it. 

Do the different columns represent different levels of a grouping
variable?

One-way ANOVA asks whether the value of a single variable differs
significantly among three or more groups. In Prism, you enter each
group in its own column. If the different columns represent different
variables, rather than different groups, then one-way ANOVA is not an
appropriate analysis. For example, one-way ANOVA would not be helpful
if column A was glucose concentration, column B was insulin
concentration, and column C was the concentration of glycosylated
hemoglobin.

4.8.3 Repeated-measures one-way ANOVA

4.8.3.1 What is repeated measures?

How Prism expects the data to be entered

The difference between ordinary and repeated measures ANOVA, is
similar to the difference between unpaired and paired t tests. The term
repeated measures means that you give treatments repeatedly to each
subject. 

Repeated measures or randomized block?

The term randomized block is used when you randomly assign treatments
within each group (block) of matched subjects.

Imagine that you compare three different treatments. In a repeated
measures design, you'd recruit say 10 subjects (or use ten animals) and
measure each of the subjects (animals) after each of the treatments.
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With a randomized block design, you'd recruit ten sets of four subject
each, matched for age, gender etc. (or ten sets of four animals, with the
four treated at the same time in adjacent cages...). 

ANOVA works identically for repeated-measures and randomized block
experiments, and Prism always uses the term repeated-measures.

One way? Or two way?

We consider this part of one-way ANOVA, because there really is only one
factor, denoted by the data set columns. But you could argue there is a
second factor too, subject, because each row represents a different
subject (or block). In fact, you'll get the same results if you analyze with
two-way ANOVA and one-way repeated measures ANOVA (assuming
sphericity). 

4.8.3.2 Sphericity and compound symmetry

Overview

One of the assumptions of repeated measures ANOVA is called sphericity
or circularity (the two are synonyms). Prism lets you decide whether to
accept this assumption. If you choose not to accept this assumption,
Prism uses the method of Geisser and Greenhouse to correct for
violations of the assumption.

Should you assume sphericity?

Sphericity is defined below, but here are some guidelines for answering
Prism's question about whether to assume sphericity: 

· If your experimental design relies on matching rather than repeated
measurements , then you can assume sphericity, as violations are
essentially impossible. 

· If your experiment design is repeated measures, we recommend that
you do not assume sphericity. We follow the recommendation of
Maxwell and Delaney(1).

Defining sphericity 

The name is confusing. Don't try to intuit what the term sphericity means
by thinking about spheres. Mathematical statistics books  define the term
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in terms of matrix algebra. That makes it seem confusing. But, in fact,
the concept is pretty easy to understand.

Here is the table of sample data from Prism (choose a Column table, and
then choose sample data for repeated measures one-way ANOVA).

Each row represents data from one subject identified by the row title.
Each column represents a different treatment. In this example, each of
five subjects was given four sequential treatments. 

The assumption of sphericity states that the variance of the differences
between treatment A and B equals the variance of the difference between
A and C, which equals the variance of the differences between  A and D,
which equals the variance of the differences between B and D...   Like all
statistical assumptions, this assumption pertains to the populations from
which the data were sampled, and not just to these particular data sets. 

This is easier to see on a graph:

The left panel shows the differences. Each of the six columns represents
the difference between two treatments. There are five subjects, so there
are five dots for each difference.
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The graph on the right shows the standard deviations. The assumption of
sphericity states that the data were sampled from populations where
these standard deviations are identical. (Most statistics books talk about
variance, which is the square of the standard deviation. If the standard
deviations are equal, so are the variances.) The standard deviations in
the right panel above are not identical. That doesn't really matter.  The
assumption is about the population of values from which the data were
sampled. In any particular samples, you expect some variation. Here the
variation among the standard deviations is fairly small. 

You might be surprised that the differences between nonadjacent columns
are considered. Why should the difference between A and C matter? Or
between A and D? The answer is that ANOVA, even repeated measures
ANOVA, pays no attention to the order of the groups. Repeated measures
ANOVA treats each row of values as a set of matched values. But the
order of the treatments is simply not considered. If you randomly
scrambled the treatment order of all subjects, the ANOVA results wouldn't
change a bit (unless you choose a post test for trend). 

Compound symmetry 

When you read about this topic, you will also encounter the term 
compound symmetry, which is based on the covariance matrix of the raw
data (without computing paired differences).  If the assumption of
compound symmetry is valid for a data set, then so is the assumption of
sphericity. But the reverse is not always true. It is possible, but rare, for
data to violate compound symmetry even when the assumption of
sphericity is valid. 

What happens when the sphericity assumption is violated? 

The assumption of sphericity would be violated when the repeated
measurements are made in too short a time interval, so that random
factors that cause a particular value to be high (or low) don't wash away
or dissipate before the next measurement. To avoid violating the
assumption, wait long enough between treatments so the subject is
essentially the same as before the treatment. When possible, also
randomize the order of treatments.

If the assumption of sphericity is violated, and you don't account for this
in the calculations, then the P value reported by repeated measures
ANOVA will be too small.  In other words, the Geisser-Greenhouse
correction increases the P value. 



GraphPad Statistics Guide376

© 1995-2016 GraphPad Software, Inc.

Quantifying deviations from sphericity

Prism quantifies deviation from sphericity by calculating and reporting the
value of epsilon . 

It seems like Prism should be able to decide whether to correct for
violations of sphericity based on the value of epsilon. However, using this
value to decide how to analyze the data is not recommended(1).

Repeated measures ANOVA without assuming sphericity

Prism can use the method of Greenhouse and Geisser to adjust the
results of the repeated measures ANOVA to account for the value of
epsilon. It lowers the values of degrees of freedom, and thus increases
the P value. 

Notes:

· This method is sometimes attributed to Box.

· Geisser and Greenhouse also derived a lower-bound correction. This is a
simpler method to calculate, but corrects too far. Prism does not use
this method, but instead uses the Geisser and Greenhouse epsilon hat
method.

· Huynh and Feldt have developed an alternative method to perform
repeated measures ANOVA without assuming sphericity. Prism does not
compute this method, as Maxwell and Delaney prefer (slightly) the
Geisser and Greenhouse method (1).

· The correction works by decreasing the values of the degrees of
freedom. These revised values can be fractional, and Prism computes P
from the F ratio and these revised fractional degrees of freedom.

When looking at a printed page of Prism results, how can you tell if
sphericity was assumed?

If sphericity was not assumed, you'll see that Prism reports a value for
Geisser-Greenhouse epsilon, and that fractional df values are used to
compute a P value.
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Reference

1. Scott E. Maxwell, Harold D. Delaney, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, Second Edition.
IBSN:0805837183. 

2. Andy Field, A Bluffer's Guide to ... Sphericity. 

4.8.3.3 Quantifying violations of sphericity with epsilon

Deviations from sphericity  in repeated measures ANOVA can be
quantified by a value known as epsilon.  There are two methods for
calculating it. Based on a recommendation from Maxwell and Delaney (p
545, reference below), Prism uses the method of Greenhouse and
Geisser. While this method might be a bit conservative and
underestimate deviations from the ideal, the alternative method by Huynh
and Feldt tends to go too far in the other direction.

If you choose not to assume sphericity in repeated measures ANOVA,
Prism  reports the value of epsilon. Its value can never be higher than
1.0, which denotes no violation of sphericity. The value of epsilon gets
smaller with more violation of sphericity, but its value can never be lower
than 1/(k - 1), where k is the number of treatment groups.
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Number of treatments, k Possible values of epsilon

3 0.5000 to 1.0000

4 0.3333 to 1.0000

5 0.2500 to 1.0000

6 0.2000 to 1.0000

7 0.1667 to 1.0000

8 0.1429 to 1.0000

9 0.1250 to 1.0000

10 0.1111 to 1.0000

11 0.1000 to 1.0000

12 0.0909 to 1.0000

13 0.0833 to 1.0000

14 0.0769 to 1.0000

15 0.0714 to 1.0000

20 0.0526 to 1.0000

25 0.0417 to 1.0000

50 0.0204 to 1.0000

k 1/(k-1) to 1.0000

Reference

Scott E. Maxwell, Harold D. Delaney, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, Second Edition.
IBSN:0805837183. 

4.8.3.4 Multiple comparisons after repeated measures one-way ANOVA

The use of multiple comparisons tests after repeated measures ANOVA is
a tricky topic that many statistics texts avoid. We follow methods
suggested by Maxwell and Delaney(1).

With one way ANOVA, Prism computes the multiple comparisons tests in 
two different ways, depending on whether you ask Prism (on the first tab
of the ANOVA dialog) to assume sphericity . With two- and three-way
ANOVA, Prism does not (yet) offer this choice.

If you assume sphericity

The multiple comparisons tests performed by Prism use the mean square
residual for all comparisons. This is a pooled value that assess variability
in all the groups. If you assume that variability really is the same in all
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groups (with any differences due to chance) this gives you more power.
This makes sense, as you get to use data from all time points to assess
variability, even when comparing only two times. 

If you do not assume sphericity

If you check the option to not assume sphericity, Prism does two things
differently. 

· It applies the Geisser-Greenhouse correction when computing the P
values for the main effect. 

· It computes the multiple comparisons differently. For each comparison
of two groups, it uses only the data in those two groups (essentially
performing a paired t test). This makes sense when scatter increases
with time, so later treatments give a more variable response than
earlier treatments. It uses the method described on pages 552-555 of
Maxwell(1).

When you choose not to assume sphericity, some multiple comparisons
will have more power (and narrower confidence intervals) than they
would if you did not assume sphericity. But others will have less power
(and wider confidence intervals).

 Reference

1. Scott E. Maxwell, Harold D. Delaney, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, Second Edition.
IBSN:0805837183

4.8.3.5 Interpreting results: Repeated measures one-way ANOVA

Repeated-measures ANOVA compares the means of three or more
matched groups. The term repeated-measures strictly applies only when
you give treatments repeatedly to each subject, and the term randomized
block is used when you randomly assign treatments within each group
(block) of matched subjects. The analyses are identical for repeated-
measures and randomized block experiments, and Prism always uses the
term repeated-measures.

P value

The P value answers this question: 
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If all the populations really have the same mean (the treatments are
ineffective), what is the chance that random sampling would result in
means as far apart (or more so) as observed in this experiment?

If the overall P value is large, the data do not give you any reason to
conclude that the means differ. Even if the true means were equal, you
would not be surprised to find means this far apart just by chance. This is
not the same as saying that the true means are the same. You just don't
have compelling evidence that they differ.

If the overall P value is small, then it is unlikely that the differences you
observed are due to random sampling. You can reject the idea that all the
populations have identical means. This doesn't mean that every mean
differs from every other mean, only that at least one differs from the rest.
Look at the results of post tests to identify where the differences are. 

Was the matching effective?

A repeated-measures experimental design can be very powerful, as it
controls for factors that cause variability between subjects. If the
matching is effective, the repeated-measures test will yield a smaller P
value than an ordinary ANOVA. The repeated-measures test is more
powerful because it separates between-subject variability from within-
subject variability. If the pairing is ineffective, however, the repeated-
measures test can be less powerful because it has fewer degrees of
freedom.

Prism tests whether the matching was effective and reports a P value that
tests the null hypothesis that the population row means are all equal. If
this P value is low, you can conclude that the matching was effective. If
the P value is high, you can conclude that the matching was not effective
and should consider using ordinary ANOVA rather than repeated-
measures ANOVA.

F ratio and ANOVA table

The P values are calculated from the ANOVA table. With repeated-
measures ANOVA, there are three sources of variability: between columns
(treatments), between rows (individuals), and random (residual). The
ANOVA table partitions the total sum-of-squares into those three
components. It then adjusts for the number of groups and number of
subjects (expressed as degrees of freedom) to compute two F ratios. The
main F ratio tests the null hypothesis that the column means are
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identical. The other F ratio tests the null hypothesis that the row means
are identical (this is the test for effective matching). In each case, the F
ratio is expected to be near 1.0 if the null hypothesis is true. If F is large,
the P value will be small.

If you don't accept the assumption of sphericity

If you checked the option to not accept the assumption of sphericity,
Prism does two things differently. 

· It applies the correction of Geisser and Greenhouse. You'll see smaller
degrees of freedom, which usually are not integers. The corresponding P
value is higher than it would have been without that correction.

· It reports the value of epsilon , which is a measure of how badly the
data violate the assumption of sphericity. 

R2 

Prism reports two different R2 values, computed by taking ratios of sum-
of-squares (SS):

· To quantify how large the treatment effects are. There are two ways to
compute this. Prism uses the method described by Keppel (1), in which
R2 is the variation due to treatment effects as a fraction of the sum of
the variation due to treatment effects plus random variation. .  That text
refers to the value as both R2 and also eta squared, and states that this
value an estimate of the partial omega squared. It is computed simply as
the SS treatment divided by the sum of the SS treatment plus the
SSresidual. Note that variation between subjects (SSindividual) is not
part of the calculation. This R2 is reported in the results section with the
heading "Repeated measures ANOVA summary".

·  To quantify how effecting the effectiveness of matching. This R2

quantifies the fraction of total variation that is due to differences among
subjects. It is computed as SSindividual divided by the SStotal, and
reported within the results section with the heading "Was the matching
effective".

Multiple comparisons tests and analysis checklist

Learn about multiple comparisons tests after repeated measures
ANOVA . 
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Before interpreting the results, review the analysis checklist . 

(1) G Keppel and TD Wickens, Design and Analysis, Fourth Edition, 2004,
ISBN: 0135159415

4.8.3.6 Analysis checklist: Repeated-measures one way ANOVA

Repeated measures one-way ANOVA compares the means of three or
more matched groups. Read elsewhere to learn about choosing a test
, and interpreting the results .

Was the matching effective? 

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
will not affect the difference between the measurements in that subject.
By analyzing only the differences, therefore, a matched test controls for
some of the sources of scatter. 

The matching should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
matching with an F test (distinct from the main F test of differences
between columns). If the P value for matching is large (say larger than
0.05), you should question whether it made sense to use a repeated-
measures test. Ideally, your choice of whether to use a repeated-
measures test should be based not only on this one P value, but also on
the experimental design and the results you have seen in other similar
experiments.

Are the subjects independent? 

The results of repeated-measures ANOVA only make sense when the
subjects are independent. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six rows of data, but these were obtained from
three animals, with duplicate measurements in each animal. In this case,
some factor may affect the measurements from one animal. Since this
factor would affect data in two (but not all) rows, the rows (subjects) are
not independent. 
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Is the random variability distributed according to a Gaussian
distribution?

Repeated-measures ANOVA assumes that each measurement is the sum
of an overall mean, a treatment effect (the average difference between
subjects given a particular treatment and the overall mean), an
individual effect (the average difference between measurements made in
a certain subject and the overall mean) and a random component.
Furthermore, it assumes that the random component follows a Gaussian
distribution and that the standard deviation does not vary between
individuals (rows) or treatments (columns). While this assumption is not
too important with large samples, it can be important with small sample
sizes. Prism does not test for violations of this assumption.

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it.
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Can you accept the assumption of circularity or sphericity?

Repeated-measures ANOVA assumes that the random error truly is
random. A random factor that causes a measurement in one subject to
be a bit high (or low) should have no affect on the next measurement in
the same subject. This assumption is called circularity or sphericity. It is
closely related to another term you may encounter, compound
symmetry.

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. One way to violate this assumption is to make the repeated
measurements in too short a time interval, so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. When possible, also randomize the order of
treatments.

You only have to worry about the assumption of circularity when you
perform a repeated-measures experiment, where each row of data
represents repeated measurements from a single subject. It is
impossible to violate the assumption with randomized block experiments,
where each row of data represents data from a matched set of subjects.

If you cannot accept the assumption of sphericity, you can specify that
on the Parameters dialog. In that case, Prism will take into account
possible violations of the assumption (using the method of Geisser and
Greenhouse) and report a higher P value. 

4.8.4 Kruskal-Wallis test

4.8.4.1 Interpreting results: Kruskal-Wallis test

P value

The Kruskal-Wallis test is a nonparametric test that compares three or
more unmatched groups. To perform this test, Prism first ranks all the
values from low to high, paying no attention to which group each value
belongs. The smallest number gets a rank of 1. The largest number gets a
rank of N, where N is the total number of values in all the groups. The
discrepancies among the rank sums are combined to create a single value
called the Kruskal-Wallis statistic (some books refer to this value as H). A
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large Kruskal-Wallis statistic corresponds to a large discrepancy among
rank sums.

The P value answers this question: 

If the groups are sampled from populations with identical distributions,
what is the chance that random sampling would result in a sum of
ranks as far apart (or more so) as observed in this experiment?

If your samples are small (even if there are ties), Prism calculates an
exact P value. If your samples are large,  it approximates the P value
from a Gaussian approximation. Prism labels the results accordingly as 
exact or approximate.  Here, the term Gaussian has to do with the
distribution of sum of ranks and does not imply that your data need to
follow a Gaussian distribution. The approximation is quite accurate with
large samples and is standard (used by all statistics programs). The exact
calculations can be slow with large(ish) data sets or slow(ish) computers.
You can cancel the calculations in that case, by clicking the cancel button
on the progress dialog. If you cancel computation of the exact P value,
Prism will instead show the approximate P value.

If the P value is small, you can reject the idea that the difference is due to
random sampling, and you can conclude instead that the populations have
different distributions.

If the P value is large, the data do not give you any reason to conclude
that the distributions differ. This is not the same as saying that the
distributions are the same. Kruskal-Wallis test has little power. In fact, if
the total sample size is seven or less, the Kruskal-Wallis test will always
give a P value greater than 0.05 no matter how much the groups differ.

Tied values

The Kruskal-Wallis test was developed for data that are measured on a
continuous scale. Thus you expect every value you measure to be unique.
But occasionally two or more values are the same. When the Kruskal-
Wallis calculations convert the values to ranks, these values tie for the
same rank, so they both are assigned the average of the two (or more)
ranks for which they tie.

Prism uses a standard method to correct for ties when it computes the
Kruskal-Wallis statistic.
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There is no completely standard method to get a P value from these
statistics when there are ties.  Prism 6 handles ties differently than did
prior versions. Prism 6 will compute an exact P value with moderate
sample sizes. Earlier versions always computed an approximate P value
when there were ties. Therefore, in the presence of ties, Prism 6 may
report a P value different than that reported by earlier versions of Prism
or by other programs.

If your samples are small, Prism calculates an exact P value. If your
samples are large, it approximates the P value from the chi-square
distribution. The approximation is quite accurate with large samples. With
medium size samples, Prism can take a long time to calculate the exact P
value. While it does the calculations, Prism displays a progress dialog and
you can press Cancel to interrupt the calculations if an approximate P
value is good enough for your purposes.  Prism always reports whether
the P value was computed exactly or via an  

 Dunn's  test

Dunn's multiple comparisons test compares the difference in the sum of
ranks between two columns with the expected average difference (based
on the number of groups and their size). 

For each pair of columns, Prism reports the P value as >0.05, <0.05,
<0.01, or <0.001. The calculation of the P value takes into account the
number of comparisons you are making. If the null hypothesis is true (all
data are sampled from populations with identical distributions, so all
differences between groups are due to random sampling), then there is a
5% chance that at least one of the post tests will have P<0.05. The 5%
chance does not apply to each comparison but rather to the entire family
of comparisons.

For more information on the post test, see Applied Nonparametric
Statistics by WW Daniel, published by PWS-Kent publishing company in
1990 or Nonparametric Statistics for Behavioral Sciences by S. Siegel and
N. J. Castellan, 1988. The original reference is O.J. Dunn, Technometrics,
5:241-252, 1964. 

Prism refers to the post test as the Dunn's post test. Some books and
programs simply refer to this test as the post test following a Kruskal-
Wallis test, and don't give it an exact name.
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Analysis checklist

Before interpreting the results, review the analysis checklist .

4.8.4.2 Analysis checklist: Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric test that compares three or
more unpaired or unmatched groups.Read elsewhere to learn about 
choosing a test , and interpreting the results . 

Are the “errors” independent? 

The term “error” refers to the difference between each value and the
group median. The results of a Kruskal-Wallis test only make sense when
the scatter is random – that whatever factor caused a value to be too
high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have nine values in each
of three groups, but these were obtained from two animals in each group
(in triplicate). In this case, some factor may cause all three values from
one animal to be high or low. 

Are the data unpaired?

If the data are paired or matched, then you should consider choosing
the Friedman test instead. If the pairing is effective in controlling for
experimental variability, the Friedman test will be more powerful than
the Kruskal-Wallis test.

Are the data sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to detect a true
difference), especially with small sample sizes. Furthermore, Prism
(along with most other programs) does not calculate confidence intervals
when calculating nonparametric tests. If the distribution is clearly not
bell-shaped, consider transforming the values (perhaps to logs or
reciprocals) to create a Gaussian distribution and then using ANOVA.

178
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Do you really want to compare medians? 

The Kruskal-Wallis test compares the medians of three or more groups.
It is possible to have a tiny P value – clear evidence that the population
medians are different – even if the distributions overlap considerably.

Are the shapes of the distributions identical?

The Kruskal-Wallis test does not assume that the populations follow
Gaussian distributions. But it does assume that the shapes of the
distributions are identical. The medians may differ – that is what you are
testing for – but the test assumes that the shapes of the distributions
are identical. If two groups have very different distributions, consider
transforming the data to make the distributions more similar.

4.8.5 Friedman's test

4.8.5.1 Interpreting results: Friedman test

P value

The Friedman test is a nonparametric test that compares three or more
matched or paired groups. The Friedman test first ranks the values in
each matched set (each row) from low to high. Each row is ranked
separately. It then sums the ranks in each group (column). If the sums
are very different, the P value will be small. Prism reports the value of the
Friedman statistic, which is calculated from the sums of ranks and the
sample sizes. This value goes by several names. Some programs and
texts call this value Q or T1 or FM. Others call it chi-square, since its
distribution is approximately chi-square so the chi-square distribution is
used to compute the P value. 

The whole point of using a matched test is to control for experimental
variability between subjects, thus increasing the power of the test. Some
factors you don't control in the experiment will increase (or decrease) all
the measurements in a subject. Since the Friedman test ranks the values
in each row, it is not affected by sources of variability that equally affect
all values in a row (since that factor won't change the ranks within the
row). 

The P value answers this question: If the different treatments (columns)
really are identical, what is the chance that random sampling would result
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in sums of ranks as far apart (or more so) as observed in this
experiment? 

If the P value is small, you can reject the idea that all of the differences
between columns are due to random sampling, and conclude instead that
at least one of the treatments (columns) differs from the rest. Then look
at post test results to see which groups differ from which other groups.

If the P value is large, the data do not give you any reason to conclude
that the overall medians differ. This is not the same as saying that the
medians are the same. You just have no compelling evidence that they
differ. If you have small samples, Friedman's test has little power.

Exact or approximate P value?

With a fairly small table, Prism does an exact calculation. When the table
is larger, Prism uses a standard approximation. To decide when to use the
approximate method, Prism computes (T!)S (T factorial to the S power)
where T is number of treatments (data sets) and S is the number of
subjects (rows).When that value exceeds 109, Prism uses the
approximate method. For example, if there are 3 treatments and 12 rows,
then (T!)S equals 612, which equals 2.2 × 109, so Prism uses an
approximate method. 

The approximate method is sometimes called a Gaussian approximation.
The term Gaussian has to do with the distribution of sum of ranks, and
does not imply that your data need to be sampled from a Gaussian
distribution. With medium size samples, Prism can take a long time to
calculate the exact P value. You can interrupt the calculations if an
approximate P value meets your needs. 

The exact method works by examining all possible rearrangements of the
values, keeping each value in the same row (same subject, since this is a
repeated measures design) but allowing the column (treatment)
assignment to vary. 

If two or more values (in the same row) have the same value, previous
versions of Prism were not able to calculate the exact P value, so Prism
computed an approximate P value even with tiny samples. Prism 6 can
compute an exact P value even in the presence of ties, so only uses an
approximation when sample size is fairly large as explained above. This
means that with some data sets, Prism 6 will report different results than
prior versions did. 
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Dunn's post test

Following Friedman's test, Prism can perform Dunn's post test. For
details, see Applied Nonparametric Statistics by WW Daniel, published by
PWS-Kent publishing company in 1990 or Nonparametric Statistics for
Behavioral Sciences by S Siegel and NJ Castellan, 1988. The original
reference is O.J. Dunn, Technometrics, 5:241-252, 1964. Note that some
books and programs simply refer to this test as the post test following a
Friedman test and don't give it an exact name.

Dunn's post test compares the difference in the sum of ranks between
two columns with the expected average difference (based on the number
of groups and their size). For each pair of columns, Prism reports the P
value as >0.05, <0.05, <0.01, or < 0.001. The calculation of the P value
takes into account the number of comparisons you are making. If the null
hypothesis is true (all data are sampled from populations with identical
distributions, so all differences between groups are due to random
sampling), then there is a 5% chance that at least one of the post tests
will have P<0.05. The 5% chance does not apply to each comparison but
rather to the entire family of comparisons.

4.8.5.2 Analysis checklist: Friedman's test

Friedman's test is a nonparametric test that compares three or more
paired groups. 

Was the matching effective? 

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
they will not affect the difference between the measurements in that
subject. By analyzing only the differences, therefore, a matched test
controls for some of the sources of scatter. 

The matching should be part of the experimental design and not
something you do after collecting data. Prism does not test the adequacy
of matching with the Friedman test.

Are the subjects (rows) independent? 

The results of a Friedman test only make sense when the subjects
(rows) are independent – that no random factor has affected values in
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more than one row. Prism cannot test this assumption. You must think
about the experimental design. For example, the errors are not
independent if you have six rows of data obtained from three animals in
duplicate. In this case, some random factor may cause all the values
from one animal to be high or low. Since this factor would affect two of
the rows (but not the other four), the rows are not independent. 

Are the data clearly sampled from non-Gaussian populations? 

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using repeated-measures
ANOVA. 

Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. 

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

4.9 Two-way ANOVA
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Two-way ANOVA, also called two-factor ANOVA,

determines how a response is affected by two

factors. For example, you might measure a

response to three different drugs in both men and

women. Drug treatment is one factor and gender

is the other. Is the response affected by drug? By

gender? Are the two intertwined? These are the

kinds of questions that two-way ANOVA answers.

4.9.1 How to: Two-way ANOVA

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs in both men and women. In this
example, drug treatment is one factor and gender is the other. 

A note of caution for statistical novices

Deciding which factor defines rows and which defines columns?

Entering data for two-way ANOVA

Entering repeated measures data

Missing values and two-way ANOVA

Point of confusion: ANOVA with a quantitative factor

Experimental design tab: Two-way ANOVA

Multiple comparisons tab: Two-way ANOVA

Options tab: Two-way ANOVA
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Summary of multiple comparisons available (two-way)

Q&A: Two-way ANOVA

4.9.1.1 Notes of caution for statistical novices

Our goal with Prism has always been to make basic biostatistics very
accessible and easy. Two-way ANOVA is pushing the limits of "basic
biostatistics". Multiple comparisons after two-way ANOVA stretch this
definition even more. If you haven't taken the time to really understand
two-way ANOVA, it is quite easy to be mislead by the results. Beware!

· Two-way ANOVA is not a topic that is easy to master. In addition to
reading textbooks, also consider getting help.from someone with more
experience.

· Before getting lost in the many choices for multiple comparisons, first
articulate clearly the scientific goals of the study. Don't articulate your
goals in terms of ANOVA (looking for interactions). Figure out what you
really want to know. Then figure out the best statistical approach to
getting the answer.

· In Prism, the two-way ANOVA analysis can be used when, as the name
suggests, there are two factors. None, one or both of the factors can be
repeated measures.  

4.9.1.2 Deciding which factor defines rows and which defines columns?

Two ways to enter data on a Grouped table

In a grouped table, each data set (column) represents a different level of
one factor, and each row represents a different level of the other factor. 

You need to decide which factor to define by rows, and which to define by
data set columns. For example, if you are comparing men and women at
three time points, there are two ways to organize the data: 

416
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Your choice affects the appearance of graphs

The ANOVA results will be identical no matter which way you enter the
data. But the choice defines how the graph will appear. If you enter data
as shown in the first approach above, men and women will appear in bars
of different color, with three bars of each color representing the three
time points (left graph below). If you enter data using the second
approach shown above, there will be one bar color and fill for Before,
another for During, and another for After (right graph below). Men and
Women appear as two bars of identical appearance.
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 Use the transpose analysis to change your mind

What happens if after entering and analyzing your data using one of the
choices above, you then realize you wish you had done it the other way?
You don't need to reenter your data. Instead use Prism's transpose
analysis, and then create a graph from the results table.

4.9.1.3 Entering data for two-way ANOVA

Groups are defined by rows and columns

Prism organizes data for two-way ANOVA differently than do most other
programs. 

Prism does not use grouping variables. Instead, use rows and columns to
designate the different groups (levels) of each factor. Each data set
(column) represents a different level of one factor, and each row
represents a different level of the other factor. 

Setting up the data table

From the Welcome (or New Data Table and Graph) dialog, choose the 
Grouped tab. 

Entering raw data

Create a Grouped table with enough subcolumns to hold the maximum
number of replicates you have. 

In the example above, the two rows encode the two levels of one factor
(serum starved vs. normal culture) and the three data set columns
encode the three levels of the other factor (cell line).

Entering averaged data

If you have already averaged your replicates in another program, you can
choose to enter and plot the mean and SD (or SEM) and n. If your data
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has more than 256 replicates, this is the only way to enter data into Prism
for two-way ANOVA.

 Note that repeated measures ANOVA requires raw data. This is not a
quirk of Prism, but fundamental to repeated measures analyses. So if you
enter mean, sample size and SD or SEM, you'll only be able to do ordinary
(not repeated measures) ANOVA.

Entering single values

If you only have one value for each condition, create a Grouped table and
choose to enter a single Y value (no subcolumns). In this case, Prism will
only be able to compute ordinary (not repeated measures) ANOVA, and
will assume that there is no interaction between the row and column
factor. It cannot test for interaction without replicates, so simply assumes
there is none. This may or may not be a reasonable assumption for your
situation. 

Run the ANOVA

1. From the data table, click  on the toolbar. 

2. Choose Two-way ANOVA from the list of grouped analyses. 

3.  On the first tab (Experimental Design), define whether or not your
experimental design used repeated measure .  Optionally name the
grouping variables that define the rows and columns.

4.  On the second (Multiple Comparisons ) and third (Options ) tab,
choose multiple comparisons.

Prism can't handle huge data sets

Prism 7 cannot run two-way ANOVA with huge data sets and presents an
message telling you so (Prism 6 would crash or freeze). How huge is
huge? Really big! The details  depends on whether or not your data are
repeated measures, but does not depend on which multiple comparisons
tests you chose (if any).
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No matching.  Regular two-way ANOVA (not repeated measures)

Prism cannot analyze tables where:  number of rows * number of columns
> 16,384

Each column represents a different time point, so matched values are
spread across a row

Prism cannot analyze tables where:   (number of rows)2 * number of
columns * number of subcolumns * (number of columns + number of
subcolumns) > 268,435,456

Each row represents a different time point, so matched values are stacked
into a subcolumn

Prism cannot analyze tables where: number of rows * (number of
columns)2 * number of subcolumns * (number of rows + number of
subcolumns) > 268,435,456

Repeated measures by both factors

Prism can handle any table you can enter. 

4.9.1.4 Entering repeated measures data

The term repeated-measures refers to an experiment that collects
multiple measurements from each subject. The analysis of repeated
measures data is identical to the analysis of randomized block
experiments that use paired or matched subjects. Prism can calculate
repeated-measures two-way ANOVA when either one of the factors are
repeated or matched (mixed effects) or when both factors are.  In other
words, Prism can handle these three situations with its two-way ANOVA
analysis:

· Two between-subject variables (neither factor is repeated measures)

· One between-subject variable and one within subject variable

· Two within-subject variables (both factors are repeated measures)
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One data table can correspond to four experimental designs

Prism uses a unique way to enter data. You use rows and columns to
designate the different groups (levels) of each factor. Each data set
(column) represents a different level of one factor, and each row
represents a different level of the other factor. You need to decide which
factor is defined by rows, and which by columns. Your choice will not
affect the ANOVA results, but the choice is important  as it affects the
appearance of graphs.

The table above shows example data testing the effects of three doses of
drugs in control and treated animals. 

These data could have come from four distinct experimental designs. 

Not repeated measures

The experiment was done with six animals. Each animal was given one of
two treatments at one of three doses. The measurement was then made
in duplicate. The value at row 1, column A, Y1 (23) came from the same
animal as the value at row 1, column A, Y2 (24). Since the matching is
within a treatment group, it is a replicate, not a repeated measure.
Analyze these data with ordinary two-way ANOVA, not repeated-
measures ANOVA.

Matched values are spread across a rows

The experiment was done with six animals, two for each dose. The control
values were measured first in all six animals. Then you applied a
treatment to all the animals and made the measurement again. In the
table above, the value at row 1, column A, Y1 (23) came from the same
animal as the value at row 1, column B, Y1 (28). The matching is by row.

393
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Matched values are stacked into a subcolumn

The experiment was done with four animals. First each animal was
exposed to a treatment (or placebo). After measuring the baseline data
(dose=zero), you inject the first dose and make the measurement again.
Then inject the second dose and measure again. The values in the first Y1
column (23, 34, and 43) were repeated measurements from the same
animal. The other three subcolumns came from three other animals. The
matching was by column.

Repeated measures in both factors

The experiment was done with two animals. First you measured the
baseline (control, zero dose). Then you injected dose 1 and made the
next measurement, then dose 2 and measured again. Then you gave the
animal the experimental treatment, waited an appropriate period of time,
and made the three measurements again. Finally, you repeated the
experiment with another animal (Y2). So a single animal provided data
from both Y1 subcolumns (23, 34, 43 and 28, 41, 56). 

When do you specify which design applies to this experiment?

The example above shows that one grouped data set can represent four
different experimental designs. You do not distinguish these designs when
creating the data table. The data table doesn't "know" wether or not the
data are repeated measures. You should take into account experimental
design when choosing how to graph the data. And you must take it into
account when performing two-way ANOVA. On the first tab of the two-
way ANOVA dialog , you'll designate the experimental design.

Lingo: "Repeated measures" vs. "randomized block" experiments

The term repeated measures is appropriate when you made repeated
measurements from each subject. 

Some experiments involve matching but not repeated measurements. The
term randomized-block describes these kinds of experiments. For
example, imagine that the three rows were three different cell lines. All
the Y1 data came from one experiment, and all the Y2 data came from
another experiment performed a month later. The value at row 1, column
A, Y1 (23) and the value at row 1, column B, Y1 (28) came from the same
experiment (same cell passage, same reagents). The matching is by row. 
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Randomized block data are analyzed identically to repeated-measures
data. Prism always uses the term repeated measures, so you should
choose repeated measures analyses when your experiment follows a
randomized block design.

4.9.1.5 Missing values and two-way ANOVA

Missing values with ordinary (not repeated measures) ANOVA

Note that one value is blank. It is fine to have some missing values for
ordinary (but not repeated measures) ANOVA, but you must have at least
one value in each row for each data set. 

The following table cannot be analyzed by two-way ANOVA because there
are no data for treated women. Since this example will be analyzed by
ordinary two-way ANOVA,  it doesn't matter much that there are only two
(not three) replicates for control men and treated men. When you want to
use repeated-measures ANOVA, missing values are not allowed.

If you are entering mean, SD (or SEM) and n, You must never leave n
blank or enter zero, but it is ok if n is not always the same. 

Missing values with repeated measures ANOVA

The rules regarding missing values and repeated measures two-way
ANOVA are:

· Prism can compute repeated measures two-way ANOVA fine if
alternative treatments were given to different numbers of subjects.

· Prism cannot compute repeated measures two-way ANOVA if values at
some time points are missing.
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For the examples shown below, assume that the matched values are
stacked into a subcolumn, which is the most common way to enter data.

 

In the top table, column A has data in three subcolumns, while column B
had data in only two subcolumns. This is not a problem, and repeated
measures ANOVA will work fine. Note that it is not possible to format a
table, in this case, with three subcolumns for data set A, and two for data
set B. Prism always creates tables with the same number of subcolumns
in each data set, but it is ok to simply leave subcolumns blank.

Prism cannot perform repeated measures ANOVA from the second data
table below. The problem is that the value in row 2 of subcolumn 2 of
data set B is missing. Computing repeated measures ANOVA with missing
values is far from straightforward, and Prism doesn't attempt it.  
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4.9.1.6 Point of confusion: ANOVA with a quantitative factor

ANOVA with a quantitative factor

Two-way ANOVA is sometimes used when one of the factors is
quantitative, such as when comparing time courses or dose response
curves. In these situations one of the factors is dose or time.

ANOVA pays no attention to the order of your time points (or doses).
Think about that. The whole point of your experiment may have been to
look at a trend or at a dose-response relationship.  But the ANOVA
calculations completely ignores the order of the time points or doses. If
you randomly scramble the time points or doses, two-way ANOVA would
report identical results. ANOVA treats different time points, or different
doses, exactly the same way it would treat different drugs, different
genotypes, or different countries.

Since ANOVA ignores the entire point of the experiment when one of the
factors is quantitative, consider using alternative (regression)
approaches. In some cases, you don't have enough data or enough theory
to fit a curve, so ANOVA might be a reasonable first-step in comparing
curves. 

Interpreting P values with a quantitative factor

Let's imagine you compare two treatments at six time points.  

The two-way ANOVA will report three P values:

· One P value tests the null hypothesis that time has no effect on the
outcome. It rarely makes sense to test this hypothesis. Of course time
affects the outcome! That's why you did a time course. 

· Another P value tests the null hypothesis that the treatment makes no
difference, on average. This can be somewhat useful. But in most
cases, you  expect no difference at early time points, and only care
about differences at late time points. So it may not be useful to ask if,
on average, the treatments differ. 

· The third P value tests for interaction. The null hypothesis is that any
difference between treatments is identical at all time points. But if you
collect data at time zero, or at early time points, you don't expect to
find any difference then. Your experiment really is designed to ask
about later time points. In this situation, you expect an interaction, so
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finding a small P value for interaction does not help you understand
your data.

Interpreting multiple comparisons tests with a quantitative factor

What about multiple comparisons tests? 

Some scientists like to ask which is the lowest dose (or time) at which the
change in response is statistically significant. Multiple comparisons tests
can give you the answer, but the answer depends on sample size. Run
more subjects, or more doses or time points for each curve, and the
answer will change. With a large enough sample size (at each dose or
time point), you will find a statistically significant (but biologically trivial)
effect with a tiny dose  or at a very early time point. With fewer replicates
at each dose or time point, you won't see statistical significance until a
larger dose or later time point. This kind of analysis does not ask a
fundamental question, and so the results are rarely helpful. 

If you want to know the minimally effective dose, consider finding the
minimum dose that causes an effect bigger than some threshold you set
based on physiology (or some other scientific context). For example, find
the minimum dose that raises the pulse rate by more than 10 beats per
minute. That approach can lead to useful answers. Searching for the
smallest dose that leads to a "significant" effect does not.

If you look at all the multiple comparisons tests (and not just ask which is
the lowest dose or time point that gives a 'significant' effect), you can get
results that make no sense. You might find that the difference is
statistically significant at time points 3, 5, 6 and 9 but not at time points
1, 2, 4, 7, 8 and 10. How do you interpret that? Knowing at which doses
or time points the treatment had a statistically significant rarely helps you
understand the biology of the system and rarely helps you design new
experiments.

Alternatives to two-way ANOVA

What is the alternative to two-way ANOVA? 

If you have a repeated measures design, consider using this alternative to
ANOVA, which Will G Hopkins calls within-subject modeling. 

First, quantify the data for each subject in some biologically meaningful
way. Perhaps this would be the area under the curve. Perhaps the peak

http://www.sportsci.org/resource/stats/otherrems.html
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level. Perhaps the time to peak. Perhaps you can fit a curve with
nonlinear regression and determine a rate constant or a slope. 

Now take these values (the areas or rate constants...) and compare
between groups of subjects using a t test (if two treatments) or one-way
ANOVA (if three or more). Unlike two-way ANOVA, this kind of analysis
follows the scientific logic of the experiment, and so leads to results that
are understandable and can lead you to the next step (designing a better
experiment).

If you don't have a repeated measures design, you can still fit a curve for
each treatment. Then compare slopes, or EC50s, or lag times as part of
the linear or nonlinear regression.

Think hard about what your scientific goals are, and try to find a way to
make the statistical testing match the scientific goals. In many cases,
you'll find a better approach than using two-way ANOVA. 

Test for trend

One of the choices for multiple comparisons tests following one-way
ANOVA is a test for linear trend. This test, of course, does consider the
order of the treatments. Other programs (but not Prism) offer polynomial
post tests, which also take into account the treatment order.
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4.9.1.7 Experimental design tab: Two-way ANOVA

Experimental Design 

Repeated measures defined

Repeated measures means that the data are matched. Here are some
examples:

· You measure a variable in each subject several times, perhaps before,
during and after an intervention.

· You recruit subjects as matched groups, matched for variables such as
age, ethnic group, and disease severity. 

· You run a laboratory experiment several times, each time with several
treatments handled in parallel. Since you anticipate experiment-to-
experiment variability, you want to analyze the data in such a way that
each experiment is treated as a matched set.

Matching should not be based on the variable you are comparing. If you
are comparing blood pressures in three groups, it is OK to match based
on age or zip code, but it is not OK to match based on blood pressure. 
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The term repeated measures applies strictly when you give treatments
repeatedly to one subject (the first example above). The other two
examples are called randomized block experiments (each set of subjects
is called a block, and you randomly assign treatments within each block).
The analyses are identical for repeated measures and randomized block
experiments, and Prism always uses the term repeated measures.

Which factor is matched?

If your data are matched, choose which of the two factors are repeated
measures, or if both factors are repeated measures. If one factor is
repeated measures and the other is not, this analysis is also called mixed
model ANOVA

Choose carefully, as the results can be  very misleading if you make a
choice that doesn't correspond to the experimental design. The choices
are:

 No matching. Use regular two-way ANOVA (not repeated
measures).

Each column represents a different time point, so matched values
are spread across a row.

Each row represents a different time point, so matched values are
stacked into a subcolumn.
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Repeated measures by both factors.

Factor names

Entering descriptive names for the two factors will make it easier to
interpret your results. 

Sphericity

With two-way repeated measures ANOVA, Prism always assumes 
sphericity . It cannot do the Greenhouse-Geisser correction for two-way
ANOVA, as it does for one way, nor can it calculate epsilon . Note that if
the factor with repeated measures has only two levels, then there is no
reason to be concerned about violations of sphericity. For example if each
subject is measured before and after a treatment, and there are four
different treatments, there would be no need to worry about sphericity,
since the repeated measures factor only has two levels (before and
after). 
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4.9.1.8 Multiple comparisons tab: Two-way ANOVA

Choosing multiple comparisons for two-way ANOVA is not straightforward.
Make this choice carefully, and after learning about two-way ANOVA.
Consider getting help. 

Which kind of comparison?

This is the most important decision.  You need to pick a multiple
comparison scheme that matches your scientific goal. The pictures,
shown below and on the dialog, are probably more helpful than the
explanations

The choices of comparisons (in the drop down) depend on the number of
rows and columns in your data set.

Expand all
      

Collapse all

 Compare each cell mean with the other cell mean in that row
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This was the only choice in early versions of Prism, and is probably the
most useful kind of multiple comparisons. This choice is available only if
there are exactly two columns. For each row, therefore, there are two
cell means, and Prism compares these.

Compare each cell mean with the other mean in that column

This choice is available only if there are exactly two rows.

 Simple effects. Within each row, compare columns. 

This choice is only available if you have three or more columns of data.
Within each row, Prism does multiple comparisons between cell means.

For each row, compare the mean of side-by-side replicates of one
column with another. This only makes sense, so the choice is only
available, only when there are three or more columns. You must decide
whether each row becomes its own family of comparisons, or whether all
the comparisons are defined to be one family.  
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 Simple effects. Within each column, compare rows. 

Within each column, compare the mean of side by side replicates of one
row with the mean of other rows. This choice is only available when you
have three or more rows. You must decide whether each column
becomes its own family of comparisons, or whether all the comparisons
are defined to be one family. 

 Main column effects

Testing for main column effects  involves computing the mean of each
data set column, and comparing those means. This makes sense (so the
choice is available) only if there are data in three or more data set
columns. If your data table has only two data set columns, then the
main ANOVA computations give a P value for the effect of the variable
that defines the columns, and no multiple comparison testing for column
effects makes sense.
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 Main row effects 

Testing for main row effects involves computing the mean value for each
row, and then comparing those means. It only makes sense, so the
choice is only available, when there are three or more rows. If your data
table has only two rows, then the main ANOVA computations give a P
value for the effect of the variable that defines the rows, and no multiple
comparison testing for row effects makes sense.

 Compare cell means regardless of rows and columns 

Compare each cell means with every other cell mean, paying no
attention to which row and column each cell mean is part of. This
choice is not available when one factor is repeated measures, but is
available when both factors are repeated measures.
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How many comparisons?

Do you want to compare each mean (in the set) with each other mean?
Or only compare each mean to the first, control, mean? The latter
approach makes fewer comparisons, so has more power. The choice
should be based on experimental design and the scientific questions you
are asking.

How many families? (Applies to simple effects only.)

Multiple comparisons take into account the number of comparisons in the
family of comparisons. The significance level (alpha) applies to the entire
family of comparisons. Similarly, the confidence level (usually 95%)
applies to the entire family of intervals, and the multiplicity adjusted P
values adjust each P value based on the number of comparisons in a
family.

If you choose to look at Simple effects (defined above), the definition of 
family is not obvious, and Prism offers two choices:

· One family for all comparisons. With this choice, there is always one
family of comparisons for all rows (or all columns).This approach has
less power, because it applies a stricter correction for multiple
comparisons. This makes sense because there are more comparisons in
the family.

· One family per column (or per row). Define the comparisons for each
column (or each row) to be its own family of comparisons. With this
choice, there are fewer comparisons per family (but more families), so
comparisons have more power. We recommend this choice unless you
have strong reason to consider all the comparisons to be one family.
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The results page will repeat your choices, so it is clear how to interpret
the results.

Prism 5.04 and 5.0d use the first definition of family (and do not offer you
a choice of the other definition). If you wish to compare results with Prism
5, note this bug in releases of Prism 5 prior to 5.04 (Windows) and 5.0d
(Mac).

4.9.1.9 Options tab: Multiple comparisons: Two-way ANOVA

Multiple comparison approach

Correct for multiple comparisons using statistical hypothesis testing

Some of these methods let you compute confidence intervals and
multiplicity adjusted P values, and some don't. We recommend one of the
tests that compute confidence intervals and multiplicity adjusted P values
for two reasons:

· Confidence intervals  are much easier for most to interpret than
statements about statistical significance. 

· Multiplicity adjusted P values   provide more information that simply
knowing if a difference has been deemed statistically significant or
not. 

Methods than can compute confidence intervals and multiplicity adjusted
P values

The list of tests available on this third tab of the dialog depends on the
goal you specified on the second tab.

· If you are comparing every row (or column) mean with every other
row (or column) mean, we recommend the Tukey test .

· If you are comparing a control row (or column) mean with the other
row (or column) means, we suggest the Dunnett's test . 

· If you are comparing a bunch of independent comparisons, we
recommend the Sidak  method, which is very similar to Bonferroni
but has a tiny bit more power.
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Methods than cannot compute confidence intervals or multiplicity

adjusted P values 

If you don't care about seeing and reporting confidence intervals, you can
gain a bit more power by choosing one of these tests. The list of tests
available on this third tab of the dialog depends on the goal you specified
on the second tab.

· If you are comparing every row or column mean with every other row
or column mean, we recommend that you choose the Holm-Šídák
test ,  which is more powerful than the Tukey method (3). That
means that with some data sets, the Holm-Šídák method can find a
statistically significant difference where the Tukey method cannot. We
offer the Newman-Keuls test for historical reasons (so files made with
old versions of Prism will open) but we suggest you avoid it because it
does not maintain the family-wise error rate at the specified level(1).
In some cases, the chance of a Type I error can be greater than the
alpha level you specified.  

· If you are comparing each column mean to a control mean, Prism only
offers the Holm-Šídák test . Glantz says that Holm's test ought to
have more power than Dunnett's test, but this has not (to his
knowledge) been explored in depth(2). 

· If you are comparing a bunch of independent comparisons, Prism
offers only the the Holm-Šídák test

Correct for multiple comparisons by controlling the False Discovery Rate

Prism offers three methods  to control the false discovery rate . All
decide which (if any) comparisons to label as "discoveries" and do so in a
way that controls the false discovery rate to be less than a value Q you
enter. 

The FDR approach is not often used as a followup test to ANOVA, but
there is no good reason for that. 

Don't correct for multiple comparisons. Each comparison stands alone. 

If you choose this approach, Prism will perform Fisher's Least Significant
Difference (LSD) test .  
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This approach (Fisher's LSD) has much more power to detect differences.
But it is more likely to falsely conclude that a difference is statistically
significant. When you correct for multiple comparisons (which Fisher's
LSD does not do), the significance threshold (usually 5% or 0.05) applies
to the entire family of comparisons. With Fisher's LSD, that threshold
applies separately to each comparison.

Only use the Fisher's LSD approach if you have a very good reason, and
are careful to explain what you did when you report the results. 

Multiple comparisons

Swap direction of comparisons

The only affect of this option is to change the sign of all reported
differences between means. A difference of 2.3 will be -2.3 if the option is
checked. A difference of -3.4 will be 3.4 if you check the option. It is
purely a personal preference that depends on how you think about the
data. 

Report multiplicity adjusted P value for each comparison

If you choose the Bonferroni, Tukey or Dunnett multiple comparisons test,
Prism can also report multiplicity adjusted P values . If you check this
option, Prism reports an adjusted P value for each comparison. These
calculations take into account not only the two groups being compared,
but the total number groups (data set columns) in the ANOVA, and the
data in all the groups. 

The multiplicity adjusted P value is the smallest significance threshold
(alpha) for the entire family of comparisons at which a particular
comparison would be (just barely) declared to be "statistically
significant". 

Until recently, multiplicity adjusted P values have not been commonly
reported. If you choose to ask Prism to compute these values, take the
time to be sure  you understand what they mean. If you include these
values in publications or presentations, be sure to explain what they are.

Confidence and significance level (or desired FDR)

By tradition, confidence intervals are computed for 95% confidence and
statistical significance is defined using an alpha of 0.05. Prism lets you
choose other values. If you choose to control the FDR, select a value for Q

124
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(in percent). If you set Q to 5%, you expect up to 5% of the "discoveries"
to be false positives.

References

1. SA Glantz,  Primer of Biostatistics, sixth edition, ISBN= 978-
0071435093. 

2. MA Seaman, JR Levin and RC Serlin, Psychological Bulletin 110:577-
586, 1991.

4.9.1.10 Options tab: Graphing and output: Two-way ANOVA

Graphing options

If you chose a multiple comparison method that computes confidence
intervals (Tukey, Dunnett, etc.) Prism can plot these confidence
intervals. 

Additional results

Prism can report the results in paragraph (narrative) form, as well as the
usual tabular results.

Output

Choose how you want P values reported , and how many significant
digits you need.

4.9.1.11 Summary of multiple comparisons available (two-way)

Two rows or two columns

If the data table only has two columns (or two rows), then Prism compares the two values at each
row (column) and uses either the Bonferroni or Holm method to correct for multiple comparisons. 

More than two rows or columns

If there are more than two rows and columns, then you first need to choose how to define each
family of comparisons  in the Experimental Design tab. Then you need to choose how to correct
for multiple comparisons within each family by making choices in the Options tab. The choices for
two-way ANOVA depend on two decisions:

· Your goal. Which comparisons do you want to make?
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· Do you want confidence intervals (CI) included in your results? Not all multiple
comparisons tests can compute confidence intervals.

 Goal CI? Method

Compare every
mean to every
other mean 

Yes Tukey (preferred)

Bonferroni

No Holm (preferred)

Newman-Keuls 

Compare every
mean to a control
mean

Yes Dunnettt

No Holm

4.9.1.12 Q&A: Two-way ANOVA

I know the mean, SD (or SEM) and sample size for each group. Which
tests can I run?

You can enter data as mean, SD (or SEM) and n, and Prism can compute
two-way ANOVA. It is not possible to compute repeated measures ANOVA
without access to the raw data. 

I only know the group means, and don't have the raw data and don't
know their SD or SEM. Can I run ANOVA?

Yes, two-way ANOVA is possible if you only have one value for each
condition (no subcolumns). In this case, Prism will only be able to
compute ordinary (not repeated measures) ANOVA, and will assume that
there is no interaction between the row and column factor. It cannot test
for interaction without replicates, so simply assumes there is none. This
may or may not be a reasonable assumption for your situation

I want to compare three groups. The outcome has two possibilities, and I
know the fraction of each possible outcome in each group. How can I
compare the groups?

Not with ANOVA. Enter your data into a contingency table  and analyze
with a chi-square test .
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What does 'two-way' mean?

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs at two time points. The two factors are
drug and time. 

If you measure response to three different drugs at two time points with
subjects from two age ranges, then you have three factors: drug, time
and age. Prism does not perform three-way ANOVA, but other programs
do.

What does 'repeated measures' mean? How is it different than
'randomized block'?

The term repeated-measures strictly applies only when you give
treatments repeatedly to each subject, and the term randomized block is
used when you randomly assign treatments within each group (block) of
matched subjects. The analyses are identical for repeated-measures and
randomized block experiments, and Prism always uses the term
repeated-measures.

What is a mixed-model design?

In the context of two-way ANOVA, a mixed-model is one where one factor
is repeated measures and the other is not. Prism 6 can analyze data
where neither factor is repeated measures,  one of the two factors is
repeated measures, or when  factors are repeated measures. Earlier
versions of Prism could not analyze data where both factors are repeated
measures.

My two factors are genotype and treatment, and each animal was
measured at several time points. Can Prism analyze this kind of "two
way" ANOVA?

No. Your experimental design has three factors: genotype, treatment and
time. If you wanted to use ANOVA, you'd need to use three-way ANOVA,
which Prism does not offer.

4.9.2 Ordinary (not repeated measures) two-way ANOVA

4.9.2.1 Interpreting results: Two-way ANOVA

Two-way ANOVA determines how a response is affected by two factors.
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For example, you might measure a response to three different drugs in
both men and women. 

Source of variation

Two-way ANOVA divides the total variability among values into four
components. Prism tabulates the percentage of the variability due to
interaction between the row and column factor, the percentage due to the
row factor, and the percentage due to the column factor. The remainder
of the variation is among replicates (also called residual variation).

These values (% of total variation) are called standard omega squared by
Sheskin (equations 27.51 - 27.53,  and R2 by Maxwell and Delaney (page
295). Others call these values eta squared or the correlation ratio.

ANOVA table

The ANOVA table breaks down the overall variability between
measurements (expressed as the sum of squares) into four components: 

· Interactions between row and column. These are differences between
rows that are not the same at each column, equivalent to variation
between columns that is not the same at each row.

· Variability among columns.

· Variability among rows.

· Residual or error. Variation among replicates not related to systematic
differences between rows and columns. 

The ANOVA table shows how the sum of squares is partitioned into the
four components. Most scientists will skip these results, which are not
especially informative unless you have studied statistics in depth. For
each component, the table shows sum-of-squares, degrees of freedom,
mean square, and the F ratio. Each F ratio is the ratio of the mean-square
value for that source of variation to the residual mean square (with
repeated-measures ANOVA, the denominator of one F ratio is the mean
square for matching rather than residual mean square). If the null
hypothesis is true, the F ratio is likely to be close to 1.0. If the null
hypothesis is not true, the F ratio is likely to be greater than 1.0. The F
ratios are not very informative by themselves, but are used to determine
P values.
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P values

Two-way ANOVA partitions the overall variance of the outcome variable
into three components, plus a residual (or error) term. Therefore it
computes P values that test three null hypotheses (repeated measures
two-way ANOVA adds yet another P value).

Interaction P value

The null hypothesis is that there is no interaction between columns (data
sets) and rows. More precisely, the null hypothesis states that any
systematic differences between columns are the same for each row and
that any systematic differences between rows are the same for each
column. Often the test of interaction is the most important of the three
tests. If columns represent drugs and rows represent gender, then the
null hypothesis is that the differences between the drugs are consistent
for men and women.

The P value answers this question: 

If the null hypothesis is true, what is the chance of randomly sampling
subjects and ending up with as much (or more) interaction than you
have observed? 

The graph on the left below shows no interaction. The treatment has
about the same effect in males and females. The graph on the right, in
contrast, shows a huge interaction. the effect of the treatment is
completely different in males (treatment increases the concentration) and
females (where the treatment decreases the concentration). In this
example, the treatment effect goes in the opposite direction for males
and females. But the test for interaction does not test whether the effect
goes in different directions. It tests whether the average treatment effect
is the same for each row (each gender, for this example).
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Testing for interaction requires that you enter replicate values or mean
and SD (or SEM) and N. If you entered only a single value for each
row/column pair, Prism assumes that there is no interaction, and
continues with the other calculations. Depending on your experimental
design, this assumption may or may not make sense. 

If the test for interaction leads to statistically significant results, you
probably won't learn anything of interest from the other two P values. In
the example above, a statistically significant interaction means that the
effect of the treatment (difference between treated and control) differs 
between males and females. In this case, it is really impossible to
interpret the overall P value testing the null hypothesis that the treatment
has no effect at all. Instead focus on the multiple comparison post tests.
Is the effect statistically significant in males? How about females?

Column factor P value

The null hypothesis is that the mean of each column (totally ignoring the
rows) is the same in the overall population, and that all differences we
see between column means are due to chance. In the example graphed
above, results for control and treated were entered in different columns
(with males and females being entered in different rows). The null
hypothesis is that the treatment was ineffective so control and treated
values differ only due to chance. The P value answers this question: If the
null hypothesis is true, what is the chance of randomly obtaining column
means as different (or more so) than you have observed?
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In the example shown in the left graph above, the P value for the column
factor (treatment) is 0.0002. The treatment has an effect that is
statistically significant. 

In the example shown in the right graph above, the P value for the
column factor (treatment) is very high (0.54). On average, the treatment
effect is indistinguishable from random variation. But this P value is not
meaningful in this example. Since the interaction P value is low, you know
that the effect of the treatment is not the same at each row (each gender,
for this example). In fact, for this example, the treatment has opposite
effects in males and females. Accordingly, asking about the overall,
average, treatment effect doesn't make any sense.

Row factor P value

The null hypothesis is that the mean of each row (totally ignoring the
columns) is the same in the overall population, and that all differences we
see between row means are due to chance. In the example above, the
rows represent gender, so the null hypothesis is that the mean response
is the same for men and women. The P value answers this question: If
the null hypothesis is true, what is the chance of randomly obtaining row
means as different (or more so) than you have observed?

In both examples above, the P value for the row factor (gender) is very
low. 

Multiple comparisons tests

Multiple comparisons testing is one of the most confusing topics in
statistics. Since Prism offers nearly the same multiple comparisons tests
for one-way ANOVA and two-way ANOVA, we have consolidated the
information on multiple comparisons . 
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4.9.2.2 Graphing tips: Two-way ANOVA
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The graph above shows three ways to plot the sample data for two-way
ANOVA. 

The graphs on the left and middle interleave the data sets. This is set on
the second tab of the Format Graphs dialog. In this case, the data sets
are defined by the figure legend, and the groups (rows) are defined by
the labels on the X axis.

The graph on the right has the data sets grouped. In this graph, the
labels on the X axis show the row title -- one per bar. You can use the
"number format" choice in the Format Axes dialog to change this to
Column titles -- one per set of bars. With this choice, there wouldn't be
much point in also having the legend shown in the box, and you would
need to define the side by side bars ("serum starved" vs "normal culture"
for this example) in the figure legend.

The graph on the left has the appearance set as a column dot plot. The
other two graphs have the appearance set as bars with error bars plotted
from the mean and SD. I prefer the column dot plot as it shows all the
data, without taking up more space and without being harder to
interpret. 

Don't forget to include in the figure legend whether the error bars are SD
or SEM or something different.
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4.9.2.3 Beware of using multiple comparisons tests to compare dose-response curves or time
courses

Does it make sense to use ANOVA multiple comparison tests to compare
two dose-response curves at every dose (or two time course curves at
every time point)?

No.

Two-way ANOVA can be used to compare two dose-response or time-
course curves. The problem with this approach is that ANOVA treats the
different doses (or time points) the same way it treats different species or
different drugs. The fact that the different doses (or times) are sequential
or numerical is ignored by ANOVA. You could randomly scramble the
doses or times, and still get the same ANOVA results.

If you don't have enough data or enough theory to fit a curve,  ANOVA
might be a reasonable first-step in comparing curves. You get one P value
testing the null hypothesis that all doses lead to the same effect, another
P value testing the null hypothesis that all (both) treatments are
indistinguishable, and a third testing whether there is interaction --
whether the difference between treatments is consistent at all doses. The
first P value will always be tiny, and not very informative (of course the
treatment does something). The second P value is the one you probably
care most about, since it asks about differences between the two curves.

It is tempting to then run multiple comparison tests at each dose (or each
time point) asking whether the difference between treatment groups is
statistically significant. I don't see how these multiple comparison tests
provide useful information. If you have two distinct dose-response curves,
you expect to see tiny differences at low doses and large differences at
intermediate doses. Does running a multiple comparison test at each dose
help you understand your system?  Does it help you design better
experiments? I think the answer to both questions is almost always no.

What's the alternative? Use nonlinear regression to ask a focused
question. In this case, use nonlinear regression to quantify the fold shift
in the EC50 and its confidence interval, and to compute a P value that
tests the null hypothesis that there was no shift. Details here. 

Does it make sense to ask what is the lowest dose that produces a
statistically significant difference?

No.

http://www.graphpad.com/guides/prism/6/curve-fitting/index.htm?reg_doseshift.htm
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Some people want to focus on the low doses and ask: What is the lowest
dose that produces a statistically significant difference between the two
treatments? The term "significant" often clouds clear thinking, so let's
translate that question to: What is the lowest dose where the data
convince me that the difference between the two curves is due to the
treatments and not due to chance? The answer depends, in part, on how
many replicates you run at each dose. You could make that lowest-
significant-dose be lower just by running more replicates. I don't see how
helps you understand your system better, or how it helps you design
better experiments. 

The simulated data below demonstrate this point. Both graphs were
simulated using a four-parameter variable slope dose response curve with
the same parameters and same amount of random scatter. The graph on
the left had three data points per dose (triplicates). The graph on the
right had 24 replicates per dose.

Prism file.

The data were analyzed with two-way ANOVA and the Bonferroni multiple
comparison test.

For the graph on the left, the difference between the two data sets first
became statistically significant (alpha =0.05 applied to the family of
comparisons using Bonferroni) when the log(concentration) was -8. 

In contrast, for the graph on the right, the difference first became
statistically significant when the log(concentration) was -9.
Concentrations between those two values (between 1nM and 10nM)
caused a statistically significant effect in the right graph, but not the left. 

http://cdn.graphpad.com/faq/1084/file/1084.pzf
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I ran the simulations a few times, and the results were consistent, so this
is not just a quirk of random numbers. Instead, it demonstrates that
using more replicates allows smaller differences to be detected as
"statistically significant".  

By changing the experimental design, we could change the answer to the
question: What is the lowest concentration where the response of the two
drugs is statistically distinct? That suggests the question is not one worth
asking.

 

4.9.2.4 How Prism computes two-way ANOVA

Two-way ANOVA calculations are quite standard, and these comments
only discuss some of the ambiguities.

Model I (fixed effects) vs. Model II (random effects) ANOVA

To understand the difference between fixed and random factors, consider
an example of comparing responses in three species at three times. If you
were interested in those three particular species, then species is
considered to be a fixed factor. It would be a random factor if you were
interested in differences between species in general, and you randomly
selected those three species. Time is considered to be a fixed factor if you
chose time points to span the interval you are interested in. Time would
be a random factor if you picked those three time points at random. Since
this is not likely, time is almost always considered to be a fixed factor.

When both row and column variables are fixed factors, the analysis is
called Model I ANOVA. When both row and column variables are random
factors, the analysis is called Model II ANOVA. When one is random and
one is fixed, it is termed mixed effects (Model III) ANOVA. Prism
calculates only Model I two-way ANOVA. Since most experiments deal
with fixed-factor variables, this is rarely a limitation.

Missing values

If some values are missing, two-way ANOVA calculations are challenging.
Prism uses the method detailed by Glantz and Slinker (1). This method
converts the ANOVA problem to a multiple regression problem and then
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displays the results as ANOVA. Prism performs multiple regression three
times — each time presenting columns, rows, and interaction to the
multiple regression procedure in a different order. Although it calculates
each sum-of-squares three times, Prism only displays the sum-of-squares
for the factor entered last into the multiple regression equation. These
are called Type III sum-of-squares. This article explains the difference
between Type I, II and III sum-of-square. Type II sum-of-squares
assumes no interaction. Type I and III differ only when there are missing
values. 

Prism cannot perform repeated-measures two-way ANOVA if any values
are missing. It is OK to have different numbers of numbers of subjects in
each group, so long as you have complete data (at each time point or
dose) for each subject.

Data entered as mean, N and SD (or SEM)

If your data are balanced (same sample size for each condition), you'll
get the same results if you enter raw data, or if you enter mean, SD (or
SEM), and N. If your data are unbalanced, it is impossible to calculate
precise results from data entered as mean, SD (or SEM), and N. Instead,
Prism uses a simpler method called analysis of “unweighted means”. This
method is detailed in LD Fisher and G vanBelle, Biostatistics, John Wiley,
1993. If sample size is the same in all groups, and in some other special
cases, this simpler method gives exactly the same results as obtained by
analysis of the raw data. In other cases, however, the results will only be
approximately correct. If your data are almost balanced (just one or a few
missing values), the approximation is a good one. When data are
unbalanced, you should enter individual replicates whenever possible.

Single values without replicates

Prism can perform two-way ANOVA even if you have entered only a single
replicate for each column/row pair. This kind of data does not let you test
for interaction between rows and columns (random variability and
interaction can't be distinguished unless you measure replicates).
Instead, Prism assumes that there is no interaction and only tests for row
and column effects. If this assumption is not valid, then the P values for
row and column effects won't be meaningful.

https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/
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Reference

SA Glantz and BK Slinker, Primer of Applied Regression and Analysis of
Variance, McGraw-Hill, 1990.

4.9.2.5 Analysis checklist: Two-way ANOVA

 Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs in both men and women. In this
example, drug treatment is one factor and gender is the other. Read
elsewhere to learn about choosing a test , and interpreting the
results.  

Are the populations distributed according to a Gaussian distribution? 

Two-way ANOVA assumes that your replicates are sampled from
Gaussian distributions. While this assumption is not too important with
large samples, it is important with small sample sizes, especially with
unequal sample sizes. Prism does not test for violations of this
assumption. If you really don't think your data are sampled from a
Gaussian distribution (and no transform will make the distribution
Gaussian), you should consider performing nonparametric two-way
ANOVA. Prism does not offer this test.

ANOVA also assumes that all sets of replicates have the same SD
overall, and that any differences between SDs are due to random
sampling.

Are the data unmatched? 

Standard two-way ANOVA works by comparing the differences among
group means with the pooled standard deviations of the groups. If the
data are matched, then you should choose repeated-measures ANOVA
instead. If the matching is effective in controlling for experimental
variability, repeated-measures ANOVA will be more powerful than
regular ANOVA. 

Are the “errors” independent?

The term “error” refers to the difference between each value and the
mean of all the replicates. The results of two-way ANOVA only make
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sense when the scatter is random – that whatever factor caused a value
to be too high or too low affects only that one value. Prism cannot test
this assumption. You must think about the experimental design. For
example, the errors are not independent if you have six replicates, but
these were obtained from two animals in triplicate. In this case, some
factor may cause all values from one animal to be high or low. 

Do you really want to compare means? 

Two-way ANOVA compares the means. It is possible to have a tiny P
value – clear evidence that the population means are different – even if
the distributions overlap considerably. In some situations – for example,
assessing the usefulness of a diagnostic test – you may be more
interested in the overlap of the distributions than in differences between
means.

Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.

Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA. Prism does not perform three-way
ANOVA.

Are both factors “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment. 
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4.9.3 Repeated measures two-way ANOVA

4.9.3.1 Interpreting results: Repeated measures two-way ANOVA

Are you sure that ANOVA is the best analysis? 

Before interpreting the ANOVA results, first do a reality check. If one of
the factors is a quantitative factor like time or dose, consider alternatives
to ANOVA .

Interpreting P values from repeated measures two-way ANOVA

When interpreting the results of two-way ANOVA, most of the
considerations are the same whether or not you have repeated measures.
So read the general page on interpreting two-way ANOVA results  first.
Also read the general page on the assumption of sphericity , and
assessing violations of that assumption with epsilon .  

Repeated measures ANOVA has one additional row in the ANOVA table,
"Subjects (matching)". This row quantifies how much of all the variation
among the values is due to differences between subjects. The
corresponding P value tests the null hypothesis that the subjects are all
the same. If the P value is small, this shows you have justification for
choosing repeated measures ANOVA. If the P value is high, then you may
question the decision to use repeated measures ANOVA in future
experiments like this one. 

How the repeated measures ANOVA is calculated

Prism computes repeated-measures two-way ANOVA calculations using
the standard method explained especially well in Glantz and Slinker (1).

If you have data with repeated measures in both factors, Prism uses
methods from Chapter 12 of Maxwell and Delaney (2)

Multiple comparisons tests

Multiple comparisons testing is one of the most confusing topics in
statistics. Since Prism offers nearly the same multiple comparisons tests
for one-way ANOVA and two-way ANOVA, we have consolidated the
information on multiple comparisons . 

Multiple comparisons after two-way repeated measures ANOVA can be
computed in two ways.
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Prism always computes the multiple comparison tests using a pooled
error term (see page 583 of Maxwell and Delaney, 2). If only one factor is
repeated measures, the number of degrees of freedom equals (n-1)(a-1)
where n is the number of subjects and a is the number of levels of the
repeated measures factor. If both factors are repeated measures, the
number of degrees of freedom equals (n-1)(a-1)(b-1) where n is the
number of subjects, a is the number of levels one factor, and b is the
number of levels of the other factor. Another way to look at this is n is the
number of subcolumns, a is the number of rows, and b is the number of
data set columns. This extra power comes by an extra assumption that
for every comparison you make, in the overall population from which the
data were sampled the variation is the same for all those comparisons. 

Some programs compute separate error term for each comparison. These
comparisons have only n-1 degrees of freedom, so the confidence
intervals are wider and the adjusted P values are higher. This approach
does not assume that the variance is the same for all comparisons. 

Reference

1. SA Glantz and BK Slinker, Primer of Applied Regression and Analysis of
Variance, McGraw-Hill, second edition, 2000.

2. SE Maxwell and HD Delaney. Designing Experiments and Analyzing
Data, second edition. Laurence Erlbaum, 2004. 

4.9.3.2 ANOVA table in two ways RM ANOVA

Example data sets

To create the examples below, I entered data with two rows, three
columns, and three side-by-side replicates per cell. There were no
missing values, so 18 values were entered in all.  

I analyzed the data four ways: assuming no repeated measures,
assuming repeated measures with matched values stacked, assuming
repeated measures with matched values spread across a row, and with
repeated measures in both directions. The tables below are color coded to
explain these designs. Each color within a table represents one subject.
The colors are repeated between tables, but this means nothing.
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ANOVA tables

The table below shows the ANOVA tables for the four analyses. The values
below are all reported by Prism. I rearranged and renamed a bit so the
four can be shown on one table. 

Focus first on the sum-of-squares (SS) column with no repeated
measures:

· The first row shows the interaction of rows and columns. It quantifies
how much variation is due to the fact that the differences between rows
are not the  same for all columns. Equivalently, it quantifies how much
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variation is due to the fact that the differences among columns is not
the same for both rows. 

· The second row show the the amount of variation that is due to
systematic differences between the two rows. 

· The third row show the the amount of variation that is due to systematic
differences between the columns. 

· The second to the last row shows the variation not explained by any of
the other rows. This is called residual or error. 

· The last row shows the total amount of variation among all 18 values. 

Now look at the SS columns for the analyses of the same data but with
various assumptions about repeated measures. 

· The total SS stays the same. This makes sense. This measures the total
variation among the 18 values. 

· The SS values for the interaction and for the systematic effects of rows
and columns (the top three rows) are the same in all four analyses. 

· The SS for residual is smaller when you assume repeated measures, as
some of that variation can be attributed to variation among subjects. In
the final columns, some of that variation can also be attributed to
interaction between subjects and either rows or columns. 

Now look at the DF values.

· The total DF (bottom row) is 17. This is the total number of values (18)
minus 1. It is the same regardless of any assumptions about repeated
measures.

· The df for interaction equals (Number of columns - 1) (Number of rows -
1), so for this example is 2*1=2. This is the same regardless of
repeated measures.

· The df for the systematic differences among rows equals number of
rows -1, which is 1 for this example. This is the same regardless of
repeated measures.
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· The df for the systematic differences among columns equals number of
columns -1, whiich is 2 for this example. It is the same regardless of
repeated measures. 

· The df for subjects is the number of subjects minus number of
treatments. When the matched values are stacked, there are 9 subjects
and three treatments, so df equals 6. When the matched values are in
the same row, there arr 6 subjects treated in two ways (one for each
row), so df is 4. When there are repeated measures for both factors,
this value equals the number of subjects (3) minus 1, so df=2. 

Details on how the SS and DF are computed can be found in Maxwell and
Delaney (1). Table 12.2 on page 576 explains the ANOVA table for
repeated measures in both factors. But note they use the term "A x B x
S" where Prism says "Residual". Table 12.16 on page 595 explains the
ANOVA table for two way ANOVA with repeated measures in one factor.
They say "B x S/A" where Prism says "residual", and say "S/A" where
Prism says "subject". 

Mean squares

Each mean square value is computed by dividing a sum-of-squares value
by the corresponding degrees of freedom. In other words, for each row in
the ANOVA table divide the SS value by the df value to compute the MS
value. 

F ratio

Each F ratio is computed by dividing the MS value by another MS value.
The MS value for the denominator depends on the experimental design.

For two-way ANOVA with no repeated measures: The denominator MS
value is always the MSresidual.

For two-way ANOVA with repeated measures in one factor (p 596 of
Maxwell and Delaney):

· For interaction, the denominator MS is MSresidual

· For the factor that is not repeated measures, the denominator MS is
MSsubjects
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· For the factor that is repeated measures, the denominator MS is
MSresidual

For two-way ANOVA with repeated measures in both factors (p 577 of
Maxwell and Delaney): The MS for the denominator is the MS for the
interaction of the factor being tested with subjects. 

· For Row Factor, the denominator MS is for Interaction of Row factor x
Subjects

· For Column Factor, the denominator MS is for Interaction of Column
factor x Subjects

· For the Interaction:Row Factor x Column Factor, the denominator MS
is for Residuals (also called the interaction of Row x Column x
Subjects)

P values

Each F ratio is computed as the ratio of two MS values. Each of those MS
values has a corresponding number of degrees of freedom. So the F ratio
is associated with one number of degrees of freedom for the numerator
and another for the denominator. Prism reports this as something like: F
(1, 4) = 273.9

Calculting a P value from F and the two degrees of freedom can be done
with a free web calculator or with the =FDIST(F, dfn, dfd) Excel formula

1. SE Maxwell and HD Delaney. Designing Experiments and Analyzing
Data: A Model Comparison Perspective, Second Edition. Routledge, 2003. 

4.9.3.3 Graphing tips: Repeated measures two-way ANOVA

Graphing two-way ANOVA with repeated measures by row

From the New Graph dialog,  you can choose a graph designed for
repeated measures by rows or by columns. 

Customize the graph within the Format Graph dialog:

http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgrap02-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0805837183
http://www.amazon.com/Designing-Experiments-Analyzing-Data-Perspective/dp/0805837183%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgrap02-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0805837183
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· The appearance (for all data sets) should be 'Before-After'.

· Plot either symbols and lines or lines only. Choose the latter if you
want to plot arrows.

· The line style drop down lets you choose arrow heads.

Graphing two-way ANOVA with repeated measures by column

From the New Graph dialog, you can choose a graph designed for
repeated measures by rows. This is the second choice on the bottom row
of graphs in the two-way tab.

Customize the graph within the Format Graph dialog:

· The appearance (for all data sets) should be "Each replicate".

· if you plot the replicates as 'Staggered", Prism will move them right or
left to prevent overlap. In this example, none of the points overlap so
'Staggered' and 'Aligned' look the same.
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· Check the option to plot 'one line for each subcolumn'.

4.9.3.4 Analysis checklist: Repeated measures two-way ANOVA

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. "Repeated measures" means that
one of the factors was repeated. For example you might compare two
treatments, and measure each subject at four time points (repeated).
Read elsewhere to learn about choosing a test , graphing the data ,
and interpreting the results .

 Are the data matched? 

If the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.
Also check that your choice in the experimental design tab matches how
the data are actually arranged. If you make a mistake, and the
calculations are done assuming the wrong factor is repeated, the results
won't be correct or useful.

Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
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group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.

Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA. Prism does not perform three-way
ANOVA.

Are both factors “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment. 

Can you accept the assumption of sphericity?

A random factor that causes a measurement in one subject to be a bit
high (or low) should have no affect on the next measurement in the
same subject. This assumption is called circularity or sphericity. It is
closely related to another term you may encounter in advanced texts, 
compound symmetry.

You only have to worry about the assumption of circularity when your
experiment truly is a repeated-measures experiment, with
measurements from a single subject. You don't have to worry about
circularity with randomized block experiments where you used a
matched set of subjects (or a matched set of experiments)

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. You'll violate this assumption when the repeated
measurements are made too close together so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. Also randomize the order of treatments, when
possible.
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Consider alternatives to repeated measures two-way ANOVA. 

Two-way ANOVA may not answer the questions your experiment was
designed to address. Consider alternatives.

4.10 Three-way ANOVA

Three-way ANOVA, also called three-factor

ANOVA, determines how a response is affected by

three factors. For example, you might compare a

response to drug vs. placebo in both men and

women at two time points. Drug treatment is one

factor,  gender is the other, and time is the third.

Is the response affected by drug? By gender? By

time? Are the three intertwined? These are the

kinds of questions that three-way ANOVA answers.

4.10.1 How to: Three-way ANOVA

 .

4.10.1.1 Note of caution for statistical novices

Our goal with Prism has always been to make basic biostatistics very
accessible and easy. Three-way ANOVA really is beyond "basic
biostatistics". Multiple comparisons after three-way ANOVA stretch this
definition even more. If you haven't taken the time to really understand
three-way ANOVA, it is quite easy to be mislead by the results. Beware!

· Three-way ANOVA is not a topic that is easy to master. In addition to
reading textbooks, also consider getting help from someone with more
experience.

· Before getting lost in the many choices for multiple comparisons, first
articulate clearly the scientific goals of the study. Don't articulate your
goals in terms of ANOVA (looking for interactions). Figure out what you

402



GraphPad Statistics Guide440

© 1995-2016 GraphPad Software, Inc.

really want to know. Then figure out the best statistical approach to
getting the answer.

· We can only provide limited technical support with understanding three-
way ANOVA.

4.10.1.2 What is three-way ANOVA used for?

Visualizing three factors

Three-way ANOVA, also called three-factor ANOVA, determines how a
response is affected by three factors, for example:

· Treated vs. control

· Male vs. female 

· Pretreatment with low vs. high dose 

This example has two levels of each of the three factors, so there are
2x2x2=8 different treatment groups. This diagram might help this make
sense.
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Seven null hypotheses

Three-way ANOVA tests seven null hypotheses so reports seven P values.
Yes seven! Three-way ANOVA is complicated. 

Three of the P values test main effects:

· Null hypothesis 1: On average, the measured value is the same in males
and females. So this P value compares the red vs. the blue cubes
above. 

· Null hypothesis 2: On average, the measured value is the same for
treated and control. This P value compares the striped vs solid cubes
above.  

· Null hypothesis 3: On average, the measured value is the same when
the pretreatment is low or high dose. This P value compares the dark
colored cubes with the light colored cubes above. 

Three of the P values test two-way interactions, and one tests a three
way interaction. Here are the null hypotheses:

· Null hypothesis 4: Pooling male and female,  the effect of treatment vs.
control is the same for pretreatment with low and high dose.

· Null hypothesis 5: Pooling treated and control, is the effect of
pretreatment with low and high dose the same for males and females. 

· Null hypothesis 6: Pooling pretreatment with low and high dose, the
effect of treatment vs. control is the same for males and females. 

· Null hypothesis 7: There is no three way interaction among all three
factors. This one is hard to understand.

4.10.1.3 Three way ANOVA may not answer your scientific questions

GraphPad Prism can compute three-way ANOVA in certain circumstances.
But before using three-way ANOVA, note that it often is much less useful
than most scientists hope. When three way ANOVA is used to analyze
data, the results often do not answer the questions the experiment was
designed to ask. Let's work through an example:
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The scientific goals and experimental design

A gene has been identified that is required for angiogenesis (growth of
new blood vessels) under pathological conditions. The question is whether
it also is active in the brain.  Hypoxia (low oxygen levels) is known to
provoke angiogenesis in the brain. So the question is whether
angiogenesis (stimulated by hypoxia) will be reduced in animals created
with that gene removed (knocked-out; KO) compared to normal (wild
type, WT) animals. In other words,  the goal is to find out whether there
is a significant difference in vessels growth in the KO hypoxic mice
compared to WT hypoxic mice.   

The experimental design:

· Half the animals are wild-type. Half have the gene of interest knocked
out. 

· Half the animals are kept in normal air. Half are kept in hypoxic (low
oxygen) conditions.

· Blood vessel number in a region of brain is measured at  two time points
(1 and 3 weeks).  

What questions would three-way ANOVA answer?

The experiment has three factors: genotype (wild-type vs KO), oxygen
(normal air vs. low oxygen) and time (1 and 3 weeks). So it seems logical
to think that three-way ANOVA is the appropriate analysis. Three-way
ANOVA will report seven P values (even before asking for multiple
comparisons tests or contrasts). These P values test seven null
hypotheses:

· Effect of genotype. The null hypothesis is that in both conditions
(hypoxic or not) and at all time points, the average result in the wild-
type animals equals the average affect in the KO animals. This isn't very
useful. You don't expect the KO to be different in the normal air
condition, so averaging that with hypoxia just muddles the picture. This
P value is not helpful.

· Effect of hypoxia. The null hypothesis is that with both genotypes and all
time points, the average result in normal air is identical to the average
result in hypoxia. We already know hypoxia will provoke angiogenesis in
WT animals. The point of the experiment is to see if hypoxia has a
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different affect in the KO animals. Combining the results of WT and KO
animals together doesn't really make sense, so this P value is not
helpful.

· Effect of time. The null hypothesis is that for both genotypes and both
conditions (hypoxia or not), the average result at the two times points
is the same. But we know already it takes time for angiogenesis to
occur, so there will be more vessel growth at late times than at early
time points in the normal animals treated with hypoxia. Combining both
genotypes and both conditions doesn't really make sense. This P value
is not helpful. 

· Interaction of genotype and hypoxia. The null hypothesis is that the
effect of hypoxia is the same in wild-type and KO animals at all both
points. This sort of gets at the point of the study, and is the only one of
seven P values that seems to answer the experimental question. But
even this P value doesn't quite test the null hypothesis you care about. 
You really want to know if the two genotypes have different outcomes in
the presence of hypoxia. Including the data collected under normal air
will confuse the results, rather than clarify. Including the data at the
earliest time point, before angiogenesis had a chance to begin also
clouds the picture.

· Interaction of genotype and time. Under both conditions (hypoxia and
not), the null hypothesis is that the difference between the two
genotypes is consistent over time. Since the whole point of the
experiment is to investigate the affect of hypoxia, it makes no sense
really to average together the results from hypoxic animals with results
from animals breathing regular air. This P value is not useful. 

· Interaction of hypoxia and time. Averaging together both genotypes, the
null hypothesis is that the effect of hypoxia is the same at all times. It
really makes no sense to average together both genotypes, so this P
value won't be useful.

· Three-way interaction of genotype, hypoxia and time.  This P value is
not useful, because it is too hard to figure out what null hypothesis it
tests!

One alternative approach: Two-way ANOVA

Why were animals exposed to ordinary air included in the experiment? As
a control. We don't expect much angiogenesis in the three week period
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for unstressed animals. The other half of the animals were exposed to
hypoxia, which is known to provoke angiogenesis. The animals exposed to
regular air are a control to show the experiment worked as expected. So I
think it is reasonable to look at these results as a way to decide whether
the experiment worked, and whether the hypoxic data are worth
analyzing. If there was much angiogenesis in the animals exposed to
regular air, you'd suspect some other toxin was present.  Once you are
sure the experiment worked, those data can be ignored in the final
analysis. 

By analyzing the data only from the hypoxic animals, we are down to two
factors: genotype and time, so the data could be analyzed by two way
ANOVA. Two-way ANOVA reports three P values from three null
hypotheses:

· Effect of genotype. The null hypothesis is that pooling all time points,
the average result in the wild-type animals equals the average affect in
the KO animals.  That gets at the experimental question, so is useful. 

· Effect of time. The null hypothesis is that pooling both genotypes, the
average result at the three times points is the same. But we know
already there will be more vessel growth at late times than at early time
points in the normal animals. We know that there are more blood
vessels at later times than earlier, so this P value is likely to be small,
and that doesn't help answer the experimental question.

· Interaction of genotype and time.  The null hypothesis is that the
difference between the two genotypes is consistent at all time points. If
the P value is large, you won't reject that hypothesis. In this case the P
value for genotype answers the question the experiment was designed
to ask. If the P value is small, you will reject the null hypothesis and
conclude that the difference between genotypes is different at the
various times. In this case, multiple comparison tests could compare the
two genotypes at each time point individually.

Bottom line: With these data, considering half the experiment to be a
control proving the methods worked vastly simplifies data analysis. 

A statistician might object that those control data provide information
about variability, so it isn't fair to ignore those data entirely. Someone
skilled with R or SAS (etc.)  could find a way to analyze all the data, to
report P values that test the particular hypotheses of interest. But this is
far from straightforward, and beyond the skills of most scientists. Blindly
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plugging the data into three-way ANOVA would not lead to results that
answer the experimental question. 

A better choice? Linear regression?

One problem with ANOVA (even two-way) is that it treats the three time
points exactly as it would treat three species or treatment with three
alternative drugs. 

An alternative analysis approach would be to use regression. The simplest
model is linear (and with only two time points, there would be no point
fitting a more complicated model). Use linear regression to look at the
rate of angiogenesis in hypoxic animals. Fit one slope to the WT animals
and one to the KO animals, and compare the slopes.

This approach seems best to me. Each slope is understandable on its own
as a measure of the rate of angiogenesis. The null hypothesis is
understandable as well (the two rates are the same). The analysis seems
much closer to the biological question, and the results will be much easier
for nonstatisticians to interpret. Of course, it assumes that angiogenesis
is linear over the time course studied, which may or may not be a
reasonable assumption.

Summary

· Just because an experimental design includes three factors, don't
assume that three-way ANOVA is the best analysis.

· Many experiments are designed with positive or negative controls.
These are important, as they let you know whether everything worked
as it should. If the controls gave unexpected results, it would not be
worth analyzing the rest of the data. Once you've verified that the
controls worked as expected, those control data can often be removed
from the data used in the key analyses. This can vastly simplify data
analysis.

· When a factor is dose or time, fitting a regression model often answers
an experimental question better than does ANOVA.
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4.10.1.4 Limitations of three-way ANOVA in Prism

Prism can perform three-way ANOVA with only certain kinds of data:

· Only two levels of two of the factors. For example one factor could be
male vs. female, the other factor control vs. treated, and the third
factor could be three different time points. But Prism can only handle
one factor with more than two levels. For example, Prism could not deal
with the example above if the second factor had a third level: control
vs. treated vs. treated + antagonist.  

· No repeated measures. A repeated measures design would be, for
example, when the same subject is measured at several times. Prism
cannot handle repeated measures with three-way ANOVA (but it can
with one- or two-way ANOVA). Please write us if you have data best
analyzed with three way ANOVA with repeated measures in one factor
(or two or three factors) with the details. 

· No missing values. The number of replicate measurements (or subjects)
for each of the combinations of treatments  must be identical.
Statisticians would say the design must be "balanced". Prism cannot yet
handle missing values (an unbalanced design) in three way ANOVA (as
it can for one- and two-way ANOVA).

· You must enter two or more values for each combination of conditions
(alternatively, enter the mean, sample size and SD or SEM). Prism
cannot compute three-way ANOVA with only a single value for each set
of conditions.

4.10.1.5 Entering data for three-way ANOVA

Groups are defined by rows and columns

Prism organizes data for three-way ANOVA differently than do most other
programs. Here is an example of data entry:
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· Note that Prism does not use grouping variables. Instead, you only
enter the outcome variable and designate treatments or groups by
choice of rows and columns.

· Rows 1 and 2 represent two levels of one factor (male vs. female) in the
example. You can use more than two rows if this factor has more than
three levels.

· Data set columns A and B vs. C and D represent the second factor,
Control vs. Treated in the example. 

· Data set columns A and C vs. B and D represent the third factor, low vs.
high dose in the example. 

· Only data in the first four data set columns (A-D) are considered in
three-way ANOVA. 

· The example shows two subcolumns, for duplicate data. But you can
choose any number of subcolumns you want (up to 256). 

Setting up the data table

From the Welcome (or New Data Table and Graph) dialog, choose the 
Grouped tab. 

Entering raw data

If you are not ready to enter your own data, choose to use sample data
and choose the three-way ANOVA sample data sets.

If you plan to enter your own data, create a table with the right number
subcolumns to hold your replicated measurements.

Entering averaged data

If you have already averaged your replicates in another program, you can
choose to enter and plot the mean and SD (or SEM) and n. If your data
has more than 256 replicates, this is the only way to enter data into Prism
for three-way ANOVA. 

Running three-way ANOVA

1. From the data table, click  on the toolbar. 
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2. Choose three-way ANOVA from the list of grouped analyses. 

3.  On the first tab (Experimental Design ), name the grouping
variables.

4.  On the second (Multiple Comparisons ) and third (Options ) tab,
choose multiple comparisons.

4.10.1.6 Factor names tab: Three-way ANOVA

On this tab give names to the three factors. The only reason to do this is
to make the output easier to understand. For the example shown at the
top of the dialog, the labels would be "Treatment, "Dose" and "Gender"

448
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4.10.1.7 Multiple comparisons tab: Three-way ANOVA

Choose your goal for multiple comparisons. On the next tab, you can
choose exactly which test to use.
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In many cases, the answers you really want are determined by multiple
comparisons and not by the overall ANOVA analysis. Choose the
comparisons you want to make on this tab, and then set the details on
the next (Options ) tab. 

If you have 2x2x2 ANOVA, then the number of comparisons are:

· Compare each cell mean with every other cell mean: 28 comparisons

· Compare means that differ by only one factor: 12 comparisons

451
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· Compare the control mean with the other cell means: 7 comparisons

· Compare each mean in row 1 with the cell mean just below it: 4
comparisons

If you have 2 x 2 x k ANOVA, then the number of comparisons are:

· Compare each cell mean with every other cell mean: 8k2-2k
comparisons

· Compare the control mean with the other cell means: 2x2xk-1
comparisons

4.10.1.8 Options tab: Multiple comparisons: Three-way ANOVA

Multiple comparison approach

Correct for multiple comparisons using statistical hypothesis testing

Some of these methods let you compute confidence intervals and
multiplicity adjusted P values, and some don't. We recommend one of the
tests that compute confidence intervals and multiplicity adjusted P values
for two reasons:

· Confidence intervals  are much easier for most to interpret than
statements about statistical significance. 

· Multiplicity adjusted P values   provide more information that simply
knowing if a difference has been deemed statistically significant or
not. 

Methods than can compute confidence intervals and multiplicity adjusted
P values

The list of tests available on this third tab of the dialog depends on the
goal you specified on the second tab.

· If you are comparing every row (or column) mean with every other
row (or column) mean, we recommend the Tukey test .

57
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· If you are comparing a control row (or column) mean with the other
row (or column) means, we suggest the Dunnett's test . 

· If you are comparing a bunch of independent comparisons, we
recommend the Sidak  method, which is very similar to Bonferroni
but has a tiny bit more power.

Methods than cannot compute confidence intervals or multiplicity

adjusted P values 

If you don't care about seeing and reporting confidence intervals, you can
gain a bit more power by choosing one of these tests. The list of tests
available on this third tab of the dialog depends on the goal you specified
on the second tab.

· If you are comparing every row or column mean with every other row
or column mean, we recommend that you choose the Holm-Šídák
test ,  which is more powerful than the Tukey method (3). That
means that with some data sets, the Holm-Šídák method can find a
statistically significant difference where the Tukey method cannot. We
offer the Newman-Keuls test for historical reasons (so files made with
old versions of Prism will open) but we suggest you avoid it because it
does not maintain the family-wise error rate at the specified level(1).
In some cases, the chance of a Type I error can be greater than the
alpha level you specified.  

· If you are comparing each column mean to a control mean, Prism only
offers the Holm-Šídák test . Glantz says that Holm's test ought to
have more power than Dunnett's test, but this has not (to his
knowledge) been explored in depth(2). 

· If you are comparing a bunch of independent comparisons, Prism
offers only the the Holm-Šídák test

Correct for multiple comparisons by controlling the False Discovery Rate

Prism offers three methods  to control the false discovery rate . All
decide which (if any) comparisons to label as "discoveries" and do so in a
way that controls the false discovery rate to be less than a value Q you
enter. 

The FDR approach is not often used as a followup test to ANOVA, but
there is no good reason for that. 
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Don't correct for multiple comparisons. Each comparison stands alone. 

If you choose this approach, Prism will perform Fisher's Least Significant
Difference (LSD) test .  

This approach (Fisher's LSD) has much more power to detect differences.
But it is more likely to falsely conclude that a difference is statistically
significant. When you correct for multiple comparisons (which Fisher's
LSD does not do), the significance threshold (usually 5% or 0.05) applies
to the entire family of comparisons. With Fisher's LSD, that threshold
applies separately to each comparison.

Only use the Fisher's LSD approach if you have a very good reason, and
are careful to explain what you did when you report the results. 

Multiple comparisons

Swap direction of comparisons

The only affect of this option is to change the sign of all reported
differences between means. A difference of 2.3 will be -2.3 if the option is
checked. A difference of -3.4 will be 3.4 if you check the option. It is
purely a personal preference that depends on how you think about the
data. 

Report multiplicity adjusted P value for each comparison

If you choose the Bonferroni, Tukey or Dunnett multiple comparisons test,
Prism can also report multiplicity adjusted P values . If you check this
option, Prism reports an adjusted P value for each comparison. These
calculations take into account not only the two groups being compared,
but the total number groups (data set columns) in the ANOVA, and the
data in all the groups. 

The multiplicity adjusted P value is the smallest significance threshold
(alpha) for the entire family of comparisons at which a particular
comparison would be (just barely) declared to be "statistically
significant". 

Until recently, multiplicity adjusted P values have not been commonly
reported. If you choose to ask Prism to compute these values, take the
time to be sure  you understand what they mean. If you include these
values in publications or presentations, be sure to explain what they are.

121
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Confidence and significance level (or desired FDR)

By tradition, confidence intervals are computed for 95% confidence and
statistical significance is defined using an alpha of 0.05. Prism lets you
choose other values. If you choose to control the FDR, select a value for Q
(in percent). If you set Q to 5%, you expect up to 5% of the "discoveries"
to be false positives.

References

1. SA Glantz,  Primer of Biostatistics, sixth edition, ISBN= 978-
0071435093. 

2. MA Seaman, JR Levin and RC Serlin, Psychological Bulletin 110:577-
586, 1991.

4.10.1.9 Options tab: Graphing and output: Three-way ANOVA

Graphing options

If you chose a multiple comparison method that computes confidence
intervals (Tukey, Dunnett, etc.) Prism can plot these confidence
intervals. 

Output

Choose how you want P values reported , and how many significant
digits you need.

4.10.1.10Consolidate tab: Three-way ANOVA

This will consolidate the three-way data down to a two-way table. 

77
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If one of the factors has little impact, it may make sense to consolidate
the data so it has two factors, rather than three. 

4.10.2 Interpreting results: Three-way ANOVA

 .

4.10.2.1 Interpreting results: Three-way ANOVA

Three-way ANOVA really is beyond "basic biostatistics". Multiple
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comparisons after three-way ANOVA stretch this definition even more. If
you haven't taken the time to really understand three-way ANOVA, it is
quite easy to be mislead by the results. Beware! It is not possible to
understand three-way ANOVA only by reading these help screens.

Three-way ANOVA divides the total variability among values into eight
components, the variability due to each of the factors (three
components), due to each of the two-way interactions between two
factors, due to three three-way interaction among all factors, and due to
the variation among replicates (called residual or error variation). For
each of those sources of variation, Prism reports the fraction of the
variation attributed to that source, and (for all but the last) a P value
testing the null hypothesis that the data are drawn from a population
where that potential source of variation in fact contributes nothing to the
overall variation among values. 

Multiple comparisons testing is one of the most confusing topics in
statistics. Since Prism offers nearly the same multiple comparisons tests
for one-, two and three-way ANOVA, we have consolidated the
information on multiple comparisons . 

 

4.10.2.2 Analysis checklist: Three-way ANOVA

 Three-way ANOVA, also called three-factor ANOVA, determines how a
response is affected by three factors. For example, you might measure
a response to three different drugs, in men and women, with two
different pretreatments. In this example, drug treatment is one factor,
gender is the other, and pretreatment is the third. Read elsewhere to
learn about the limitations of three-way ANOVA , and interpreting the
results . 
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Are the populations distributed according to a Gaussian distribution? 

Three-way ANOVA assumes that your replicates are sampled from
Gaussian distributions. While this assumption is not too important with
large samples, it is important with small sample sizes, especially with
unequal sample sizes. Prism does not test for violations of this
assumption. If you really don't think your data are sampled from a
Gaussian distribution (and no transform will make the distribution
Gaussian), you should consider performing nonparametric  ANOVA. Prism
does not offer this test.

ANOVA also assumes that all sets of replicates have the same SD
overall, and that any differences between SDs are due to random
sampling.

Are the data unmatched? 

Three-way ANOVA works by comparing the differences among group
means with the pooled standard deviations of the groups. If subjects
were given more than one treatment sequentially, or the experimental
design worked with sets of matched subjects, then you should use
repeated measures ANOVA. Prism cannot calculate three-way ANOVA
with repeated measures in any factor.

Are the “errors” independent?

The term “error” refers to the difference between each value and the
mean of all the replicates. The results of three-way ANOVA only make
sense when the scatter is random – that whatever factor caused a value
to be too high or too low affects only that one value. Prism cannot test
this assumption. You must think about the experimental design. For
example, the errors are not independent if you have six replicates, but
these were obtained from two animals in triplicate. In this case, some
factor may cause all values from one animal to be high or low. 

Do you really want to compare means? 

Three-way ANOVA compares the means. It is possible to have a tiny P
value – clear evidence that the population means are different – even if
the distributions overlap considerably. In some situations – for example,
assessing the usefulness of a diagnostic test – you may be more
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interested in the overlap of the distributions than in differences between
means.

Are there three factors?

Don't mix up three way ANOVA with one way ANOVA with three groups.
With three way ANOVA, there are three grouping variables, maybe
gender, presence or absence of disease, and control vs. treated. With
one-way ANOVA there is one grouping variable (perhaps treatment). If
there are three alternative treatments, you need one-way ANOVA not
three-way ANOVA.

Are all three factors “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment. 

4.11 Categorical outcomes

You've assessed an outcome with only two (or a

few) possibilities. Survive or not. Metastasis or

not. Graduate or not. Democrat, republican or

independent. How can you express the precision

by which you know the proportions? How can you

compare two or more groups?

4.11.1 The Confidence Interval of a proportion

4.11.1.1 How Prism can compute a confidence interval of a proportion

Example

When an experiment has two possible outcomes, the results are
expressed as a proportion. Since your data are derived from random
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sampling, the true proportion in the overall population is almost certainly
different than the proportion you observed. A 95% confidence interval
quantifies the uncertainty. 

For example, you look in a microscope at cells stained so that live cells
are white and dead cells are blue. Out of 85 cells you looked at, 6 were
dead. The fraction of dead cells is 6/85 = 0.0706.

The 95% confidence interval extends from 0.0263 to 0.1473. If you
assume that the cells you observed were randomly picked from the cell
suspension, and that you assessed viability properly with no ambiguity or
error, then you can be 95% sure that the true proportion of dead cells in
the suspension is somewhere between 2.63 and 14.73 percent.

How to compute the confidence interval with Prism

1. Create a new table formatted for parts of whole data.

2. Enter data only into the first two rows of column A. Enter the actual
number of times each outcome occurred. For the example, enter 6 into
the first row (number of blue dead cells) and 79 into the second row
(number of white alive cells). Don't enter the total number of events or
objects you examined. Prism will compute the total itself. 

3. If you have more proportions that you wish to compute a confidence
interval for, enter them into more columns of the data table.

4. Click Analyze, and choose the Fraction of Total analysis.

5. Choose to divide each value by its column total, and check the option
to compute 95% confidence intervals. Choose whether you want to see
the results as fractions of percentages.



GraphPad Statistics Guide460

© 1995-2016 GraphPad Software, Inc.

4.11.1.2 Three methods for computing the CI of a proportion

There are many methods to compute the confidence interval of a proportion. Your
goal is to have a 95% confidence intervals, but in fact the actual confidence level
(for all methods) depends on the precise values for the numerator and
denominator. 

Prism offers three methods to compute the confidence interval of a proportion:

· The so called "exact method" of Clopper and Pearson (1). This is the
only method Prism 6 (and earlier) used. No matter what data you enter,
this method always ensures that the actual confidence level is greater
than the level you requested (usually 95%). But often the actual
confidence level is a lot higher. On average, therefore, these intervals
have a greater confidence level than you requested so are wider than
they need to be. 
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· The method of Wilson (2). With some data the actual confidence level is
greater than what you requested, and for some data the actual
confidence level is less. On the average, the actual confidence level
equals the confidence level you requested.  Wilson's method is great
except when the probability is very close to 0 or 1. Note that while some
programs offer a variation of this method with a continuity correction,
but Prism does not.

· The hybrid Wilson/Brown method (3). In most cases this method uses
the Wilson method with no modifications.  The exception is when the
proportion is very close to 0.00 or 1.00. In these cases, Brown
prescribes using a Poisson approximation instead. Prism uses this
approximation for the lower confidence limit when the numerator (N)
equals 1 or 2, and when N=3 and the denominator (D) exceeds 50. It 
uses this approximation for the upper limit when  N=D-1 or N=D-2 (or
N=D-3, and N > 50). Note that the approximation is not needed when
N=0. In that case the lower confidence limit is 0.0 and the upper limit is
computed by Wilson's method. Similarly, when N=D, the upper
confidence limit equals 1.00 and the lower limit is computed by Wilson's
method. Brown and colleagues (3) call this hybrid method the modified
Wilson method, but this name can be ambiguous because other
modifications of Wilson's method have been proposed.

We recommend the third (Wilson/Brown hybrid) method. Use one of the
first two methods only if you need to be sure that Prism's results match
those of another program.
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4.11.1.3 The meaning of “95% confidence” when the numerator is zero

Interpreting a confidence interval is usually straightforward. But if the
numerator of a proportion is zero, the interpretation is not so clear. In
fact, the “95% confidence interval” really gives you 97.5% confidence.
Here's why:

When the proportion does not equal zero, Prism reports the 95%
confidence interval so that there is a 2.5% chance that the true
proportion is less than the lower limit of the interval, and a 2.5% chance
that the true proportion is higher than the upper limit. This leaves a 95%
chance (100% -2.5% - 2.5%) that the interval includes the true
proportion. When the numerator is zero, we know that the true proportion
cannot be less than zero, so we only need to compute an upper
confidence limit. Prism still calculates the upper limit so that there is a
2.5% chance that the true proportion is higher. Since the uncertainty only
goes one way you'll actually have a 97.5% CI (100% - 2.5%). The
advantage of calculating the “95%” confidence interval this way is that it
is consistent with 95% CIs computed for proportions where the numerator
is not zero. 

If you don't care about consistency with other data, but want to really
calculate a 95% CI, you can do that by computing a “90% CI”. This is
computed so that there is a 5% chance that the true proportion is higher
than the upper limit. If the numerator is zero, there is no chance of the
proportion being less than zero, so the “90% CI” really gives you 95%
confidence.

4.11.1.4 What are binomial variables

The confidence interval for a proportion computes results that only make
sense if the variable is binomial. There must be two possible outcomes,
and you know the exact number of times each occurred. 

If you know that an outcome happens 25% of the time, it makes no sense
to compute the confidence interval for 25/100 unless you observed
exactly 100 times and saw that outcome in 25 of them. 

If you know that a treatment reduces white cell count by 33%, you
cannot compute a confidence interval assuming a binomial distribution.
Nor if a treatment decreases body weight by 25%. 
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4.11.2 Contingency tables

Contingency tables summarize results where you

compared two or more groups and the outcome is

a categorical variable (such as disease vs. no

disease, pass vs. fail, artery open vs. artery

obstructed).

4.11.2.1 Key concepts: Contingency tables

Contingency tables

Contingency tables summarize results where you compared two or more
groups and the outcome is a categorical variable (such as disease vs. no
disease, pass vs. fail, artery open vs. artery obstructed).

Contingency tables display data from these five kinds of studies:

· In a cross-sectional study, you recruit a single group of subjects and
then classify them by two criteria (row and column). As an example,
let's consider how to conduct a cross-sectional study of the link
between electromagnetic fields (EMF) and leukemia. To perform a
cross-sectional study of the EMF-leukemia link, you would need to
study a large sample of people selected from the general population.
You would assess whether or not each subject has been exposed to
high levels of EMF. This defines the two rows in the study. You then
check the subjects to see whether or not they have leukemia. This
defines the two columns. It would not be a cross-sectional study if you
selected subjects based on EMF exposure or on the presence of
leukemia.

· A prospective study starts with the potential risk factor and looks
forward to see what happens to each group of subjects. To perform a
prospective study of the EMF-leukemia link, you would select one
group of subjects with low exposure to EMF and another group with
high exposure. These two groups define the two rows in the table.
Then you would follow all subjects over time and tabulate the numbers
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that get leukemia. Subjects that get leukemia are tabulated in one
column; the rest are tabulated in the other column.

· A retrospective case-control study starts with the condition being
studied and looks backwards at potential causes. To perform a
retrospective study of the EMF-leukemia link, you would recruit one
group of subjects with leukemia and a control group that does not
have leukemia but is otherwise similar. These groups define the two
columns. Then you would assess EMF exposure in all subjects. Enter
the number with low exposure in one row, and the number with high
exposure in the other row. This design is also called a case-control
study.

· In an experiment, you manipulate variables. Start with a single group
of subjects. Half get one treatment, half the other (or none). This
defines the two rows in the study. The outcomes are tabulated in the
columns. For example, you could perform a study of the EMF/leukemia
link with animals. Half are exposed to EMF, while half are not. These
are the two rows. After a suitable period of time, assess whether each
animal has leukemia. Enter the number with leukemia in one column,
and the number without leukemia in the other column. Contingency
tables can also tabulate the results of some basic science experiments.
The rows represent alternative treatments, and the columns tabulate
alternative outcomes. 

· Contingency tables also assess the accuracy of a diagnostic test.
Select two samples of subjects. One sample has the disease or
condition you are testing for, the other does not. Enter each group in a
different row. Tabulate positive test results in one column and
negative test results in the other.

For data from prospective and experimental studies, the top row usually
represents exposure to a risk factor or treatment, and the bottom row is
for controls. The left column usually tabulates the number of individuals
with disease; the right column is for those without the disease. In case-
control retrospective studies, the left column is for cases; the right
column is for controls. The top row tabulates the number of individuals
exposed to the risk factor; the bottom row is for those not exposed.

Logistic regression

Contingency tables analyze data where the outcome is categorical, and
where there is one independent (grouping) variable that is also
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categorical. If your experimental design is more complicated, you need to
use logistic regression which Prism does not offer. Logistic regression is
used when the outcome is categorical, but can be used when there are
multiple independent variables, which can be categorical or numerical. To
continue the example above, imagine you want to compare the incidence
of leukemia in people who were, or were not, exposed to EMF, but want to
account for gender, age, and family history of leukemia. You can't use a
contingency table for this kind of analysis, but would use logistic
regression.

4.11.2.2 How to: Contingency table analysis

1. Create a contingency table

From the Welcome or New table dialog, choose the contingency tab.

 If you are not ready to enter your own data, choose one of the sample
data sets. 

2. Enter data

Most contingency tables have two rows (two groups) and two columns
(two possible outcomes), but Prism lets you enter tables with any number
of rows and columns.

You must enter data in the form of a contingency table. Prism cannot
cross-tabulate raw data to create a contingency table. 

For calculation of P values, the order of rows and columns does not
matter. But it does matter for calculations of relative risk, odds ratio, etc.
Use the sample data to see how the data should be organized. 

Be sure to enter data as a contingency table. The categories defining the
rows and columns must be mutually exclusive, with each subject (or
experimental unit) contributing to one cell only. In each cell, enter the
number of subjects actually observed. Your results will be completely
meaningless if you enter averages, percentages or rates. You must enter
the actual number of subjects, objects, events. For this reason, Prism
won't let you enter a decimal point when entering values into a
contingency table.
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If your experimental design matched patients and controls, you should
not analyze your data with contingency tables. Instead you should use 
McNemar's test .  

If you want to compare an observe distribution of values with a
distribution expected by theory, do not use a contingency table. Prism
offers another analysis  for that purpose. 

3. Analyze

From the data table, click  on the toolbar, and choose Chi-
square (and Fisher's exact) test. 

Main calculations for tables with two rows and two columns

Your choice of effect sizes will depend on experimental design. Calculate
an Odds ratio from retrospective case-control data, sensitivity (etc.) from
a study of a diagnostic test, and relative risk and difference between
proportions from prospective and experimental studies. All of these effect
sizes apply only to 2x2 tables, so the choices will be gray if your table is
larger.

If your table has two rows and two columns, we suggest you always
choose Fisher's exact test  to calculate the P value. 
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Main calculations for tables with more than two rows and/or more than
two columns

If your table has two columns and three or more rows, you can choose
the chi-square test or the chi-square test for trend. This calculation
tests whether there is a linear trend between row number and the fraction
of subjects in the left column. It only makes sense when the rows are
arranged in a natural order (such as by age, dose, or time), and are
equally spaced. The test is also called the Cochran-Armitage test for
trend. It is explained clearly, with equations and an example, on pages
261-265 Altman (2). You can find these pages at Google Books.

With contingency tables with more than two rows or columns, Prism
always calculates the chi-square test. You have no choice. Extensions to
Fisher's exact test have been developed for larger tables, but Prism
doesn't offer them.

Options

      

http://books.google.com/books?id=v-walRnRxWQC&printsec=frontcover&dq=Practical+Statistics+for+Medical+Research&hl=en&ei=Q1evTN-4HY2osQPW0rWvDA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDEQ6AEwAA#v=onepage&q&f=false
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We suggest always choosing a two-sided P value  unless you have a
strong reason to choose a one-sided P value.  

Prism now offers a choice of method to use when computing confidence
intervals.

· CI of the relative risk. The  method of Katz is an approximation, and
we suggest not using it except to maintain compatibility with analyses
done with earlier versions of Prism. There are many ways to compute
the CI of a relative risk (1), and many of these seem good. Prism now
offers the Koopman asymptotic score method, which we recommend. 

· CI for the difference between proportions. The asymptotic method
used by earlier versions of Prism is an approximation, and we suggest
not using it except for compatibility. Instead choose the
Newcombe/Wilson method(2). We offer that method with and without
the continuity correction, and recommend the variation with that
correction.  

· CI of the odds ratio. The  method of Woolf used by Prism 6 and earlier
is an approixmation, and we suggest you not use it except to maintain
compatibility. There are many good methods to compute the CI of an
odds ratio (2). Prism now offers the Baptista-Pike method, which we
recommend. 

· CI of the sensitivity, specificity, etc. The so called "exact method" of
Clopper and Pearson produces wide confidence intervals, and we
suggest you don't use it except for compatibility. Instead choose the
hybrid Wilson/Brown method  (3). 

You can also choose how you want P values formatted . 

  

4. Review the results

Interpreting results: relative risk and odds ratio

Interpreting results: sensitivity and specificity

Interpreting results: P values (from contingency tables)

Analysis checklist: Contingency tables 
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1. Fagerland MW, Lydersen S, Laake P. Recommended confidence
intervals for two independent binomial proportions. Stat Methods Med
Res. SAGE Publications; 2011 Oct 13. 

2. Newcombe, R. G. R. (1998). Interval estimation for the difference
between independent proportions: comparison of eleven methods.
Statistics in Medicine, 17(8), 873–890.  

3. Brown, L., Cai, T., & DasGupta, A. (2001). Interval Estimation for a Binomial
Proportion. Statist. Sci, 16(2), 101–133.

4.11.2.3 Fisher's test or chi-square test?

If you entered data with two rows and two columns, you must choose the
chi-square test or Fisher's exact test. 

Chi-square and Yates correction

In the days before computers were readily available, people analyzed
contingency tables by hand, or using a calculator, using chi-square tests.
This test works by computing the expected values for each cell if the
relative risk (or odds' ratio) were 1.0. It then combines the discrepancies
between observed and expected values into a chi-square statistic from
which a P value is computed.

The chi-square test is only an approximation. The Yates continuity
correction is designed to make the chi-square approximation better, but
it over corrects so gives a P value that is too large (too 'conservative').
With large sample sizes, Yates' correction makes little difference, and the
chi-square test works very well. With small sample sizes, chi-square is
not accurate, with or without Yates' correction. Statisticians seem to
disagree on whether or not to use Yates correction. Prism gives you the
choice. 

If the observed and expected values are all very close (within 0.25), the
Yates correction sort of works backwards, and actually increases the
value of chi-square and thus lowers the P value, rather than decreasing
chi-square and increasing P. This is a rare occurrence, and only happens

http://www.ncbi.nlm.nih.gov/pubmed/9595617
http://www.ncbi.nlm.nih.gov/pubmed/9595617
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when the relative risk or odds ratio is very close to 1.0. If you asked for
the Yates correction, Prism does the Yates correction even in this case.

Fisher's test. Exactly correct answer to wrong question? 

Fisher's exact test, as its name implies, always gives an exact P value and
works fine with small sample sizes. Fisher's test (unlike chi-square) is
very hard to calculate by hand, but is easy to compute with a computer.
Most statistical books advise using it instead of chi-square test.  If you
choose Fisher's test, but your values are huge, Prism will override your
choice and compute the chi-square test instead, which is very accurate
with large values.

As its name implies, Fisher's exact test, gives an exactly correct answer
no matter what sample size you use. But some statisticians conclude that
Fisher's test gives the exact answer to the wrong question, so its result is
also an approximation to the answer you really want. The problem is that
the Fisher's test is based on assuming that the row and column totals are
fixed by the experiment. In fact, the row totals (but not the column
totals) are fixed by the design of a prospective study or an experiment,
the column totals (but not the row totals) are fixed by the design of a
retrospective case-control study, and only the overall N (but neither row
or column totals) is fixed in a cross-sectional experiment. Ludbrook (1)
points out that Fisher designed his exact test to analyze a unique
experiment, and that experimental design is extremely rare.

Since the design of your study design is extremely unlikely to match the
constraints of Fisher's test, you could question whether the exact P value
produced by Fisher's test actually answers the question you had in mind.

If you enter huge numbers (the sum is greater than 1,000,000) Prism will
perform the chi-square test even if you chose Fisher's test.

An alternative to Fisher's test is the Barnard test. Fisher's test is said to
be 'conditional' on the row and column totals, while Barnard's test is not.
Mehta and Senchaudhuri explain the difference and why Barnard's test
has more power (2). Berger modified this test to one that is easier to
calculate yet more powerful.  Ludbrook discusses other exact methods
that are appropriate to common experimental designs (1).

At this time, we do not plan to implement Bernard's or Berger's test in
Prism or the exact tests mentioned by Ludbrook (1). There certainly does
not seem to be any consensus that these tests are preferred. But let us

http://www.cytel.com/Papers/twobinomials.pdf
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know if you would like to see these tests in a future version of Prism.
Here is an online calculator that performs Berger's test.

References

1. Ludbrook, J. (2008). Analysis of 2 x 2 tables of frequencies: matching test to
experimental design. International Journal of Epidemiology, 37, 1430 -1435.

2. Mehta, C. R.  and Senchaudhur, P., Conditional versus Unconditional Exact Tests
for Comparing Two Binomials. http://www.cytel.com/Papers/twobinomials.pdf

4.11.2.4 Interpreting results: P values from contingency tables

What question does the P value answer?

The P value from a Fisher's or chi-square test answers this question: 

If there really is no association between the variable defining the rows
and the variable defining the columns in the overall population, what is
the chance that random sampling would result in an association as
strong (or stronger) as observed in this experiment? 

The chi-square test for trend is performed when there are two columns
and more than two rows arranged in a natural order. It is also called the 
Cochran-Armitage method. The P value answers this question: 

If there is no linear trend between row number and the fraction of
subjects in the left column, what is the chance that you would happen to
observe such a strong trend as a consequence of random sampling? 

For more information about the chi-square test for trend, see the
excellent text, Practical Statistics for Medical Research by D. G. Altman,
published in 1991 by Chapman and Hall.

Don't forget that “statistically significant” is not the same as “scientifically
important” . 

You will interpret the results differently depending on whether the P value
is small  or large . 
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http://www.cytel.com/Papers/twobinomials.pdf
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Why isn't the P value always consistent with the confidence interval?

P values and confidence intervals are intertwined. If the P value is less
than 0.05, then the 95% confidence interval cannot contain the value that
defines the null hypothesis. (You can make a similar rule for P values <
0.01 and 99% confidence intervals, etc.)

This rule is not always upheld with Prism's results from contingency
tables. 

The P value computed from Fisher's test is exactly correct. However, the
confidence intervals for the Odds ratio and Relative Risk are computed by
methods that are only approximately correct. Therefore it is possible that
the confidence interval does not quite agree with the P value. 

For example, it is possible for results to show P<0.05 with a 95% CI of
the relative risk that includes 1.0. (A relative risk of 1.0 means no risk, so
defines the null hypothesis). Similarly, you can find P>0.05 with a 95% CI
that does not include 1.0. 

These apparent contradictions happens rarely, and most often when one
of the values you enter equals zero.

How the P value is calculated

Calculating a chi-square test is standard, and explained in all statistics
books.

The Fisher's test is called an "exact" test, so you would think there would
be consensus on how to compute the P value. Not so! 

While everyone agrees on how to compute one-sided (one-tail) P value,
there are actually three methods to compute "exact" two-sided (two-tail)
P value from Fisher's test. Prism computes the two-sided P value using
the method of summing small P values. Most statisticians seem to
recommend this approach, but some programs use a different approach.

If you want to learn more, SISA provides a detail discussion with
references. Also see the section on Fisher's test in Categorical Data
Analysis by Alan Agresti. It is a very confusing topic, which explains why
different statisticians (and so different software companies) use different
methods.

http://home.clara.net/sisa/fishrhlp.htm
http://www.amazon.com/exec/obidos/ASIN/0471360937/GraphPadSoftwareA?dev-t=DCV3XDP4VU2C7
http://www.amazon.com/exec/obidos/ASIN/0471360937/GraphPadSoftwareA?dev-t=DCV3XDP4VU2C7


STATISTICS WITH PRISM 7 473

© 1995-2016 GraphPad Software, Inc.

One-sided P values

Prism gives you the choice of reporting a one-sided or two-sided P
value . 

With the chi-square test, the one-sided P value is half the two-sided P
value. Zar points out (p.503, 5th edition) that there is one extremely rare
situation where the one-sided P value can be misleading: If your
experimental design is such that you chose both the row totals and the
column totals.

Why we use the term "one-sided" and not "one-tailed"? To avoid
confusion. The value of chi-square is always positive. To find the P value
from chi-square, Prism calculates the probability (under the null
hypothesis) of seeing that large a value of chi-square or even larger. So it
only looks at the right tail of the chi-square distribution. But a chi-square
value can be high when the deviation from the null hypothesis goes in
either direction (positive or negative difference between proportions,
relative risk greater than or less than 1). So the two-sided P value is
actually computed from one tail of the chi-square distribution.  

With Fisher's test, the definition of a one-sided P value is not ambiguous.
But in most cases, the one-sided P value is not half the two-sided P
value. 

4.11.2.5 Interpreting results: Attributable risk

Attributable risk 

Here are results from an experimental study:

Progress No Progress

AZT 76 399

Placebo 129 332

 In this example, disease progressed in 28% of the placebo-treated
patients and in 16% of the AZT-treated subjects. 

The difference between proportions (P1-P2), the attributable risk, is 28%
- 16% = 12%.
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 The Number Needed to Treat (NNT)

The NNT is simply the reciprocal of the difference between the two
proportions. In the example above, the difference between the two
proportions is 0.12, so the NNT is 1/0.12= 8.3. For every eight people
treated with AZT, you'd expect one more to progress than if all were
treated with placebo. Especially, when the difference between proportions
is a tiny fraction, it can be easier to understand the NNT than the
difference between proportions. 

In the example above, the drug is used to treat, so the name Number
Needed to Treat is apt. In some cases, there is risk or harm, rather than
treatment, and the term Number Needed to Harm (NNH) is used. In other
nonclinical situations it is not clear which of two outcomes is better, so
neither of those phrases really makes sense. Prism always uses the
abbreviation NNT, but it is up to you to interpret the value in the context
of the study. 

How Prism computes the confidence interval of the attributable risk

On the Options tab of the Contingency table analysis dialog, Prism offers
three methods to do the calculation, all explained in Newcombe (1). 

· Asymptotic with continuity correction. This is the approximate method
used by Prism 6 and earlier. We recommend using it only when needed
for compatibility.

· Newcombe/Wilson score

· Newcombe/Wilson score with continuity correction. This is much better
than the asymptotic method, so we recommend it. Whether or not you
use the continuity correction matters little, but we offer the choice so
results will match other programs.  

Prism takes the reciprocal of both confidence limits and presents these as
the confidence interval of the NNT. 

If you choose the asymptotic method  and some of the values are zero,
Prism adds 0.5 to all cells before calculating the attributable risk and its
confidence interval. Prism shows a floating note on the results page when
it does this. In this case, we suggest you switch to the Newcombe/Wilson
method.

http://www.thennt.com/thennt-explained/
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4.11.2.6 Interpreting results: Relative risk

Relative risk 

Here are results from an experimental study:

Progress No Progress

AZT 76 399

Placebo 129 332

 In this example, disease progressed in 28% of the placebo-treated
patients and in 16% of the AZT-treated subjects. 

The relative risk is 16%/28% = 0.57. A subject treated with AZT has 57%
the chance of disease progression as a subject treated with placebo. The
word “risk” is not always appropriate. Think of the relative risk as being
simply the ratio of proportions.

How Prism computes the confidence interval of the relative risk

Prism computes the confidence interval of the relative risk using either
the Method of Katz (reference 1, the only method  used by Prism 6 and
earlier) or the Koopman asymptotic score (2), which we recommend
because it is more accurate. Choose on the Options tab of the
Contingency table dialog. Fagerland (3) reviews the various methods
available to compute this confidence interval.

If you choose the method of Katz and some of the values are zero, Prism
adds 0.5 to all cells before calculating the relative risk and its confidence
interval. Prism shows a floating note on the results page when it does
this. In this case, we suggest you switch to the Koopman method.

http://www.ncbi.nlm.nih.gov/pubmed/9595617
http://www.ncbi.nlm.nih.gov/pubmed/9595617
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The order of the two columns matters, the order of rows not so much

Note that it matters how you enter the data. The relative risk would have
been different if you had entered the "progress" data in the example
above into the second column and the "no progress" data into the first
column. For each row, Prism computes the risk by dividing the value in
the first column by the sum of the values in the two columns.

After computing the two risks (see prior paragraph), Prism computes the
relative risk by dividing the risk in the second row by the risk in the first.
But it also reports the reciprocal of that risk. So it really doesn't matter
which order you entered the two rows.

References

1. Katz D, Baptista J, Azen SP and Pike MC. Obtaining confidence
intervals for the risk ratio in cohort studies. Biometrics 1978; 34:
469–474.

2. Koopman PAR. Confidence intervals for the ratio of two binomial
proportions. Biometrics 1984; 40: 513–517.

3. Fagerland MW, Lydersen S, Laake P. Recommended confidence
intervals for two independent binomial proportions. Stat Methods Med
Res. SAGE Publications; 2011 Oct 13. 

4.11.2.7 Interpreting results: Odds ratio

Odds ratio

Here are the sample data for a case-control study (the first study to link
smoking to lung cancer). The investigators chose to study a group of
cases with lung cancer and a group of controls without lung cancer. They
then asked whether each person had smoked or not  (Doll and Hill, British
Med. J, 1950, 739-748). The results were:

Cases (lung cancer) Control

Smoked
688 650

Never smoked
21 59

http://www.jstor.org/discover/10.2307/2530610?sid=21106383284043&uid=2&uid=60&uid=2448475567&uid=3
http://www.jstor.org/discover/10.2307/2530610?sid=21106383284043&uid=2&uid=60&uid=2448475567&uid=3
http://www.jstor.org/discover/10.2307/2531405?sid=21106383305643&uid=60&uid=2448475567&uid=2&uid=3
http://www.jstor.org/discover/10.2307/2531405?sid=21106383305643&uid=60&uid=2448475567&uid=2&uid=3
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 With a retrospective case-control data, direct calculations of the relative
risk or the difference between proportions should not be performed, as
the results are not meaningful. When designing this kind of study, you
decide how many cases and controls to study. Those numbers don't have
to be equal. Changing the ratio of cases to controls would also change the
computed values for the relative risk and difference between proportions.
For that reason, it makes no sense to compute or try to interpret these
values from case-control data.

In contrast, changing the ratio of cases to controls does not change the
expected value of the odds ratio. If the disease or condition you are
studying is rare, you can interpret the Odds ratio as an approximation of
the relative risk

For the sample data above, the odds of a case being a smoker is 688/21
or 32.8. The odds of a control being a smoker is 650/59 or 11.0. The odds
ratio is 32.8/11.0, which is 3.0. Prism reports the value more precisely as
2.974 with a 95% confidence interval ranging from 1.787 to 4.950. You
can interpret this odds ratio as a relative risk. The risk of a smoker
getting lung cancer is about three times the risk of a nonsmoker getting
lung cancer. 

How Prism computes the confidence interval of the odds ratio 

Prism computes the confidence interval of the odds ratio using computed
either using the Woolf logit method (reference 1; the only method used
by Prism 6 and earlier) or the Baptista-Pike method (2) which we
recommend. Choose on the Options tab of the Contingency table dialog. 
Fagerland (3) reviews the various methods available to compute this
confidence interval.

 If any cell has a zero and you choose the Woolf method, Prism adds 0.5
to all cells before calculating the odds ratio and its confidence interval. In
this case, we suggest you switch to the Baptista-Pike method. 

References

1. Woolf B. On estimating the relation between blood group and disease.
Ann Human Gene 1955; 19: 251–253.

2.  Baptista J and Pike MC. Exact two-sided confidence limits for the odds
ratio in a 2  2 table. J R Stat Soc C Appl Stat 1977; 26: 214–220.
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4.11.2.8 Interpreting results: Sensitivity and specificity

If your data represent evaluation of a diagnostic test, Prism reports the
results in five ways:

Term Meaning

Sensitivity The fraction of those with the disease correctly identified
as positive by the test.

Specificity The fraction of those without the disease correctly
identified as negative by the test.

Positive
predictive
value

The fraction of people with positive tests who actually
have the condition.

Negative
predictive
value

The fraction of people with negative tests who actually
don't have the condition.

Likelihood
ratio

If you have a positive test, how many times more likely
are you to have the disease? If the likelihood ratio equals
6.0, then someone with a positive test is six times more
likely to have the disease than someone with a negative
test. The likelihood ratio equals sensitivity/(1.0-
specificity).

The sensitivity, specificity and likelihood ratios are properties of the test. 

The positive and negative predictive values are properties of both the test
and the population you test. If you use a test in two populations with
different disease prevalence, the predictive values will be different. A test
that is very useful in a clinical setting (high predictive values) may be
almost worthless as a screening test. In a screening test, the prevalence
of the disease is much lower so the predictive value of a positive test will
also be lower.
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Prism computes confidence intervals for all these values using a method
you choose on the Options tab for computing the confidence interval of a
proportion. Prism offers three methods .  We recommend the hybrid
Wilson/Brown method.

4.11.2.9 Analysis checklist: Contingency tables

Contingency tables summarize results where you compared two or
more groups and the outcome is a categorical variable (such as disease
vs. no disease, pass vs. fail, artery open vs. artery obstructed). Read
elsewhere to learn about relative risks & odds ratios , sensitivity &
specificity , and interpreting P values .

Are the subjects independent? 

The results of a chi-square or Fisher's test only make sense if each
subject (or experimental unit) is independent of the rest. That means
that any factor that affects the outcome of one subject only affects that
one subject. Prism cannot test this assumption. You must think about
the experimental design. For example, suppose that the rows of the
table represent two different kinds of preoperative antibiotics and the
columns denote whether or not there was a postoperative infection.
There are 100 subjects. These subjects are not independent if the table
combines results from 50 subjects in one hospital with 50 subjects from
another hospital. Any difference between hospitals, or the patient groups
they serve, would affect half the subjects but not the other half. You do
not have 100 independent observations. To analyze this kind of data, use
the Mantel-Haenszel test or logistic regression. Neither of these tests is
offered by Prism.

Are the data unpaired? 

In some experiments, subjects are matched for age and other variables.
One subject in each pair receives one treatment while the other subject
gets the other treatment. These data should be analyzed by special
methods such as McNemar's test . Paired data should not be analyzed
by chi-square or Fisher's test.
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Is your table really a contingency table? 

To be a true contingency table, each value must represent numbers of
subjects (or experimental units). If it tabulates averages, percentages,
ratios, normalized values, etc. then it is not a contingency table and the
results of chi-square or Fisher's tests will not be meaningful. If you've
entered observed values on one row (or column) and expected values on
another, you do not have a contingency table, and should use a separate
analysis  designed for those kind of data. 

Does your table contain only data?

The chi-square test is not only used for analyzing contingency tables. It
can also be used to compare the observed number of subjects in each
category with the number you expect to see based on theory. Prism
cannot do this kind of chi-square test. It is not correct to enter observed
values in one column and expected in another. When analyzing a
contingency table with the chi-square test, Prism generates the expected
values from the data – you do not enter them.

Are the rows or columns arranged in a natural order? 

If your table has two columns and more than two rows (or two rows and
more than two columns), Prism will perform the chi-square test for trend
as well as the regular chi-square test. The results of the test for trend
will only be meaningful if the rows (or columns) are arranged in a natural
order, such as age, duration, or time. Otherwise, ignore the results of
the chi-square test for trend and only consider the results of the regular
chi-square test.

4.11.2.10Graphing tips: Contingency tables

Contingency tables are always graphed as bar graph. Your only choices
are whether you want the bars to go horizontally or vertically, and
whether you want the outcomes to be interleaved or grouped. These
choices are available on the Welcome or New Table & Graph dialogs. You
can change your mind on the Format Graph dialog, in the Graph Settings
tab.

4.11.3 Compare observed and expected distributions
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4.11.3.1 How to: Compare observed and expected distributions

This analysis compares the distribution you entered into a parts-of-whole
table (observed distribution) with a theoretical distribution you enter into
the dialog (expected distribution). 

1. Enter the data onto a parts-of-whole table

Enter the actual number of objects or events. The results will be
meaningless if you enter normalized values, rates or percentages. These
are actual data from one of Mendel's famous experiments. I obtained the
data from H.  Cramer. Mathematical methods of statistics. Princeton
University Press, 1999.

2. Enter the expected values

Click Analyze, and choose Compare observed distribution with expected in
the Parts of whole section. These values were computed by multiplying a
proportion predicted by Mendelian genetics (9/16 or 0.5625 for the first
category) times the number of peas used in the experiment. You can also
enter the percentages directly by selecting an option on the dialog.
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Enter the expected values. You can choose to enter the actual number of
objects or events expected in each category, in which case the total of
the expected values must equal the total of the observed data you
entered on the data table. Or you can choose to enter percentages, in
which case they must total 100. In either case, it is ok to enter fractional
values.

In this example, the expected values are not integers. That's ok. That is
the average expectation if you did a large number of experiments. In any
one experiment, of course, the number of peas of each category must be
an integer. These values are computed based on Mendelian genetics. For
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example, the theory predicts that 9/16 of peas would be in the first
category. Multiply that fraction by the total number of peas used in this
experiment to get the expected values.

3. Choose the test

If you entered more than two rows of data (as in the example above),
you'll have no choice. Prism will perform the chi-square goodness-of-fit
test. 

If you entered only two rows of data, you can also choose the binomial
test, which we strongly recommend. With only two categories, the chi-
square test reports P values that are too small. This is a huge issue with
small data sets, but the discepancy exists even with sample sizes in the
hundreds. Use the binomial test.

4. Interpret the P value

The results table summarizes the data, reports the value of chi-square
and its df (if you picked the chi-square test), and states the P value. The
null hypothesis is that the observed data are sampled from a populations
with the expected frequencies. The P value answers this question:

Assuming the theory that generated the expected values is correct,
what is the probability of observing such a large discrepancy (or
larger) between observed and expected values?

A small P value is evidence that the data are not sampled from the
distribution you expected. In this example, the P value is large  (0.93) so
the data provide no evidence of a discrepancy between the observed data
and the expected values based on theory.

4.11.3.2 How the chi-square goodness of fit test works

The null hypothesis is that the observed data are sampled from a
populations with the expected frequencies. The chi-square test combines
the discrepancies between the observed and expected values. 

How the calculations work:

1. For each category compute the difference between observed and
expected counts.

http://udel.edu/~mcdonald/statsmall.html
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2. Square that difference and divide by the expected count.

3. Add the values for all categories. In other words, compute the sum of
(O-E)2/E.

4. Use a  computer program to calculate the P value. You need to know
that the number of degrees of freedom equals the number of categories
minus 1.

The null hypothesis is that the observed data are sampled from a
populations with the expected frequencies. The P value answers this
question:

Assuming the theory that generated the expected values is correct,
what is the probability of observing such a large discrepancy (or
larger) between observed and expected values?

A small P value is evidence that the data are not sampled from the
distribution you expected.

The Yates' correction

When there are only two categories, some statisticians recommend using
the Yates' correction. This would reduce the value of chi-square and  so
would  increase the P value. With large sample sizes, this correction
makes little difference. With small samples, it makes more difference.
Statisticians disagree about when to use the Yates' correction, and Prism
does not apply it. 

With only two categories, it is better to use the binomial test , which
gives an exact result instead of either form of the chi-square calculation,
which is only an approximation.

4.11.3.3 The binomial test

When to use the binomial test rather than the chi-square test

The binomial test is an exact test to compare the observed distribution to
the expected distribution when there are only two categories (so only two
rows of data were entered). In this situation, the chi-square is only an
approximation, and we suggest using the exact binomial test instead. 

484
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Example

Assume that your theory says that an event should happen 20% of the
time. In fact, in an experiment with 100 repetitions, that event happened
only 7 times. You expected the event to occur 20 times (20% of 100) but
it only occurred 7 times. How rare a coincidence is that? That is the
question the binomial test answers. 

Create a parts-of-whole table, and enter 7 into row 1 and 93 into row 2,
and label the rows if you like. Click Analyze, and choose Compare
observed distribution with expected in the Parts of whole section. Enter
the expected values (20 and 80) and choose the binomial test (rather
than chi-square)

Prism reports both one- and two-tail P values. 

One-tail P value

The one-tail P value (also called a one sided P value) is straightforward.
The null hypothesis is that the expected results are from a theory that is
correct. So the P value answers the question:

If the true proportion is 20%, what is the chance in 100 trials that you'll
observe 7 or fewer of the events?

You need to include the "or fewer" because it would have been even more
surprising if the number of events in 100 trials was any value less than
seven.

The one-tail P value for this example is:  0.0003.

If the observed value is less than the expected value, Prism reports the
one-tail P value which is the probability of observing that many events or
fewer. If the observed value is greater than the expected value, Prism
reports the one-tail P value which is the probability of observing that
many events or more. 

Two-tail P value

The two-tail P value is a bit harder to define. In fact, there are (at least)
three ways to define it. 
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Prism uses the third definition below, and this is the P value Prism uses
when it creates the summary (* or **...).

· Double the one-tail P value. Twice 0.0002769 equals 0.0005540 That
seems sensible, but that method is not used. Unless the expected
proportion is 50%, the asymmetry of the binomial distribution makes it
unwise to simply double the one-tail P value.

· Equal distance from expected. The theory said to expect 20 events. We
observed 7. The discrepancy is 13 (20-7). So the other tail of the
distribution should be the probability of obtaining 20+13=33 events or
more. The two-tailed P value, computed this way, is the probability of
obtaining 7 or less (0.0002769; the same as the one-tail P value) plus
the probability of obtaining 33 or more (0.001550441) which means the
two-tail P value equals 0.00182743.. 

· Method of small P values. To define the second tail with this method, we
don't go out the same distance but instead start the second tail at an
equally unlikely value. The chance of observing exactly 7 out of 100
events when the true probability is 0.20 equals 0.000199023. The
probability of obtaining 33 events (how the second tail was defined in
the other method) is higher: 0.000813557. The chance of obtaining 34
events is also higher. But the chance of observing 35 events is a bit
lower (0.000188947). The second tail, therefore, is defined as the
chance of observing 35 or more events. That tail is 0.0033609. The two
tail P value therefore is 0.00061307. This is the method that Prism
uses. 

The distinction between the second and third methods is subtle. The first
tail is unambiguous. It starts at 7 and goes down to zero. The second tail
is symmetrical, but there are two ways to define this. The second method
is symmetrical around the counts. In other words, the border for that tail
(33) is as far from the expected value of 20 as is the observed value of 7
(33-20=20-7). The third method is symmetrical regarding probabilities. 
Given the assumption that the true probability is 20% so we expect to
observe 20, the chance of observing 7 events is about the same as the
chance of observing 35. So the second tail is the probability of observing
35 or more events.

If the expected probability is  0.5, the binomial distribution is symmetrical
and all three methods give the same result. When the expected
probability is 0.5, then the binomial test is the same as the sign test. 

http://www.quantitativeskills.com/sisa/papers/paper5.htm
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4.11.3.4 McNemar's test

Overview of McNemar's test

In the usual kind of case-control study, the investigator compares a group
of controls with a group of cases. As a group, the controls are supposed
to be similar to the cases (except for the absence of disease). Another
way to perform a case-control study is to match individual cases with
individual controls based on age, gender, occupation, location and other
relevant variables. This is the kind of study McNemar's test is designed
for.

Displaying and analyzing data from matched case-control studies on an
ordinary contingency table obscures the fact that the cases and controls
were matched. Matching makes the experiment stronger, so the analysis
ought to take it into account. 

Example

Here are some sample data:

Control

+ - Total

Case
+ 13 25 38

- 4 92 96

Total 17 117 134

The investigators studied 134 cases and 134 matched controls, for a total
of 268 subjects. Each entry in the table represents one pair (a case and a
control). The + and - labels refer to people who were, or were not,
exposed to the putative risk factor or exposure.

This is not a contingency table, so the usual analyses of contingency
tables would not be helpful. It turns out that the odds ratio can be
computed quite simply. The 13 pairs in which both cases and controls
were exposed to the risk factor provide no information about the
association between risk factor and disease. Similarly, the 92 pairs in
which neither case nor control were exposed to risk factor provide no
information. The odds ratio is calculated as the ratio of the other two
values: pairs in which the case was exposed to the risk factor but the
control was not divided by pairs in the control was exposed to the risk
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factor but the case was not. In this example, the odds ratio for the
association between risk factor and disease is 25/4 = 6.25. The equation
for the confidence interval is complicated (see page 286 of S. Selvin,
Statistical Analysis of Epidemiologic Data, 2nd edition). The 95%
confidence interval for the odds ratio ranges from 2.158 to 24.710.  

Computing the P value with Prism using the Binomial test

When you read about McNemar's test, most books explain how to do a
chi-square calculation. Prism won't do that, but we offer a free web
calculator that does.  The binomial test asks the same question, but is
more accurate, especially with small studies. Follow these steps with
Prism:

1.  Create a parts-of-whole data table.

2.  Enter the numbers of discordant pairs in the first two rows of column
A. For the example, enter 25 and 4.

3.  Click Analyze and choose the analysis that compares observed and
expected counts.

4.  Choose to enter the expected values as percentages, and enter 50 as
both expected percentages. 

5. Choose the binomial test, rather than the chi-square test.

6.  For the sample data, the P value  is less than 0.0001. The P value
answers this question: If there really were no association between
disease and risk factor, what is the chance that the two values entered
into this analysis would be as far apart as they are, or even further?

Computing the P value with QuickCalcs using McNemar's test

GraphPad's free web QuickCalc computes McNemar's test using a chi-
square approximation. Call the two discrepant numbers (25 and 4) R and
S. QuickCalc computes chi-square using this equation: 

http://www.graphpad.com/quickcalcs/McNemar1.cfm
http://www.graphpad.com/quickcalcs/McNemar1.cfm
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For this example, chi-square=13.79, which has one degree of freedom.
The two-tailed P value is 0.0002. If there were really no association
between risk factor and disease, there is a 0.02 percent chance that the
observed odds ratio would be so far from 1.0 (no association).

The equation above uses the Yates' correction (the "-1" in the equation
above). Sometimes this correction is shown as "- 0.5". If you choose the
chi-square approach with Prism, no Yates' correction is applied at all.
Rather than choosing the chi-square approach (which is an
approximation) and worrying about whether to apply the Yates'
correction, and which correction to use to, we recommend that you
choose the binomial test, which is an exact test. 

4.11.3.5 Don't confuse with related analyses

The chi-square goodness of fit test can easily be confused with other
tests. Here are some distinctions to avoid any confusion.

Relationship to the chi-square analysis of contingency tables

Note that the chi-square test is used in two quite different contexts.

One use is to compare the observed distribution with an expected
distribution generated by theory.

Another use is to analyze a contingency table . In this analysis, the
expected values are computed from the data, and not from an external
theory.

Relationship to normality tests

Normality tests compare the observed distribution of a continuous
variable, with a theoretical distribution generated by the Gaussian
distribution. Prism offers three ways to do this comparison, all offered as
part of the Column statistics analysis.

Relationship to the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test  can be used as a nonparametric method
to compare two groups of continuous data. It compares the two observed
cumulative frequency distributions, and does not compare either
observed distribution to an expected distribution. 

463
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4.11.3.6 Analysis Checklist: Comparing observed and expected distributions

The chi-square and binomial tests compare an observed categorical
distribution with a theoretical distribution.

Are the values entered the exact number of objects or events ? 

 The results can be interpreted only if you entered the actual number of
objects or events. The results will be meaningless if you enter
normalized values, rates or percentages. 

Do the expected values come from theory? 

The whole point of this analysis is to compare an observed distribution
with a distribution expected by theory. It does not compare two
observed distributions. 

 

4.12 Survival analysis

Survival curves plot the results of experiments

where the outcome is time until death (or some

other one-time event). Prism can use the Kaplan-

Meier method to create survival curves from raw

data, and can compare survival curves.

4.12.1 Key concepts. Survival curves

In many clinical and animal studies, the outcome is survival time. The
goal of the study is to determine whether a treatment changes survival.
Prism creates survival curves, using the product limit method of Kaplan
and Meier, and compares survival curves using both the logrank test and
the Gehan-Wilcoxon test.
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Censored data

Creating a survival curve is not quite as easy as it sounds. The difficulty is
that you rarely know the survival time for each subject. 

· Some subjects may still be alive at the end of the study. You know
how long they have survived so far, but don't know how long they will
survive in the future. 

· Others drop out of the study -- perhaps they moved to a different city
or wanted to take a medication disallowed on the protocol. You know
they survived a certain length of time on the protocol, but don't know
how long they survived after that (or do know, but can't use the
information because they weren't following the experimental protocol).
In both cases, information about these patients is said to be censored. 

You definitely don't want to eliminate these censored observations from
your analyses -- you just need to account for them properly.The term
“censored” seems to imply that the subject did something inappropriate.
But that isn't the case. The term “censored” simply means that you don't
know, or can't use, survival beyond a certain point. Prism automatically
accounts for censored data when it creates and compares survival curves.

Not just for survival

The term survival curve is a bit restrictive as the outcome can be any
well-defined end point that can only happen once per subject. Instead of
death, the endpoint could be occlusion of a vascular graft, first metastasis
of a tumor, or rejection of a transplanted kidney. The event does not have
to be dire. The event could be restoration of renal function, discharge
from a hospital, or graduation.

Analyzing other kinds of survival data

Some kinds of survival data are better analyzed with nonlinear
regression. For example, don't use the methods described in this section
to analyze cell survival curves plotting percent survival (Y) as a function
of various doses of radiation (X). The survival methods described in this
chapter are only useful if X is time, and you know the survival time for
each subject.
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Proportional hazards regression

The analyses built in to Prism can compare the survival curves of two or
more groups. But these methods (logrank test, Gehan-Breslow-Wilcoxon
test) cannot handle data where subjects in the groups are matched, or
when you also want to adjust for age or gender or other variables. For
this kind of analysis, you need to use proportional hazards regression,
which Prism does not do.

4.12.2 How to: Survival analysis

1. Create a survival table

From the Welcome or New Table dialog, choose the Survival tab.

If you aren't ready to enter your own data yet, choose to use sample
data, and choose one of the sample data sets.

2. Enter the survival times

Enter each subject on a separate row in the table, following these
guidelines:

· Enter time until censoring or death (or whatever event you are
tracking) in the X column. Use any convenient unit, such as days or
months. Time zero does not have to be some specified calendar date;
rather it is defined to be the date that each subject entered the study
so may be a different calendar date for different subjects. In some
clinical studies, time zero spans several calendar years as patients are
enrolled. You have to enter duration as a number, and cannot enter
dates directly.

· Optionally, enter row titles to identify each subject. 

· Enter “1” into the Y column for rows where the subject died (or the
event occurred) at the time shown in the X column. Enter “0” into the
rows where the subject was censored  at that time. Every subject in
a survival study either dies or is censored.

· Enter subjects for each treatment group into a different Y column.
Place the X values for the subjects for the first group at the top of the
table with the Y codes in the first Y column. Place the X values for the

490
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second group of subjects beneath those for the first group (X values
do not have to be sorted, and the X column may well contain the same
value more than once). Place the corresponding Y codes in the second
Y column, leaving the first column blank. In the example below, data
for group A were entered in the first 14 rows, and data for group B
started in row 15.

· If the treatment groups are intrinsically ordered (perhaps increasing
dose) maintain that order when entering data. Make sure that the
progression from column A to column B to column C follows the natural
order of the treatment groups. If the treatment groups don't have a
natural order, it doesn't matter how you arrange them.

· Double check that the number of rows with data entered in a column
matches the number of people/animals/whatever i that treatment
group. 

Entering data for survival studies can be tricky. See answers to common
questions , an example of a clinical study , and an example of an
animal study . 

3. View the graph and results

After you are done entering your data, go to the new graph to see the
completed survival curve. Go to the automatically created results sheet to
see the results of the logrank test, which compares the curves (if you
entered more than one data set).

Interpreting results: Kaplan-Meier curves

494 495
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Interpreting results: Comparing two survival curves

Interpreting results: Comparing three or more survival curves

Analysis checklist: Survival analysis

Note that survival analysis works differently than other analyses in Prism.
When you choose a survival table, Prism automatically analyzes your
data. You don't need to click the Analyze button

4.12.3 Q & A: Entering survival data

How do I enter data for subjects still alive at the end of the study?

Those subjects are said to be censored. You know how long they
survived so far, but don't know what will happen later. X is the # of days
(or months…) they were followed. Y is the code for censored
observations, usually zero.

What if two or more subjects died at the same time?

Each subject must be entered on a separate row. Enter the same X
value on two (or more) rows.

How do I enter data for a subject who died of an unrelated cause?

Different investigators handle this differently. Some treat a death as a
death, no matter what the cause. Others treat death of an unrelated
cause to be a censored observation. Ideally, this decision should be
made in the study design. If the study design is ambiguous, you should
decide how to handle these data before unblinding the study.

Do the X values have to be entered in order?

No. You can enter the rows of data in any order you want. It just
matters that each Y value (code) be on the same row as the appropriate
X value.

How does Prism distinguish between subjects who are alive at the end of
the study and those who dropped out of the study?

It doesn't. In either case, the observation is censored. You know the
patient was alive and on the protocol for a certain period of time. After
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that you can't know (patient still alive), or can't use (patient stopped
following the protocol) the information. Survival analysis calculations
treat all censored subjects in the same way. Until the time of censoring,
censored subjects contribute towards calculation of percent survival.
After the time of censoring, they are essentially missing data.

I already have a life-table showing percent survival at various times. Can
I enter this table into Prism?

No. Prism only can analyze survival data if you enter survival time for
each subject. Prism cannot analyze data entered as a life table.

Can I enter a starting and ending date, rather than duration?

Yes. Prism 7 allows this. When you create a new survival table, you can
choose to enter starting and ending dates, rather than number of days.   

How do I handle data for subjects that were “enrolled” but never treated?

Most clinical studies follow the “intention to treat” rule. You analyze the
data assuming the subject got the treatment they were assigned to
receive, even if the treatment was never given. This decision, of course,
should be made as part of the experimental design.

If the subject died right after enrollment, should I enter the patient with
X=0?

No. The time must exceed zero for all subjects. If you enter X=0, Prism
simply ignores that row. More on survival curves with X=0.

4.12.4 Example of survival data from a clinical study

Here is a portion of the data collected in a clinical trial:

Enrolled Final date What happened Group

07-Feb-98 02-Mar-02 Died Treated

19-May-98 30-Nov-98 Died Treated

14-Nov-98 03-Apr-02 Died Treated

01-Dec-98 04-Mar-01 Died Control

04-Mar-99 04-May-01 Died Control

http://www.graphpad.com/faq/viewfaq.cfm?faq=1583
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Enrolled Final date What happened Group

01-Apr-99 09-Sep-02 Still alive, study ended Treated

01-Jun-99 03-Jun-01 Moved, off protocol Control

03-Jul-99 09-Sep-02 Still alive, study ended Control

03-Jan-00 09-Sep-02 Still alive, study ended Control

04-Mar-00 05-Feb-02 Died in car crash Treated

And here is how these data looked when entered in Prism.

Prism does not allow you to enter beginning and ending dates. You must
enter elapsed time. You can calculate the elapsed time in Excel (by simply
subtracting one date from the other; Excel automatically presents the
results as number of days). 

Unlike many programs, you don't enter a code for the treatment (control
vs. treated, in this example) into a column in Prism. Instead you use
separate columns for each treatment, and enter codes for survival or
censored into that column.

There are three different reasons for the censored observations in this
study. 
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· Three of the censored observations are subjects still alive at the end of
the study. We don't know how long they will live. 

· Subject 7 moved away from the area and thus left the study protocol.
Even if we knew how much longer that subject lived, we couldn't use
the information since he was no longer following the study protocol.
We know that subject 7 lived 733 days on the protocol and either don't
know, or know but can't use the information, after that. 

· Subject 10 died in a car crash. Different investigators handle this
differently. Some define a death to be a death, no matter what the
cause. Others would define a death from a clearly unrelated cause
(such as a car crash) to be a censored observation. We know the
subject lived 703 days on the treatment. We don't know how much
longer he would have lived on the treatment, since his life was cut
short by a car accident.

Note that the order of the rows is entirely irrelevant to survival analysis.
These data are entered in order of enrollment date, but you can enter in
any order you want.

4.12.5 Example of survival data from an animal study

This example is an animal study that followed animals for 28 days after
treatment. All five control animals survived the entire time. Three of the
treated animals died, at days 15, 21 and 26. The other two treated
animals were still alive at the end of the experiment on day 28. Here is
the data entered for survival analysis.

Note that the five control animals are each entered on a separate row,
with the time entered as 28 (the number of days you observed the
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animals) and with Y entered as 0 to denote a censored observation. The
observations on these animals is said to be censored because we only
know that they lived for at least 28 days. We don't know how much longer
they will live because the study ended.

The five treated animals also are entered one per row, with Y=1 when
they died and Y=0 for the two animals still alive at the end of the study.

Data for each animal was entered on one row. So the number of rows
with data in a column equals the number of animals in that treatment
group.

4.12.6 Analysis choices for survival analysis

Prism analyzes survival curves without you having to choose any analysis

The survival analysis is unique in Prism. When you enter data on an
survival table, Prism automatically performs the analysis. You don't need
to click Analyze or make any choices on the parameters dialog.

From the results, you can click the analysis parameters button to bring up
the parameters dialog, if you want to make any changes.
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Input

The default choices are to use the code '1' for deaths and '0' for censored
subjects, and these are almost universal. But some institutions use the
opposite convention. The codes must be integers.

Curve comparison calculations: Comparing two survival curves

Prism can compare two survival curves using two methods. Choose either
one, or both.

· The logrank test. There are two ways to compute this test. The two
are almost equivalent, but can differ a bit in how they deal with multiple
deaths at exactly the same time point. Prism uses the Mantel-Haenszel
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approach but uses the name 'logrank' which is commonly used for both
approaches. This method is also called the Mantel-Cox method.

· The Gehan-Breslow-Wilcoxon test. This method  gives more weight
to deaths at early time points, which makes lots of sense. But the
results can be misleading when a large fraction of patients are censored
at early time points. In contrast, the logrank test gives equal weight to
all time points.

The logrank test is more standard. It is the more powerful of the two
tests if the assumption of proportional hazards is true. Proportional
hazards means that the ratio of hazard functions (deaths per time) is the
same at all time points. One example of proportional hazards would be if
the control group died at twice the rate as treated group at all time
points.

The Gehan-Breslow-Wilcoxon test does not require a consistent hazard
ratio, but does require that one group consistently have a higher risk than
the other.

If the two survival curves cross, then one group has a higher risk at early
time points and the other group has a higher risk at late time points. This
could just be a coincidence of random sampling, and the assumption of
proportional hazards could still be valid. But if the sample size is large,
neither the logrank nor the Wilcoxon-Gehan test rests are helpful when
the survival curves cross near the middle of the the time course.

If in doubt, report the logrank test (which is more standard). Choose the
Gehan-Breslow-Wilcoxon test only if you have a strong reason to do so. 

Curve comparison calculations: Comparing three or more survival curves

With three or more data sets, Prism offers three ways to compare survival
curves. For the details on the first and third choices, look in the previous
section.

· Logrank test. This is used most often. 

· Logrank test for trend. The test for trend is only relevant when the
order of groups (defined by data set columns in Prism) is logical.
Examples would be if the groups are different age groups, different
disease severities, or different doses of a drug. The left-to-right order of
data sets in Prism must correspond to equally spaced ordered
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categories.  If the data sets are not ordered (or not equally spaced), it
makes  no sense to choose the logrank test for trend.

· The Gehan-Breslow-Wilcoxon test. This method gives more weight to
the earlier time points. Choose it only if you have a strong reason to do
so.

 With three or more groups, Prism offers a choice of two methods for
computing the P value

Match Prism 5 and earlier (conservative)

Prism 5 and earlier computed a P value to compare three or more groups
using a conservative method shown in many text books. For each curve,
this method computes a chi-square value by comparing the observed and
expected number of deaths. It then sums those chi-square values to get
an overall chi-square, from which the P value is determined. Here is it is
as an equation, where Oi is the observed number of deaths in curve i, and

Ei is the expected number of deaths:
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This conservative method is documented in Machin (1), is easy to
understand and works OK. The problem is that the P value is too high
(that is what "conservative" means). Choose this method only if you want
results to match results from prior versions of Prism.

Choose this method unless it is really important to you to match results
from prior versions of Prism. Otherwise, choose the recommended
method to match SPSS and SAS.

Match SPSS and SAS (recommended)

Prism 6 can also compute the P value using a different method, explained
in detail in the manuals for SPSS and NCSS.  The method can only be
understood in terms of matrix algebra. Like the conservative method, it
also computes a chi-square value. For both methods, the number of
degrees of freedom equals the number of groups minus 1. The difference
is that the chi-square value is higher, so the P value is lower.

http://www1.uni-hamburg.de/RRZ/Software/SPSS/Algorith.120/km.pdf
http://ncss.wpengine.netdna-cdn.com/wp-content/uploads/2012/09/NCSSUG5.pdf
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Output

The choices on how to tabulate the results (percents or fractions, death or
survival), can also be made on the Format Graph dialog. 

If you choose to plot 95% confidence intervals, Prism gives you two
choices. The default is a transformation method, which plots
asymmetrical confidence intervals. The alternative is to choose
symmetrical Greenwood intervals. The asymmetrical intervals are more
valid, and we recommend choosing them. 

The only reason to choose symmetrical intervals is to be consistent with
results computed by Prism version 4 and earlier. Note that the
'symmetrical' intervals won't always plot symmetrically. The intervals are
computed by adding and subtracting a calculated value from the percent
survival. At this point the intervals are always symmetrical, but may go
below 0 or above 100. In these cases, Prism trims the intervals so the
interval cannot go below 0 or above 100, resulting in an interval that
appears asymmetrical.

A checkbox lets you decide to plot censored observations or not. The
exception is when the largest X value (time) is censored. This is always
shown, regardless of whether you check this option or not.

Reference

David Machin, Yin Bun Cheung, Mahesh Parmar, Survival Analysis: A
Practical Approach, 2nd edition, IBSN:0470870400. 

4.12.7 Interpreting results: Survival fractions

Survival fractions

Prism calculates survival fractions using the product limit (Kaplan-Meier)
method. For each X value (time), Prism shows the fraction (or
percentage) still alive (or the fraction or percentage already dead, if you
chose to begin the curve at 0.0 rather than 1.0). This table contains the
numbers used to graph survival vs. time. 

The calculations take into account censored observations. Subjects whose
data are censored --either because they left the study, or because the
study ended -- can't contribute any information beyond the time of
censoring. This makes the computation of survival percentage somewhat
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http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
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tricky. While it seems intuitive that the curve ought to end at a survival
fraction computed as the total number of subjects who died divided by
the total number of subjects, this is only correct if there are no censored
data. If some subjects were censored, then subjects were not all followed
for the same duration, so computation of the survival fraction is not
straightforward (and what the Kaplan-Meier method is for). 

If the time of death of some subjects is identical to the time of censoring
for others, Prism does the computations assuming the deaths come first. 

Confidence intervals of survival percentages

Prism reports the uncertainty of the fractional survival as a standard error
or 95% confidence intervals. Standard errors are calculated by the
method of Greenwood. 

You can choose between two methods of computing the 95% confidence
intervals:

· Asymmetrical method (recommended). It is computed using the  log-log
transform method, which has also been called the exponential
Greenwood formula.  It is explained on page 42 and page 43 of Machin
(reference below). You will get the same results from the survfit R
function by setting error to Greenwood and conf.type to log-log. These
intervals apply to each time point. The idea is that at each time point,
there is a 95% chance that the interval includes the true population
survival. We call the method asymmetrical because the distance that
the interval extends above the survival time does not usually equal the
distance it extends below. These are called pointwise confidence limits.
It is also possible (but not by Prism) to compute confidence bands that
have a 95% chance of containing the entire population survival curve.
These confidence bands are wider than pointwise confidence limits.

· Symmetrical method. These intervals are computed as 1.96 times the
standard error in each direction. In some cases the confidence interval
calculated this way would start below 0.0 or end above 1.0 (or 100%).
In these cases, the error bars are clipped to avoid impossible values.
We provide this method only for compatibility with older versions of
Prism, and don't recommend it.

http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_lifetest_sect013.htm
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_lifetest_sect013.htm
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_lifetest_sect013.htm
http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_lifetest_sect013.htm
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How the Kaplan-Meier method works

The Kaplan-Meier method is logically simple. For each day (or week,
however you scale the X values), it first computes the fraction of patients
who are alive at the start of that day who survived until the end of that
day. To do this, it simply divides the number alive at the end of that day
by the number alive at the beginning of that day (excluding any who were
censored on that day from both the numerator and the denominator). 

Then it computes the fraction of patients who survived from day 0 until
the end of each particular day. To do this, it multiplies the fraction of
patients who survived Day 1 by the fraction of patients who were alive at
the beginning of day 2 that survived until the end of Day 2 (excluding any
censored), and then by the fraction of patients who were alive at the
beginning of Day 3 that survived until the end Day 3 (excluding any
censored), and so on, until you eventually multiply by the fraction who
survived until the of Day k. The result of multiplying all these probabilities
is the fraction of all patients who survived until the end of Day k, and this
is the survival fraction that gets tabulated and graphed by Prism. This
method automatically accounts for censored patients, because both the
numerator and the denominator are reduced on the day a patient is
censored. Because it calculates the product of many survival fractions,
this method is also called the product-limit method.  

Reference

David Machin, Yin Bun Cheung, Mahesh Parmar, Survival Analysis: A
Practical Approach, 2nd edition, IBSN:0470870400. 

4.12.8 What determines how low a survival curve gets?

If there are no censored observations and all subjects die

If you follow each subject until the event occurs (the event is usually
death, but survival curves can track time until any one-time event), then
the curve will eventually reach 0. At the time (X value) when the last
subject dies, the percent survival is zero. 

If all subjects are followed for exactly the same amount of time

If all subjects are followed for the same amount of time, the situation is
easy.  If one third of the subjects are still alive at the end of the study,
then the percent survival on the survival curve will be 33.3%. 

http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
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If some subjects are censored along the way

If the data for any subjects are censored, the bottom point on the survival
curve will not equal the fraction of subjects that survived.

Prior to censoring, a subject contributes to the fractional survival value.
Afterward, she or he doesn't affect the calculations. At any given time,
the fractional (or percent) survival value is the proportion of subjects 
followed that long who have survived.

Subjects whose data are censored --either because they left the study, or
because the study ended--can't contribute any information beyond the
time of censoring. You don't know whether or not they would have died
after the time of censoring (or do know, but can't use the information
because the experimental protocol was no longer being followed). So if
any subjects are censored before the last time shown on the survival
curve's X-axis, the final survival percentage shown on the survival graph
will not correspond to the actual fraction of the subjects who survived.
That simple survival percentage that you can easily compute by hand is
not meaningful, because not all the subjects were not followed for the
same amount of time.

When will the survival curve drop to zero?

If the survival curve goes all the way down to 0% survival, that does not
mean that every subject in the study died. Some may have censored data
at earlier time points (either because they left the study, or because the
study ended while they were alive). The survival percentage will drop to
zero when the event at the last time point is a death (or whatever
outcome you track) and not a censoring. If your data are sorted by X
value (which Prism can do using Edit..Sort), the curve will descend to 0%
survival if the last Y value is 1 (death), and will end above 0% if the last Y
value is 0 (censored).

In the example below, four of the ten subjects die. But the survival curve
descends to zero, not to 60%. Why? Because six subjects were censored
between 1 and 27 months. We have no idea what would have happened
had they stayed in the study until month 28. Since we don't know if they
would have lived or died, their data simply doesn't count after the time of
censoring (but definitely counts before that). At time 27, only one subject
is still being followed, and she or he died at month 28, dropping the
percent survival down to zero. 
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4.12.9 Interpreting results: Number at risk

Number of subjects at risk at various times

One of the pages (or 'views') in the survival analysis page is "# of
subjects at risk". Since the number at risk applies to a range of days, and
not to a single day, the table is a bit ambiguous. The values tabulated are
the number of subjects at risk at the start of that day (which can be
different than those at risk at the end of that day). 

Here are values of that table for the control group of the sample data
(comparing two groups) that you can choose from Prism's Welcome
dialog.

Days
Standard

0 8

46 8

64 6

78 5

124 4

130 3

150 2
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The experiment starts with 8 subjects receiving standard therapy. There
are still 8 subjects at risk at the beginning of day 46, and this is shown on
the table. During day 46, one of the patients receiving standard therapy
died and the data for another was censored. So 6 patients remain at risk
between day 46 and the beginning of day 64, and this tabulated. On day
64, data on another patient is censored, so 5 patients are at risk until the
beginning of day 78. The next death occurs on day 78, so 4 subjects are
at risk until the beginning of day 124.... 

Prism does not graph this table automatically. If you want to create a
graph of number of subjects at risk over time, follow these steps:

1. Go to the results subpage of number of subjects at risk.

2. Click New, and then Graph of existing data.

3. Choose the XY tab and a graph with no error bars.

4. Change the Y-axis title to “Number of subjects at risk” and the X-axis
title to “Days”. 

4.12.10 Interpreting results: P Value

Interpreting the P value

The P value tests the null hypothesis that the survival curves are identical
in the overall populations. In other words, the null hypothesis is that the
treatment did not change survival. 

The P value answers this question: 

If the null hypothesis is true, what is the probability of randomly
selecting subjects whose survival curves are as different (or more so)
than was actually observed?

Note that the P value is based on comparing entire survival curves, not on
comparing only the median survival. 

One-tail P value

Prism always reports a two-tail P value when comparing survival curves.
If you wish to report a one-tail P value , you must have predicted which
group would have the longer median survival before collecting any data.

71
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Computing the one-tail P value depends on whether your prediction was
correct or not.

· If your prediction was correct, the one-tail P value is half the two-tail P
value. 

· If your prediction was wrong, the one-tail P value equals 1.0 minus half
the two-tail P value. This value will be greater than 0.50, and you must
conclude that the survival difference is not statistically significant. 

 

4.12.11 Interpreting results: The hazard ratio

Key facts about the hazard ratio

· Hazard is defined as the slope of the survival curve — a measure of how
rapidly subjects are dying.

· The hazard ratio compares two treatments. If the hazard ratio is 2.0,
then the rate of deaths in one treatment group is twice the rate in the
other group.

· The hazard ratio is not computed at any one time point, but is computed
from all the data in the survival curve. 

· Since there is only one hazard ratio reported, it can can only be
interpreted if you assume that the population hazard ratio is consistent
over time, and that any differences are due to random sampling. This is
called the assumption of proportional hazards.

· If the hazard ratio is not consistent over time, the value that Prism
reports for the hazard ratio will not be useful. If two survival curves
cross, the hazard ratios are certainly not consistent (unless they cross
at late time points, when there are few subjects still being followed so
there is a lot of uncertainty in the true position of the survival curves). 

· The hazard ratio is not directly related to the ratio of median survial
times. A hazard ratio of 2.0 does not mean that the median survival
time is doubled (or halved). A hazard ratio of 2.0 means a patient in one
treatment group who has not died (or progressed, or whatever end
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point is tracked) at a certain time point has twice the probability of
having died (or progressed...) by the next time point compared to a
patient in the other treatment group.

· Prism computes the hazard ratio, and its confidence interval, using two
methods, explained below. For each method it reports both the hazard
ratio and its reciprocal. If people in group A die at twice the rate of
people in group B (HR=2.0), then people in group B die at half the rate
of people in group A (HR=0.5).

· For other cautions about interpreting hazard ratios, see two reviews by
Hernan(1) and Spruance(2). 

The two methods compared

Prism reports the hazard ratio computed by two methods: logrank and
Mantel-Haenszel. The two usually give identical (or nearly identical)
results. But the results can differ when several subjects die at the same
time or when the hazard ratio is far from 1.0.

Bernstein and colleagues analyzed simulated data with both methods (3).
In all their simulations, the assumption of proportional hazards was true.
The two methods gave very similar values.  The logrank method (which
they refer to as the O/E method) reports values that are closer to 1.0
than the true Hazard Ratio, especially when the hazard ratio is large or
the sample size is large.

When there are ties, both methods are less accurate. The logrank
methods tend to report hazard ratios that are even closer to 1.0 (so the
reported hazard ratio is too small when the hazard ratio is greater than
1.0, and too large when the hazard ratio is less than 1.0). The Mantel-
Haenszel method, in contrast, reports hazard ratios that are further from
1.0  (so the reported hazard ratio is too large when the hazard ratio is
greater than 1.0, and too small when the hazard ratio is less than 1.0). 

They did not test the two methods with data simulated where the
assumption of proportional hazards is not true. I have seen one data set
where the two estimate of HR were very different (by a factor of three),
and the assumption of proportional hazards was dubious for those data. It
seems that the Mantel-Haenszel method gives more weight to differences
in the hazard at late time points, while the logrank method gives equal
weight everywhere (but I have not explored this in detail).  If you see
very different HR values with the two methods, think about whether the
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assumption of proportional hazards is reasonable. If that assumption is
not reasonable, then of course the entire concept of a single hazard ratio
describing the entire curve is not meaningful.

How the hazard ratio is computed

There are two very similar ways of doing survival calculations: logrank,
and Mantel-Haenszel. Both are explained in chapter 3 of Machin, Cheung
and Parmar, Survival Analysis (4).

The Mantel Haenszel approach:

1. Compute the total variance, V, as explained on page 38-40 of a
handout by Michael Vaeth. Note that he calls the test "logrank" but in a
note explains that this is the more accurate test, and also gives the
equation for the simpler approximation that we call logrank.

2. Compute L = (O1 - E1) / V, where O1 - is the total observed number of
events in group1 E1 - is the total expected number of events in group1.
You'd get the same value of K if you used the other group.

3. Note that L is the natural logarithm of the hazard ratio.

4. The lower 95% confidence limit of the hazard ratio equals:

  exp(L - 1.96/sqrt(V))

5. The upper 95% confidence limit equals:

    exp(L + 1.96/sqrt(V))

The logrank approach:

1. As part of the Kaplan-Meier calculations, compute the number of
observed events (deaths, usually) in each group (Oa, and Ob), and the
number of expected events assuming a null hypothesis of no difference
in survival (Ea and Eb).

2. The hazard ratio then is:

HR= (Oa/Ea)/(Ob/Eb)
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3. The standard error of the natural logarithm of the hazard ratio is S=
sqrt(1/Ea + 1/Eb)

4. Calculate L = ln(HR). (Natural logarithm)
5. The lower 95% confidence limit of the hazard ratio equals:

exp(L - 1.96*S)

5. The upper 95% confidence limit equals:

exp(L + 1.96*S)

Prior versions of Prism

Prism 6 reports the hazard ratio twice, once computed with the Mantel-
Haenszel method and again using the logrank method. 

A bug in Prism 6. Note that both methods use the natural logarithm of the
HR in their calculations. We define this value to be L above. The bug in
Prism 6 is that the calculation for the logrank test actually calculated L
using the Mantel-Haenszel approach when computing the confidence
interval. Usually, the two HR values are nearly identical so this bug was
mostly trivial. It only affects the calculations when the two HR values are
very different. In this situation, one has to wonder if either definition is
very helpful. I suspect this discrepancy happens when the data simply
don't comply with the assumes of proportional hazards. The bug was fixed
in 7.00 and 7.0a.

Prism 5  computed the hazard ratio and its confidence interval using the
Mantel Haenszel approach. Prism  4  used the logrank method to compute
the hazard ratio, but used the Mantel-Haenszel approach to calculate the
confidence interval of the hazard ratio. The results can be inconsistent. In
rare cases,  the hazard ratio reported by Prism 4 could be outside the
confidence interval of the hazard ratio reported by Prism 4.  

References

1. M.A. Hernán. Hazards of Hazard Ratios, Epidemiology. 21:13-5, 2010.

2. S. L. Spruance et all, Hazard ratio in clinical trials, Antimicrobial Agents
and Chemotherapy  vol. 48 (8) pp. 2787, 2004.

http://www.google.com/url?sa=t&source=web&cd=1&sqi=2&ved=0CBsQFjAA&url=http%3A%2F%2Fjournals.lww.com%2Fepidem%2FFulltext%2F2010%2F01000%2FThe_Hazards_of_Hazard_Ratios.4.aspx&ei=xejnTeifNMzWiAKwqdSUDA&usg=AFQjCNHF454sYQUtLRZVCcRSwSuG4ydzZA&sig2=yDW_gGz_v4SM9fU1G5OBIw
http://aac.asm.org/cgi/content/full/48/8/2787
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3. L Bernstein, J. Anderson and MC Pike. Estimation of the proportional
hazard in two-treatment-group clinical trials. Biometrics (1981) vol. 37
(3) pp. 513-519

4.  David Machin, Yin Bun Cheung, Mahesh Parmar, Survival Analysis: A
Practical Approach, 2nd edition, IBSN:0470870400. 

4.12.12 Interpreting results: Ratio of median survival times

Median survival time

The median survival is the time at which fractional survival equals 50%.
Notes:

· If survival exceeds 50% at the longest time point, then median survival
cannot be computed. Prism reports that the median survival is
"undefined". The logrank comparison of curves really does compare
entire curves, and does not compare median survival times. So the P
value computed by the logrank test is still valid even if one or both
median survival times are undefined. 

· If the survival curve is horizontal at 50% survival, then the median
survival time is not really defined. In the survival curve below, the curve
is horizontal at Y=50% between 9 and 17 months. It would be accurate
to say that half the patients had died by 9 months, or that half were still
alive at 17 months. Prism follows the suggestion of Machin and reports
that the median survival is the average of those two values, 13 months.

http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
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· Prism, like most programs, defines median survival as the time at which
the staircase survival curve crosses 50% survival. Thus is is an accurate
statement of median survival in the subjects or animals actually
included in the data set. The graph on the left below, shows how Prism
computes median survival (211 days for this example). If you connected
the survival times with point-to-point lines rather than a staircase,
you'd find that the line may intersect Y=50% at an earlier time, and
thus you'd come up with a different value for median survival (193 days
in the example on the right below) This would make sense if you were
trying to predict median survival for future patients. Prism does not do
this, as it is not standard.
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Ratio of median survival times

If you compare two survival curves, Prism reports the ratio of the median
survival times along with its 95% confidence interval of the ratio. 

This calculation of the confidence interval of the ratio of survival times is
based on an assumption that is not part of the rest of the survival
comparison:  that both survival curves follow an exponential decay. This
means that the chance of dying in a small time interval is the same early
in the study and late in the study. If your survival data follow a very
different pattern, then the values that Prism reports for the 95% CI of the
ratio of median survivals will not be meaningful. 

Note that prior versions of Prism computed the confidence interval
incorrectly (but computed the ratio just fine).

Why Prism doesn't compute the confidence interval of median survival
time

While Prism computes the confidence interval for the ratio of median
survivals (when you compare two groups), it does not compute the 95%
confidence interval for the median survival time itself. The reason is that
multiple methods for computing a confidence interval of median survival
have been published and none seem to be standard, and the results don't
match. To read more:

· One method is in Collett starting at page 35 . 

· Brookmeer and Crowley, A confidence interval for the median survival
time. Biometrics (1982) vol. 38 (1) pp. 29-41.

· Barker reviews several methods and points out how different their
results can be. The Mean, Median, and Confidence Intervals of the
Kaplan-Meier Survival Estimate—Computations and Applications. The
American Statistician (2009) vol. 63 (1) pp. 78-80

4.12.13 Interpreting results: Comparing >2 survival curves

Logrank and Gehan-Breslow-Wilcoxon tests

http://www.graphpad.com/faq/viewfaq.cfm?faq=718
http://www.graphpad.com/faq/viewfaq.cfm?faq=718
http://www.amazon.com/exec/obidos/ASIN/1584883251
http://books.google.com/books?id=57ZaKkSYAhsC&pg=PA174&lpg=PA175&ots=mbU1bcIImW&dq=median+survival+confidence+intervals&sig=8MX037exgXpBsRJmZZQg5B4OHvQ
http://www.jstor.org/stable/2530286
http://www.jstor.org/stable/2530286
http://www.barkerstats.com/PDFs/tas.pdf
http://www.barkerstats.com/PDFs/tas.pdf
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The P value tests the null hypothesis that the survival curves are identical
in the overall populations. In other words, the null hypothesis is that the
treatment did not change survival. 

The P value answers this question: 

If the null hypothesis is true, what is the probability of randomly
selecting subjects whose survival curves are as different (or more so)
than was actually observed? 

The difference between the logrank and the Gehan-Breslow-Wilcoxon
tests is that the latter places more weight on deaths at early time points.

Note that Prism lets you choose one of two algorithms  for computing
the P value when comparing three or more groups. The results will show
"(conservative)" or "(recommended)", to document your choice.

Logrank test for trend

If you compare three or more survival curves with Prism, it will show
results for the overall logrank test, and also show results for the logrank
test for trend.

When should you look at the results for the test for trend?

The test for trend is only relevant when the order of groups (defined by
data set columns in Prism) is logical. Examples would be if the groups are
different age groups, different disease severities, or different doses of a
drug. The left-to-right order of data sets in Prism must correspond to
equally spaced ordered categories.

 If the data sets are not ordered (or not equally spaced), then you should
ignore the results of the logrank test for trend.

Results of the logrank test for trend

The logrank test for trend reports a chi-square value, which is always
associated with one degree of freedom (no matter how many data sets
are being compared). It uses that chi-square value to compute a P value
testing the null hypothesis that there is no linear trend between column
order and median survival. If the P value is low, you can conclude that
there is a significant trend.

498
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Prism assumes the groups are equally spaced  

Computing the logrank test for trend requires assigning each group a
code number. The test then looks at the trend between these group codes
and survival. With some programs, you could assign these codes, and
thus deal with ordered groups that are not equally spaced. Prism uses the
column number as the code, so it can only perform the test for trend
assuming equally spaced ordered groups. Even if you enter numbers as
column titles, Prism does not use these when performing the test for
trend.

How it works

The test looks at the linear trend between group code (column number in
Prism) and survival. But it doesn't look at median survival, or five-year
survival, or any other summary measure. It first computes expected
survival assuming the null hypothesis that all the groups are sampled
from population with the same survival experience. Then it quantifies the
overall discrepancy between the observed survival and the expected
survival for each group. Finally it looks at the trend between that
discrepancy and group code. For details, see the text by Marchin.

Multiple comparison tests

After comparing three or more treatment groups, you may want to go
back and compare two at a time. Prism does not do this automatically,
but it is easy to duplicate the analysis, and change the copy to only
compare two groups. Then repeat with a different two data sets. If you do
this, you need to manually adjust the definition of 'significance' to account
for multiple comparisons.  Or place all the P values into a new column
table, and then analyze that stack of P values . 

Reference

Survival Analysis: A Practical Approach, Second edition, by David Machin,
Yin Bun Cheung, Mahesh Parmar, IBSN:0470870400.

4.12.14 The logrank test for trend

The logrank test for trend is used when you compare three or more
survival curves when the columns are in a natural order (perhaps ages, or
stage of cancer). It tests, essentially, whether there is a linear trend
between column order and median survival. 

518
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http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
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Choosing the logrank test for trend

Prism will compute the logrank test for trend by default when you have
three or more groups. You can turn off this test in the Parameters dialog.
In this dialog, you also choose between two methods: an older method
used in Prism 5 and a better method available since Prism 6 that matches
SAS and SPSS. 

When should you look at the results for the test for trend?

The test for trend is only relevant when the order of groups (defined by
data set columns in Prism) is logical. Examples would be if the groups are
different age groups, different disease severities, or different doses of a
drug. The left-to-right order of data sets in Prism must correspond to
equally spaced ordered categories.

 If the data sets are not ordered (or not equally spaced), then you should
ignore the results of the logrank test for trend, or go to the parameters
dialog and uncheck this option so the results are not shown.

Results of the logrank test for trend

The logrank test for trend reports a chi-square value, which is always
associated with one degree of freedom (no matter how many data sets
are being compared). It uses that chi-square value to compute a P value
testing the null hypothesis that there is no linear trend between column
order and median survival. If the P value is low, you can conclude that
there is a significant trend.

Prism assumes the groups are equally spaced  

Computing the logrank test for trend requires assigning each group a
code number. The test then looks at the trend between these group codes
and survival. With some programs, you could assign these codes, and
thus deal with ordered groups that are not equally spaced. Prism uses the
column number as the code, so it can only perform the test for trend
assuming equally spaced ordered groups.

How it works

The test looks at the linear trend between group code (column number in
Prism) and survival. But it doesn't look at median survival, or five-year
survival, or any other summary measure. It first computes expected
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survival assuming the null hypothesis that all the groups are sampled
from population with the same survival experience. Then it quantifies the
overall discrepancy between the observed survival and the expected
survival for each group. Finally it looks at the trend between that
discrepancy and group code. 

References

David Machin, Yin Bun Cheung, Mahesh Parmar, Survival Analysis: A
Practical Approach, 2nd edition, IBSN:0470870400. 

Douglas Altman, Practical Statistics for Medical Research, 
IBSN:0412276305

4.12.15 Multiple comparisons of survival curves

The need for multiple comparisons

When you compare three or more survival curves at once, you get a
single P value testing the null hypothesis that all the samples come from
populations with identical survival, and that all differences are due to
chance. Often, you'll want to drill down and compare curves two at a
time. 

If you don't adjust for multiple comparisons, it is easy to fool yourself. If
you compare many groups, the chances are high that one or more pair of
groups will be 'significantly different' purely due to chance. To protect
yourself from making this mistake, you probably should correct for 
multiple comparisons . Probably? There certainly are arguments for not
adjusting for multiple comparisons .

How multiple comparisons of survival curves work

Multiple comparison tests after ANOVA are complicated because they not
only use a stricter threshold for significance, but also include data from all
groups when computing scatter, and use this value with every
comparison. By quantifying scatter from all groups, not just the two you
are comparing, you gain some degrees of freedom and thus some power. 

Multiple comparison tests for comparing survival curves are simpler. You
simply have to adjust the definition of significance, and don't need to take
into account any information about the groups not in the comparison (as
that information would not be helpful). 
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http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Practical-Statistics-Medical-Research-Statistical/dp/0412276305
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Comparing survival curves two at a time with Prism

For each pair of groups you wish to compare, follow these steps:

1. Start from the results sheet that compares all groups.

2. Click New, and then Duplicate Current Sheet. 

3. The Analyze dialog will pop up. On the right side, select the two
groups you wish to compare and make sure all other data sets are
unselected. Then click OK.

4. The parameters dialog for survival analysis pops up. Click OK without
changing anything.

5. Note the P value (from the logrank or Gehan-Breslow-Wilcoxon test),
but don't interpret it until you correct for multiple comparisons, as
explained in the next section.

6. Repeat the steps for each comparison if you want each to be in its
own results sheet. Or click Change.. data analyzed, and choose a
different pair of data sets. 

Which comparisons are 'statistically significant'?

When you are comparing multiple pairs of groups at once, you can't
interpret the individual P in the usual way. Instead, you set a significance
level, and ask which comparisons are 'statistically significant' using that
threshold. 

The simplest approach is to use the Bonferroni method. Note this is
something you'll do manually by doing multiple survival analyzes. It does
not involve ANOVA.

1. Define the significance level that you want to apply to the entire family
of comparisons. This is conventionally set to 0.05. 

2. Count the number of comparisons you are making, and call this value
K. See the next section which discusses some ambiguities.

3. Compute the Bonferroni corrected threshold that you will use for each
individual comparison. This equals the family-wise significance level
(defined in step 1 above, usually .05) divided by K.
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4. If a P value is less than this Bonferroni-corrected threshold, then the
comparison can be said to be 'statistically significant' using a family-
wise significance level of 5%. 

How many comparisons are you making?

You must be honest about the number of comparisons you are making.
Say there are four treatment groups (including control). You then go back
and compare the group with the longest survival with the group with the
shortest survival. It is not fair to say that you are only making one
comparison, since you couldn't decide which comparison to make without
looking at all the data. With four groups, there are six pairwise
comparisons you could make. You have implicitly made all these
comparisons, so you should define K in step 3 above to equal 6. 

If you were only interested in comparing each of three treatments to the
control, and weren't interested in comparing the treatments with each
other, then you would be making three comparisons, so should set K
equal to 3. 

4.12.16 Analysis checklist: Survival analysis

Survival curves plot the results of experiments where the outcome is
time until death. Usually you wish to compare the survival of two or
more groups. Read elsewhere to learn about interpreting survival
curves , and comparing two  (or more than two ) survival curves.

Are the subjects independent?

Factors that influence survival should either affect all subjects in a group
or just one subject. If the survival of several subjects is linked, then you
don't have independent observations. For example, if the study pools
data from two hospitals, the subjects are not independent, as it is
possible that subjects from one hospital have different average survival
times than subjects from another. You could alter the median survival
curve by choosing more subjects from one hospital and fewer from the
other. To analyze these data, use Cox proportional hazards regression,
which Prism cannot perform.

502 507 514
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Were the entry criteria consistent?

Typically, subjects are enrolled over a period of months or years. In
these studies, it is important that the starting criteria don't change
during the enrollment period. Imagine a cancer survival curve starting
from the date that the first metastasis was detected. What would happen
if improved diagnostic technology detected metastases earlier? Even
with no change in therapy or in the natural history of the disease,
survival time will apparently increase. Here's why: Patients die at the
same age they otherwise would, but are diagnosed when they are
younger, and so live longer with the diagnosis. (That is why airlines have
improved their “on-time departure” rates. They used to close the doors
at the scheduled departure time. Now they close the doors ten minutes
before the “scheduled departure time”. This means that the doors can
close ten minutes later than planned, yet still be "on time". It's not
surprising that “on-time departure” rates have improved.)

Was the end point defined consistently?

If the curve is plotting time to death, then there can be ambiguity about
which deaths to count. In a cancer trial, for example, what happens to
subjects who die in a car accident? Some investigators count these as
deaths; others count them as censored subjects. Both approaches can
be justified, but the approach should be decided before the study begins.
If there is any ambiguity about which deaths to count, the decision
should be made by someone who doesn't know which patient is in which
treatment group. 

If the curve plots time to an event other than death, it is crucial that the
event be assessed consistently throughout the study.

Is time of censoring unrelated to survival?

The survival analysis is only valid when the survival times of censored
patients are identical (on average) to the survival of subjects who stayed
with the study. If a large fraction of subjects are censored, the validity of
this assumption is critical to the integrity of the results. There is no
reason to doubt that assumption for patients still alive at the end of the
study. When patients drop out of the study, you should ask whether the
reason could affect survival. A survival curve would be misleading, for
example, if many patients quit the study because they were too sick to
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come to clinic, or because they stopped taking medication because they
felt well.

Does average survival stay constant during the course of the study?

Many survival studies enroll subjects over a period of several years. The
analysis is only meaningful if you can assume that the average survival
of the first few patients is not different than the average survival of the
last few subjects. If the nature of the disease or the treatment changes
during the study, the results will be difficult to interpret.

Is the assumption of proportional hazards reasonable?

The logrank test is only strictly valid when the survival curves have
proportional hazards. This means that the rate of dying in one group is a
constant fraction of the rate of dying in the other group. This assumption
has proven to be reasonable for many situations. It would not be
reasonable, for example, if you are comparing a medical therapy with a
risky surgical therapy. At early times, the death rate might be much
higher in the surgical group. At later times, the death rate might be
greater in the medical group. Since the hazard ratio is not consistent
over time (the assumption of proportional hazards is not reasonable),
these data should not be analyzed with a logrank test.

Were the treatment groups defined before data collection began?

It is not valid to divide a single group of patients (all treated the same)
into two groups based on whether or not they responded to treatment
(tumor got smaller, lab tests got better). By definition, the responders
must have lived long enough to see the response. And they may have
lived longer anyway, regardless of treatment. When you compare
groups, the groups must be defined before data collection begins.

4.12.17 Graphing tips: Survival curves

Prism offers lots of choices when graphing survival data. Most of the
choices are present in both the Welcome dialog and the Format Graph
dialog, others are only present in the Format Graph dialog.

How to compute the data

These choices are straightforward matters of taste: 
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· Plot survival or deaths? The former, used more commonly, starts at
100% and goes down. The latter starts at 0% and goes up. 

· Plot fractions or percents? This is simply a matter of preference. If in
doubt, choose to plot percentages.

How to graph the data

Graphs without error bars

 

As shown above, survival curves are usually plotted as staircases. Each
death is shown as a drop in survival. 

In the left panel, the data are plotted as a tick symbol. These symbols at
the time of death are lost within the vertical part of the staircase. You see
the ticks clearly at the times when a subject's data was censored. The
example has two censored subjects in the treated group between 100 and
150 days.

The graph on the right plots the data as circles, so you see each subject
plotted. 
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Graphs with error bars

Showing error bars or error envelopes make survival graphs more
informative, but also more cluttered. The graph on the left above shows
staircase error envelopes that enclose the 95% confidence interval for
survival. This shows the actual survival data very well, as a staircase, but
it is cluttered. The graph on the left shows error bars that show the
standard error of the percent survival. To prevent the error bars from
being superimposed on the staircase curve, the points are connected by
regular lines rather than by staircases.

How to add a grid line at Y=50% to show median survival

Add a grid line at Y=50 or Y=0.5. To do this, double clcik on the Y axis to
bring up the Format Axis dialog, then enter the Y coordinate (50 or 0.5)
and check the option to draw a grid line. Click the details button for more
choices about line style, thickness and color.

 

4.12.18 Q&A: Survival analysis

How does Prism compute the confidence intervals of the survival
percentages?

Prism offers two choices. 

· The symmetrical method was the only method offered in Prism 4 and
earlier, and is offered now for compatibility. It uses the method of
Greenwood. We don't recommend it.
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· The asymmetrical method is more accurate and recommended. It is
explained on page 42 and page 43 of Machin. That book does not give
a name or reference for the method, The idea is that it first does a
transform (square root and log) that makes the uncertainty of
survival close to Gaussian. It then computes the SE and a
symmetrical 95% CI on that transformed scale. Then it back
transforms the confidence limits back to the original scale. 

Can Prism compute the mean (rather than median) survival time?

Survival analysis computes the median survival with its confidence
interval. The reason for this is that the median survival time is
completely defined once the survival curve descends to 50%, even if
many other subjects are still alive. And the median survival is defined,
even if data from some subjects was censored. 

In contrast, the mean survival is simply not defined until every subject
dies, and only when you know the survival time for each subject (none
were censored). These conditions  occur in very very few studies, so
Prism doesn't compute mean survival. 

But there is an easy workaround: If you know he survival times for
each subject,  enter them into a column table, and ask Prism to do
column statistics to calculate the mean with its confidence interval.

 Can Prism create a survival curve when you already know the percent
survival at each time?

Prism can create Kaplan-Meier survival curves, and compare these with
the logrank test (or the Wlcoxon-Gehan-Breslow test). To do this, you
must enter data on a Prism table formatted as a survival table and you
must enter one row of data per subject. 

But what if you already know the percent survival at each time point,
and just want to make a graph? In this case, do not enter data onto a
survival data table. That table requires information about each subject.
Instead, create an XY data table. If you only want to enter percent
survival, format the data table to enter single Y values  with no
subcolumns. If you know the standard error of the survival at each time
point (from calculations done elsewhere), then format the data table for
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entry of mean with SEM (in fact, the "mean" will be percent survival,
and "SEM" will be SE of the survival percentage).

Enter time (as months or days or weeks) into X. You must enter this as
a number, not a date. 

Enter percent (or fraction) survival into Y. Just enter the values (don't
append percent symbols). 

Then polish your graph. If you want the graph to have a staircase look
(which is traditional for survival curves), you can do that. This screen
shot shows where to make this setting in the Format Graph dialog:

If you enter survival percentages on an XY table, it will not be possible
to do any calculations. You won't be able to compute error bars or
confidence bands, and wont' be able to compare survival curves under
different treatments.
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What determines how low a Kaplan-Meier survival curve ends up at late
time points?

If there are no censored observations

If you follow each subject until the event occurs (the event is usually
death, but survival curves can track time until any one-time event),
then the curve will eventually reach 0. At the time (X value) when the
last subject dies, the percent survival is zero. 

If all subjects are followed for exactly the same amount of time

If all subjects are followed for the same amount of time, the situation is
easy.  If one third of the subjects are still alive at the end of the study,
then the percent survival on the survival curve will be 33.3%. 

If some subjects are censored along the way

If the data for any subjects are censored, the bottom point on the
survival curve will not equal the fraction of subjects that survived.

Prior to censoring, a subject contributes to the fractional survival value.
Afterward, she or he doesn't affect the calculations. At any given time,
the fractional (or percent) survival value is the proportion of subjects
followed that long who have survived.

Subjects whose data are censored --either because they left the study,
or because the study ended--can't contribute any information beyond
the time of censoring. So if any subjects are censored before the last
time shown on the survival curve's X-axis, the final survival percentage
shown on the survial graph will not correspond to the actual fraction of
the subjects who survived. That simple survival percentage that you
can easily compute by hand is not meaningful, because not all the
subjects were not followed for the same amount of time.

When will the survival curve drop to zero?

If the survival curve goes all the way down to 0% survival, that does
not mean that every subject in the study died. Some may have
censored data at earlier time points (either because they left the study,
or because the study ended while they were alive). The curve will drop
to zero when a death happens after the last censoring. Make sure your
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data table is sorted by X value (which Prism can do using Edit..Sort).
Look at the subject in the last row. If the Y value is 1 (death), the curve
will descend to 0% survival. If the Y value is 0 (censored), the curve
will end above 0%.

Why does Prism tell me that median survival is undefined?

Median survival is the time it takes to reach 50% survival. If more than
50% of the subjects are alive at the end of the study, then the median
survival time is simply not defined.

The P value comes from the logrank test, which compares the entire
curve, and works fine even if the percent survival is always greater
than 50%. Two curves can be very different, even if they never dip
down below 50%.

Can Prism compute confidence bands as well as confidence intervals of
survival curves?

When Prism computes survival curves, it can also compute the 95%
confidence interval at each time point (using two alternative methods).
The methods are approximations, but can be interpreted like any
confidence interval. You know the observed survival percentage at a
certain time in your study, and can be 95% confident (given a set of
assumptions) that the confidence interval contains the true population
value (which you could only know for sure if you had an infinite amount
of data). 

When these confidence intervals are plotted as error bars (left graph
below) there is no problem. Prism can also connect the ends of the
error bars, and create a shaded region (right graph below). This
survival curve plots the survival of a sample of only seven people, so
the confidence intervals are very wide. Prism file. 

The shaded region looks like the confidence bands computed by linear
and nonlinear regression, so it is tempting to interpret these regions as
confidence bands. But it is not correct to say that you can be 95%
certain that these bands contain the entire survival curve. It is only
correct to say that at any time point, there is a 95% chance that the
interval contains the true percentage survival. The true survival curve
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(which you can't know) may be within the confidence intervals at some
time points and outside the confidence intervals at other time points. 

It is possible (but not with Prism) to compute true confidence bands for
survival curves, and these are wider than the confidence intervals
shown above. Confidence bands that are 95% certain to contain the
entire survival curve at all time points are wider than the confidence
intervals for individual time points. 

How does Prism deal with deaths at time zero?

When analyzing survival data, Prism simply ignores any rows with X=0.
Our thinking is simple. If alternative treatments begin at time zero,
then a death right at the moment treatment begins provides no
information to help you decide which of two treatments is better. There
is no requirement that X be an integer. If a death occurs half a day into
treatment, and X values are tabulated in days, enter 0.5 for that
subject. 

Some fields (pediatric leukemia is one) do consider events at time zero
to be valid. These studies to not simply track death, but track time until
recurrence of the disease. But disease cannot recur until it first goes
into remission.  In the case of some pediatric leukemia trials, the
treatment begins 30 days before time zero. Most of the patients are in
remission at time zero. Then the patients are followed until death or
recurrence of the disease. But what about the subjects who never go
into remission?  Some investigators consider these to be events at time
zero. Some programs, we are told, take into account the events at time
zero, so the Kaplan-Meier survival curve starts with survival (at time
zero) of less than 100%. If 10% of the patients in one treatment group
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never went into remission, the survival curve would begin at Y=90%
rather than 100%. 

We have not changed Prism to account for deaths at time zero for these
reasons:

· We have seen no scientific papers, and no text books, that explains
what it means to analyze deaths at time zero. It seems far from
standard.

· It seems wrong to combine the answers to two very different
questions in one survival curve: What fraction of patients go into
remission? How long do those in remission stay in remission? 

· If we included data with X=0, we are not sure that the results of the
survival analysis (median survival times, hazard ratios, P values, etc.)
would be meaningful.

The fundamental problem is this: Survival analysis  analyses data
expressed as the time it takes until an event occurs. Often this event is
death. Often it is some other well defined event that can only happen
once. But usually the event is defined to be something that could
possibly happen to every participant in the trial. With these pediatric
leukemia trials, the event is defined to be recurrence of the disease.
But, of course, the disease cannot recur unless it first went into
remission. So the survival analysis is really being used to track time
until the second of two distinct events.  That leads to the problem of
how to analyze the data from patients who never go into remission (the
first event never happens). 

We are willing to reconsider our decision to ignore, rather than analyze,
survival data entered with X=0. If you think we made the wrong
decision, please let us know. Provide references if possible. 

There is a simple work around if you really want to analyze your data so
deaths at time zero bring down the starting point below 100%, enter
some tiny value other than zero. Enter these X values, say, as
0.000001. An alternative is to enter the data with X=0, and then use
Prism's transform analysis with this user-defined transform:

X=IF(X=0, 0.000001, X)
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In the results of this analysis, all the X=0 values will now be
X=0.000001. From that results table, click Analyze and choose Survival
analysis. 

How is the percentage survival computed?

Prism uses the Kaplan-Meier method to compute percentage survival.
This is a standard method. The only trick is in accounting for censored
observations. 

Consider a simple example. You start with 16 individuals. Two were
censored before the first death at 15 months. So the survival curve drops
at 15 months from 100% down to 13/14=92.86%. Note that the
denominator is 14, not 16. Just before the death, only 14 people were
being followed, not 16 (since data for two were censored before that). 

Seven more individuals were censored before the next death at 93
months. So of those who survived more than 15 months, 5/6= 83.3%
were alive after 93 months. But this is a relative drop. To know the
percent of people alive at 0 months who are still alive after 93 months,
multiply  92.86% (previous paragraph) times 83.33% and you get
77.38%, which is the percent survival Prism reports at 93 months. Now
you can see why these Kaplan-Meier calculations are sometimes called
the product-limit method. 

Reference 

David Machin, Yin Bun Cheung, Mahesh Parmar, Survival Analysis: A
Practical Approach, 2nd edition, IBSN:0470870400. 

4.12.19 Determining the median followup time

Survival analysis often deals with experimental designs where different
subjects are followed for different durations. How can one quantify the
median followup time? Survival analysis (in Prism and other programs)
tells you the median survival time. But what about the median time of
followup?

Note the distinction between the median survival time and the median
time that research subjects were followed (the topic of this page).

Prism presents you with a table of number of subjects at risk over time.
One thought is to look at this table and see how long it takes for the

http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
http://www.amazon.com/Survival-Analysis-Practical-David-Machin/dp/0470870400%3FSubscriptionId%3D1EJNRTWJHMX1HXN1FX02%26tag%3Dgraphpadsoftware%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470870400
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number to drop to half the starting value. But there are two reasons why
the number-at-risk drops over time: a subject can die or his data can be
censored. Looking merely at the number-at-risk table treats those two
situations identically. If someone dies, you don't know how long they
would have been followed. From the point of view of tracking followup
time, the roles of deaths and censoring are sort of reversed. 

Schemper and Smith (1) followed that idea to its conclusion and devised a
clever method to obtain the median followup time.  Run the data through
the Kaplan-Meier analysis again, but with the meaning of the status
indicator reversed. The end point is loss-of-followup (which is usually
considered censoring). If the patient died, you can't know how long they
would have been followed. So death censors the true but unknown
observation time of an individual. So create a Kaplan Meier curve where
loss of followup is the event being followed, and a death is treated as
censoring the data.

In Prism:

1. From the survival analysis results, click New, then Duplicate sheet.

2. OK the dialog that lists the data being analyzed.

3. On the parameters dialog, swap the two indicator variables. The default
is for 1 to denote death and zero to denote censoring. Reverse this
convention in the dialog (but leave the data alone).Tell Prism that 0
denotes "death" and 1 denotes "censoring".

4. OK from the dialog and look at the results page. Ignore the log rank
test and its P value. These values cannot be interpreted. Instead, look
at the "median survival". Since you swapped the meaning of survival
and censored, this value is really the median followup time.

5. The Kaplan-Meier graph created from this analysis tracks the number of
patients being followed over time. It is distinct from the Kaplan-Meier
graph that tracks percent survival over time.  

For the sample data comparing two groups, the results (with some
polishing) look like this:
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1. M Schemper and TL Smith. A note on quantifying follow-up in studies of
failure time. Controlled clinical trials (1996) vol. 17 (4) pp. 343-346

4.13 Correlation

When two variables vary together, statisticians

say that there is a lot of covariation or correlation.

The correlation coefficient, r, quantifies the

direction and magnitude of correlation.

4.13.1 Key concepts: Correlation

· When two variables vary together, statisticians say that there is a lot
of covariation or correlation. 

· The correlation coefficient, r, quantifies the direction and magnitude of
correlation.

· Correlation is used when you measured both X and Y variables, and is
not appropriate if X is a variable you manipulate. 

http://www.journals.elsevierhealth.com/periodicals/cct/article/0197-2456(96)00075-X/abstract
http://www.journals.elsevierhealth.com/periodicals/cct/article/0197-2456(96)00075-X/abstract
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· X and Y are almost always real numbers (not integers, not categories,
not counts). 

· The correlation analysis reports the value of the correlation coefficient.
It does not create a regression line. If you want a best-fit line, choose 
linear regression.

· Note that correlation and linear regression are not the same. Review
the differences.  In particular, note that the correlation analysis does
not fit or plot a line.

· Correlation computes a correlation coefficient and its confidence
interval. Its value ranges from -1 (perfect inverse relationship; ax X
goes up, Y goes down) to 1 (perfect positive relationship; as X goes up
so does Y). A value of zero means no correlation at all. 

· Correlation also reports a P value testing the null hypothesis that the
data were sampled from a population where there is no correlation
between the two variables. 

· The difference between Pearson and Spearman correlation, is that the
confidence interval and P value from Pearson's can only be interpreted
if you assume that both X and Y are sampled from populations with a
Gaussian distribution. Spearman correction does not make this
assumption. 

4.13.2 How to: Correlation

Prism can perform correlation analyses either from an XY or Column
table. Click the Analyze button and choose correlation.

Compute correlation between which pairs of columns?

Compute the correlation between two specific columns, between all
columns (correlation matrix), or between each column and a control data
set (which is X, if you are analyzing an XY table).

Assume data are sampled from a Gaussian distribuiton?

Prism offers two ways to compute correlation coefficients:

539
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· Pearson correlation calculations are based on the assumption that both
X and Y values are sampled from populations that follow a Gaussian
distribution, at least approximately. With large samples, this
assumption is not too important.

· Spearman nonparametric correlation makes no assumption about the
distribution of the values, as the calculations are based on ranks, not
the actual values.

One- or two-tailed P values?

Prism can compute either a one-tailed or two-tailed P value. We suggest
almost always choosing a two-tailed P value. You should only choose a
one-tail P value when you have specified the anticipated sign of the
correlation coefficient before collecting any data and are willing to
attribute any correlation in the “wrong” direction to chance, no matter
how striking that correlation is. 

4.13.3 Interpreting results: Correlation

Correlation coefficient

The correlation coefficient, r, ranges from -1 to +1. The nonparametric
Spearman correlation coefficient, abbreviated rs, has the same range.
This latter value is sometimes denoted by the Greek letter r (rho).

Value of r (or rs) Interpretation

1.0 Perfect correlation

0 to 1 The two variables tend to increase
or decrease together.

0.0 The two variables do not vary
together at all.

-1 to 0 One variable increases as the
other decreases.

-1.0 Perfect negative or inverse
correlation.
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If r or rs is far from zero, there are four possible explanations:

· Changes in the X variable causes a change the value of the Y variable.

· Changes in the Y variable causes a change the value of the X variable.

· Changes in another variable influence both X and Y.

· X and Y don’t really correlate at all, and you just happened to observe
such a strong correlation by chance. The P value quantifies the
likelihood that this could occur.

Notes on correlation coefficients:

· If you choose Spearman nonparametric correlation, Prism computes
the confidence interval of the Spearman correlation coefficient by an
approximation. According to Zar (Biostatistical Analysis) this
approximation should only be used when N>10. So with smaller N,
Prism simply does not report the confidence interval of the Spearman
correlation coefficient.

· If you ask Prism to compute a correlation matrix (compute the
correlation coefficient for each pair of variables), it computes a simple
correlation coefficient for each pair, without regard for the other
variables. It does not compute multiple regression, or partial
regression, coefficients.

· If all Y values are the same, it is not possible to compute a correlation
coefficient (parametric or nonparametric), and Prism reports
"horizontal line". Correlation asks how much X and Y vary together. If
Y doesn't vary at all, that question is not meaningful and the
correlation calculations can't be done (division by zero).

· If all the X values are the same, it is not possible to compute a
correlation coefficient, and Prism reports "vertical line". 

r2

Perhaps the best way to interpret the value of r is to square it to calculate
r2. Statisticians call this quantity the coefficient of determination, but
scientists call it "r squared". It is a value that ranges from zero to one,
and is the fraction of the variance in the two variables that is “shared”.
For example, if r2=0.59, then 59% of the variance in X can be explained
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by variation in Y. Likewise, 59% of the variance in Y can be explained by
variation in X. More simply, 59% of the variance is shared between X and
Y.

Prism only calculates an r2 value from the Pearson correlation coefficient.
It is not appropriate to compute r2 from the nonparametric Spearman
correlation coefficient.

P value

The P value answers this question: 

If there really is no correlation between X and Y overall, what is the
chance that random sampling would result in a correlation coefficient as
far from zero (or further) as observed in this experiment? 

If the P value is small, you can reject the idea that the correlation is due
to random sampling. 

If the P value is large, the data do not give you any reason to conclude
that the correlation is real. This is not the same as saying that there is no
correlation at all. You just have no compelling evidence that the
correlation is real and not due to chance. Look at the confidence interval
for r. It will extend from a negative correlation to a positive correlation. If
the entire interval consists of values near zero that you would consider
biologically trivial, then you have strong evidence that either there is no
correlation in the population or that there is a weak (biologically trivial)
association. On the other hand, if the confidence interval contains
correlation coefficients that you would consider biologically important,
then you couldn't make any strong conclusion from this experiment. To
make a strong conclusion, you’ll need data from a larger experiment.

If you entered data onto a column table and requested a correlation
matrix, Prism will report a P value for the correlation of each column with
every other column. These P values do not include any correction for
multiple comparisons.

How Prism computes the P value for Spearman nonparametric correlation

With 16 or fewer XY pairs, Prism computes an exact P value for
nonparametric (Spearman) correlation,  looking at all possible
permutations of the data. The exact calculations handle ties with no
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problem. With 17 or more pairs, Prism computes an approximate P value
for nonparametric correlation). 

Prism 6 does the exact Spearman calculations hundreds of times faster
than prior versions, so the cutoff for performing approximate calculations
was moved up from >13 pairs to >17 pairs. Therefore Prism 6 will report
different (more accurate) results for data sets with between 14 and 17
pairs than did prior versions. 

Prism 7 fixes a bug in Prism 6 (up to 6.05 and 6.0f, but not in earlier
versions) that resulted in incorrect P values sometimes when Rs was
negative, there were tied values, and the P value was computed exactly.

4.13.4 Analysis checklist: Correlation

Are the data points independent? 

Correlation assumes that any random factor affects only one data point,
and not others. You would violate this assumption if you choose half the
subjects from one group and half from another. A difference between
groups would affect half the subjects and not the other half. 

Are X and Y measured independently? 

The calculations are not valid if X and Y are intertwined. You’d violate this
assumption if you correlate midterm exam scores with overall course
score, as the midterm score is one of the components of the overall
score.

Were X values measured (not controlled)? 

If you controlled X values (e.g., concentration, dose, or time) you should
calculate linear regression rather than correlation.

Is the covariation linear? 

A correlation analysis would not be helpful if Y increases as X increases up
to a point, and then Y decreases as X increases further. You might obtain

http://www.graphpad.com/support/faqid/1982/
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a low value of r, even though the two variables are strongly related. The
correlation coefficient quantifies linear covariation only.

Are X and Y distributed according to Gaussian distributions? 

To accept the P value from standard (Pearson) correlation, the X and Y
values must each be sampled from populations that follow Gaussian
distributions. Spearman nonparametric correlation does not make this
assumption.

4.13.5 Correlation matrix

If you start with a data table with three or more Y columns, you can ask
Prism to compute the correlation of each column with each other column,
and thus generate a correlation matrix.

The results appear on three pages:

· The correlation coefficient r (or rs). This is computed for each pair of
variables and doesn't not account for other variables. Prism does not
compute a partial correlation coefficient.

· The P value (two-tail) testing the null hypothesis that the true
population correlation coefficient for that pair of variables is zero. 

· The number of XY pairs. This might not be the same for all pairs of
variables if some data are missing. 

You can make a heat map from any of these three results pages. From
the page, click New and choose Graph of existing data. Choose a Grouped
graph, then choose the Heat Map tab. 

4.13.6 The difference between correlation and regression

Correlation and linear regression are not the same.

What is the goal?

Correlation quantifies the degree to which two variables are related.
Correlation does not fit a line through the data points. You simply are
computing a correlation coefficient (r) that tells you how much one
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variable tends to change when the other one does. When r is 0.0, there is
no relationship. When r is positive, there is a trend that one variable goes
up as the other one goes up. When r is negative, there is a trend that one
variable goes up as the other one goes down.

Linear regression finds the best line that predicts Y from X. 

What kind of data?

Correlation is almost always used when you measure both variables. It
rarely is appropriate when one variable is something you experimentally
manipulate.

Linear regression is usually used when X is a variably you manipulate
(time, concentration, etc.)

Does it matter which variable is X and which is Y?

With correlation, you don't have to think about cause and effect. It
doesn't matter which of the two variables you call "X" and which you call
"Y". You'll get the same correlation coefficient if you swap the two.

The decision of which variable you call "X" and which you call "Y" matters
in regression, as you'll get a different best-fit line if you swap the two.
The line that best predicts Y from X is not the same as the line that
predicts X from Y (however both those lines have the same value for R2).

Assumptions

The correlation coefficient itself is simply a way to describe how two
variables vary together, so it can be computed and interpreted for any
two variables. Further inferences, however, require an additional
assumption -- that both X and Y are measured (are interval or ratio
variables), and both are sampled from Gaussian distributions. This is
called a bivariate Gaussian distribution. If those assumptions are true,
then you can interpret the confidence interval of r and the P value testing
the null hypothesis that there really is no correlation between the two
variables (and any correlation you observed is a consequence of random
sampling). 

With linear regression, the X values can be measured or can be a variable
controlled by the experimenter. The X values are not assumed to be
sampled from a Gaussian distribution. The distances of the points from
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the best-fit line is assumed to follow a Gaussian distribution, with the SD
of the scatter not related to the X or Y values.

Relationship between results

Correlation computes the value of the Pearson correlation coefficient, r.
Its value ranges from -1 to +1.

Linear regression quantifies goodness of fit with r2, sometimes shown in
uppercase as R2. If you put the same data into correlation (which is rarely
appropriate; see above), the square of r from correlation will equal r2

from regression. 

 

4.14 Diagnostic lab analyses

How do you decide where to draw the threshold

between 'normal' and 'abnormal' test results? How

do you compare two methods that assess the

same outcome? Diagnostic labs have unique

statistical needs, which we briefly discuss here.

4.14.1 ROC Curves

4.14.1.1 Key concepts: Receiver-operating characteristic (ROC) curves

· When evaluating a diagnostic test, it is often difficult to determine the
threshold laboratory value that separates a clinical diagnosis of “normal”
from one of “abnormal.” 

· If you set a high threshold value (with the assumption that the test
value increases with disease severity), you may miss some individuals
with low test values or mild forms of the disease. The sensitivity, the
fraction of people who have the disease that will be correctly identified
with a positive test, will be low. Few of the positive tests will be false
positives, but many of the negative tests will be false negatives.
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· If you set a low threshold, you will catch most individuals with the
disease, but you may mistakenly diagnose many normal individuals as
“abnormal.” The specificity, the fraction of people who don't have the
disease who are correctly identified with a negative test, will be low.
Few of the negative tests will be false negatives, but many of the
positive tests will be false positives.

· You can have higher sensitivity or higher specificity, but not both
(unless you develop a better diagnostic test).

· A receiver-operating characteristic (ROC) curve helps you visualize and
understand the tradeoff between high sensitivity and high specificity
when discriminating between clinically normal and clinically abnormal
laboratory values. 

· Which is the best combination of sensitivity and specificity?  It depends
on the circumstances. In some cases, you'll prefer more sensitivity at
the expense of specificity. In other cases, just the opposite. Prism
cannot help with those value judgments. 

· Why the odd name? Receiver-operating characteristic curves were
developed during World War II, within the context of determining if a
blip on a radar screen represented a ship or an extraneous noise. The
radar-receiver operators used this method to set the threshold for
military action.

· ROC curves can also be used as part of the presentation of the results of
logistic regression. Prism does not do logistic regression so does not
prepare this kind of ROC curve.

· The review by Berrar (1) is excellent both for understanding ROC curves
and for appreciating some of their pitfalls. 

· ROC curves can also be used as a way to display results from multiple
logistic regression. This is not something Prism can do.

1. Berrar D, Flach P. Caveats and pitfalls of ROC analysis in clinical
microarray research (and how to avoid them). Brief Bioinform. Oxford
University Press; 2011 Mar 21;13(1):bbr008–97. 

http://bib.oxfordjournals.org/content/early/2011/03/20/bib.bbr008.full
http://bib.oxfordjournals.org/content/early/2011/03/20/bib.bbr008.full
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4.14.1.2 How to: ROC curve

1. Enter ROC data

From the Welcome or New table dialog, choose the Column tab. If you are
not ready to enter your own data, choose the sample ROC data. 

Enter diagnostic test results for controls into column A and patients in
column B. Since the two groups are not paired in any way, the order in
which you enter the data in the rows is arbitrary. The two groups may
have different numbers of subjects.

Note that some other programs expect you to enter all the lab data into
one column, and then differentiate patients from controls via a grouping
variable entered into another column. Prism cannot analyze data entered
this way.

2. Create the ROC curve

From the data table, click  on the toolbar, and then choose
Receiver-operator characteristic curve from the list of one-way analyses. 
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In the ROC dialog, designate which columns have the control and patient
results, and choose to see the results (sensitivity and 1-specificity)
expressed as fractions or percentages. Don't forget to check the option to
create a new graph. 

Note that Prism doesn't ask whether an increased or decrease test value
is abnormal. Instead, you tell Prism which column of data is for controls
and which is for patients, and it figures out automatically whether the
patients tend to have higher or lower test results.

3. View the graph

How to put several ROC curves on one graph

Each ROC analysis creates one ROC curve and graph. The XY points that
define the graph are on a results page called "ROC curve". You can plot
multiple ROC curves on one graph if you want to. The easiest way to do
so is to go to a graph of one ROC curve, and drag the "ROC curve" results
table from another one onto the graph. You can also change which data
sets are plotted using the middle tab of the Format Graph dialog. The
trick is realizing that the ROC curve is simply a data set created by an
analysis, and it can be added to any graph.
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4.14.1.3 Interpreting results: ROC curves

Sensitivity and specificity

The whole point of an ROC curve is to help you decide where to draw the
line between 'normal' and 'not normal'. This will be an easy decision if all
the control values are higher (or lower) than all the patient values.
Usually, however, the two distributions overlap, making it not so easy. If
you make the threshold high, you won't mistakenly diagnose the disease
in many who don't have it, but you will miss some of the people who have
the disease. If you make the threshold low, you'll correctly identify all (or
almost all) of the people with the disease, but will also diagnose the
disease in more people who don't have it. 

To help you make this decision, Prism tabulates and plots the sensitivity
and specificity of the test at various cut-off values. 

Sensitivity: The fraction of people with the disease that the test
correctly identifies as positive. 

Specificity: The fraction of people without the disease that the test
correctly identifies as negative.

Prism calculates the sensitivity and specificity using each value in the
data table as the cutoff value. This means that it calculates many pairs of
sensitivity and specificity. If you select a high threshold, you increase the
specificity of the test, but lose sensitivity. If you make the threshold low,
you increase the test's sensitivity but lose specificity.

Prism displays these results in two forms. The table labeled "ROC" curve
is used to create the graph of 100%-Specificity% vs. Sensitivity%. The
table labeled "Sensitivity and Specifity" tabulates those values along with
their 95% confidence interval for each possible cutoff between normal and
abnormal.

Area

The area under a ROC curve quantifies the overall ability of the test to
discriminate between those individuals with the disease and those without
the disease. A truly useless test (one no better at identifying true
positives than flipping a coin) has an area of 0.5. A perfect test (one that
has zero false positives and zero false negatives) has an area of 1.00.
Your test will have an area between those two values. Even if you choose
to plot the results as percentages, Prism reports the area as a fraction.
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Prism computes the area under the entire AUC curve, starting at 0,0 and
ending at 100, 100. Note that whether or not you ask Prism to plot the
ROC curve out to these extremes, it computes the area for that entire
curve.

While it is clear that the area under the curve is related to the overall
ability of a test to correctly identify normal versus abnormal, it is not so
obvious how one interprets the area itself. There is, however, a very
intuitive interpretation. 

If patients have higher test values than controls, then:

The area represents the probability that a randomly selected patient will
have a higher test result than a randomly selected control. 

If patients tend to have lower test results than controls:

The area represents the probability that a randomly selected patient will
have a lower test result than a randomly selected control. 

For example: If the area equals 0.80, on average, a patient will have a
more abnormal test result than 80% of the controls. If the test were
perfect, every patient would have a more abnormal test result than every
control and the area would equal 1.00.

If the test were worthless, no better at identifying normal versus
abnormal than chance, then one would expect that half of the controls
would have a higher test value than a patient known to have the disease
and half would have a lower test value. Therefore, the area under the
curve would be 0.5. 

The area under a ROC curve can never be less than 0.50. If the area is
first calculated as less than 0.50, Prism will reverse the definition of
abnormal from a higher test value to a lower test value. This adjustment
will result in an area under the curve that is greater than 0.50. 

Berrar points out that ROC curves must be interpreted with care, and
there is more to interpretation than looking at the AUC (1).

SE and Confidence Interval of Area

Prism also reports the standard error of the area under the ROC curve, as
well as the 95% confidence interval. These results are computed by a
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nonparametric method that does not make any assumptions about the
distributions of test results in the patient and control groups. 

Interpreting the confidence interval is straightforward. If the patient and
control groups represent a random sampling of a larger population, you
can be 95% sure that the confidence interval contains the true area. 

P Value

Prism completes your ROC curve evaluation by reporting a P value that
tests the null hypothesis that the area under the curve really equals 0.50.
In other words, the P value answers this question:

If the test diagnosed disease no better flipping a coin, what is the
chance that the area under the ROC curve would be as high (or higher)
than what you observed?

If your P value is small, as it usually will be, you may conclude that your
test actually does discriminate between abnormal patients and normal
controls. 

If the P value is large, it means your diagnostic test is no better than
flipping a coin to diagnose patients. Presumably, you wouldn't collect
enough data to create an ROC curve until you are sure your test actually
can diagnose the disease, so high P values should occur very rarely. 

1. Berrar D, Flach P. Caveats and pitfalls of ROC analysis in clinical
microarray research (and how to avoid them). Brief Bioinform. Oxford
University Press; 2011 Mar 21;13(1):bbr008–97. 

4.14.1.4 Analysis checklist: ROC curves

Were the diagnoses made independent of the results being analyzed?

The ROC curve shows you the sensitivity and specificity of the lab
results you entered. It does this by comparing the results in a group of
patients with a group of controls. The diagnosis of patient or control
must be made independently, not as a result of the lab test you are
assessing.

http://bib.oxfordjournals.org/content/early/2011/03/20/bib.bbr008.full
http://bib.oxfordjournals.org/content/early/2011/03/20/bib.bbr008.full
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Are the values entered into the two columns actual results of lab
results?

Prism computes the ROC curve from raw data. Don't enter sensitivity
and specificity directly and then run the ROC analysis.

Are the diagnoses of patients and controls accurate?

If some people are in the wrong group, the ROC curve won't be
accurate. The method used to discriminate between patient and control
must truly be a gold standard.

4.14.1.5 Calculation details for ROC curves

Sensitivity and specificity at various thresholds

The list of thresholds is taken by sorting all the values in both groups
(patients and controls) and averaging adjacent values in that sorted list.
So each threshold value is midway between two values in the data. 

Each sensitivity is the fraction of values in the patient group that are
above the threshold. The specificity is the fraction of values in the control
group that are below the threshold. Each confidence intervals is computed
from the observed proportion by the Clopper method (1), without any
correction for multiple comparisons. 

Area under the ROC curve

Prism uses the same method it uses for the Area Under Curve  analysis.

SE of the area

Prism uses the method of Hanley (1), which uses the equation below

where A is the area, na and nn are the number of abnormals (patients)

and normals (controls).

Q1 is the probability that two randomly chosen patients will both get a

more positive test result than a randomly chosen control which is

approximately A/(2-A).

229
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Q2 is the probability that one randomly chosen patient will get a more

positive test result than two randomly chosen controls which is

approximately 2A*A/(1+A).

Prism actually computes Q1 and Q1 using a more complicated equation. 

P value

When computing the P value, Prism computes the SE differently,
assuming that the area is really 0.5 (the null hypothesis). This simplifies
the equation to

12

)2(25.0

××

-++
=

nnna

nnna
SE

It then computes a z ratio using the equation below, and determines the P

value from the normal distribution (two-tail).

Reference

1. C. J. Clopper and E. S. Pearson, The use of confidence or fiducial limits
illustrated in the case of the binomial, Biometrika 1934 26: 404-413.

2. Hanley JA, McNeil BJ.  The meaning and use of the area under the
Receiver Operating Characteristic (ROC) curve,  Radiology 1982 143 29-
36

4.14.1.6 Computing predictive values from a ROC curve

The Positive and Negative Predictive Values

If you enter test values from patients and controls, Prism can create a
ROC curve. This plots the tradeoff of sensitivity vs specificity for various
possible cutoff values to define the borderline between "normal" and
"abnormal" test results. 

The sensitivity is the proportion of patients who will have an abnormal
test result.

http://pic.dhe.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_roc_se.htm
http://radiology.rsna.org/content/143/1/29.short?ssource=mfc&rss=1
http://radiology.rsna.org/content/143/1/29.short?ssource=mfc&rss=1
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The specificity is the proportion of controls who will have a negative test
result. 

But those two values may not answer the questions you really want the
answer to:

· If the result is "abnormal", what is the chance that the person really has
the disease. This is the Positive Predictive Value (PPV).

· If the results is "normal", what is the chance that the person really does
not have the disease. This is the Negative Predictive Value (NPV).

It is possible to compute the PPV and NPV from the sensitivity and
specificity, but only if you know the prevalence of the disease in the
population you are testing.

Example

You examined the ROC curve, and chose a test value to use as the cutoff
between "normal" and "abnormal". For this cutoff, the sensitivity is 90%
and the specficity is 95%. In the population you are testing, the
prevalence of the disease is 10%. What are the PPV and NPV? You can
figure it out by filling in a table.

1. Assume a value for the total number of patients examined. In the end,
everything will be a ratio, so this value doesn't matter much. I chose
10,000 and put that into the bottom right of the table. 

2. The prevalence is 10%, so 1,000 patients will have the disease and
9,000 will not. These values form the bottom (total) row of the table.

3. The sensitivity is 90%, so 0.9*1,000=900 people with the disease (left
column) will have a positive test, and 100 will not . Thse values go into
the left column.

4. The specificity is 95%, so 0.95*9000= 8550 people without the disease
will have a negative test. That leaves 450 with a positive test. These
values go into the second (disease absent) column. 

5. Fill in the last (total) column.

6. The positive predictive value is the fraction of people with a positive
test who have the disease:  900/1350 = 66.7%

7. The negative predictive value is the fraction of those with a negative
test who do not have the disease: 8550/8650= 98.8%
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 Disease present Disease Absent Total

Positive test 900 450 1,350

Negative test 100 8,550 8,650

Total 1,000 9,000 10,000

If you want to automate these calculations (perhaps in Excel), the bottom
of this page (from MedCalc) gives the necessary equations. 

4.14.1.7 Comparing ROC curves

Prism does not compare ROC curves. It is, however, quite easy to
manually compare two ROC curves created with data from two different
(unpaired) sets of patients and controls.

1. Separately use Prism to create two ROC curves by separately
analyzing your two data sets. 

2. For each ROC curve, note the area under the curve and standard
error (SE) of the area. 

3. Combine these results using this equation:

4. If you investigated many pairs of methods with indistinguishable ROC
curves, you would expect the distribution of z to be centered at zero
with a standard deviation of 1.0. To calculate a two-tail P value,
therefore, use the following Microsoft Excel function:

=2*(1-NORMSDIST(z))

The method described above is appropriate when you compare two ROC
curves with data collected from different subjects. A different method is
needed to compare ROC curves when both laboratory tests were
evaluated in the same group of patients and controls. To account for the
correlation between areas under your two curves, use the method
described by Hanley and McNeil (1).

http://www.medcalc.org/manual/roc-curves.php
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1. Hanley, J.A., and McNeil, B. J. (1983). Radiology 148:839-843.
Accounting for the correlation leads to a larger z value and, thus, a
smaller P value. 

4.14.2 Comparing Methods with a Bland-Altman Plot

4.14.2.1 How to: Bland-Altman plot

A Bland-Altman plot compares two assay methods. It plots the difference
between the two measurements on the Y axis, and the average of the two
measurements on the X axis.

1. Enter the data 

Create a new table. Choose the Column tab. If you don't have data yet,
choose the sample data:  Bland-Altman method comparison.

Enter the measurements from the first method into column A and for the
other method into column B. Each row represents one sample or one
subject. 

2. Choose the Bland-Altman analysis

From the data table, click  on the toolbar, and then choose
Bland-Altman from the list of one-way analyses.
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Designate the columns with the data (usually A and B), and choose how
to plot the data. You can plot the difference, the ratio, or the percent
difference. If the difference between methods is consistent, regardless of
the average value, you'll probably want to plot the difference. If the
difference gets larger as the average gets larger, it can make more
sense to plot the ratio or the percent difference.

3. Inspect the results

The Bland-Altman analysis creates two pages of results. The first page
shows the difference and average values, and is used to create the plot.
The second results page shows the bias , which is the average of the
differences, and the 95% limits of agreement .

If you used the sample data, the two methods have very similar results
on average, and the bias (difference between the means) is only 0.24.
The 95% limits of agreement are between -13.4 and 13.9.

555

555
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4. Plot the Bland-Altman graph

The 95% limits of agreement are shown as two dotted lines. To create
these, double click on the Y axis to bring up Format Axis. At the bottom of
that dialog, click the "..." button (Windows, shown below) or the gear
icon (Mac) to bring up the Format Additional Ticks and Grids dialog. Then
click the fish hook icon to  'hook' the Y location of the grid line to an
analysis constant created by the Bland-Altman analysis. Repeat for the
other grid line.

The origin of the graph was moved to the lower left (and offset) on the
first tab of the Format Axes dialog. 



STATISTICS WITH PRISM 7 555

© 1995-2016 GraphPad Software, Inc.

4.14.2.2 Interpreting results: Bland-Altman

Difference vs. average

The first page of Bland-Altman results shows the difference and average
values and is used to create the plot.

Bias and 95% limits of agreement

The second results page shows the average bias, or the average of the
differences. The bias is computed as the value determined by one method
minus the value determined by the other method. If one method is
sometimes higher, and sometimes the other method is higher, the
average of the differences will be close to zero. If it is not close to zero,
this indicates that the two assay methods are systematically producing
different results.

This page also shows the standard deviation (SD) of the differences
between the two assay methods (labeled as the SD of bias). The SD value
is not very useful by itself, but is used to calculate the limits of
agreement, computed as the mean bias plus or minus 1.96 times its SD.

For any future sample, the difference between measurements using these
two assay methods should lie within the limits of agreement
approximately 95% of the time. 

Actually, the limits of agreement are a description of the data. It is
possible to compute 95% prediction bands for the difference, and these
limits would be further from the bias in each direction than do the limits
of agreement (especially when the sample is small). 

Interpreting the Bland-Altman results

Bland-Altman plots are generally interpreted informally, without further
analyses. Ask yourself these questions:

· How big is the average discrepancy between methods (the bias)? You
must interpret this clinically. Is the discrepancy large enough to be
important? This is a clinical question, not a statistical one.

· How wide are the limits of agreement? If it is wide (as defined
clinically), the results are ambiguous. If the limits are narrow (and the
bias is tiny), then the two methods are essentially equivalent.
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· Is there a trend? Does the difference between methods tend to get
larger (or smaller) as the average increases? 

· Is the variability consistent across the graph? Does the scatter around
the bias line get larger as the average gets higher?

4.14.2.3 Analysis checklist: Bland-Altman results

Are the data paired?

The two values on each row must be from the same subject.

Are the values entered into the two columns actual results of lab
results?

Prism computes the Bland-Altman plot from raw data. Don't enter the
differences and means, and then run the Bland-Altman analysis. Prism
computes the differences and means.

Are the two values determined independently?

Each column must have a value determined separately (in the same
subject). If the value in one column is used as part of the
determination of the other column, the Bland-Altman plot won't be
helpful.

4.15 Analyzing a stack of P values

Prism lets you input a stack of P values computed

elsewhere and decide which ones are low enough

to be worthy of further study.

4.15.1 Key concepts: Analyzing a stack P values

· Our goal with Prism has always been to make basic biostatistics very
accessible and easy. Analyzing a stack of P values is really is beyond
"basic biostatistics". Nonetheless, the concepts are not all that
complicated. 
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· Enter a bunch of P values that were computed elsewhere into a column
A of a Prism Column table. 

· This analysis then  determines which of those P values are small
enough for the corresponding comparison to be worth investigating
further. 

4.15.2 How to: Analyzing a stack of P values

1. Create a Column table

From the Welcome or New Table dialog, choose the Column tab.

2. Enter the P values

Enter P values, calculated elsewhere, into column A. 

Every value must be a P value (between 0.0 and 1.0). You cannot enter
"<0.0001" or "ns" or "**". Each P value you enter must be a decimal
fraction.

Optionally, enter a column title adjacent to each P value to identify the
corresponding comparison. This will make it easier to understand the
results. If you don't enter row titles, Prism will label the results using the
original row number instead. 

This analysis is usually used with hundreds or thousands of P values, but
can be done with any number.  

3. Choose the analysis

Click Analyze, look in the list of Column analyses, and choose Analyze a
stack of P values.
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Choose one of two general approaches:Control the False Discovery
Rate  (FDR) or control the Type I error rate for the family of
comparisons . Then choose the actual method you want Prism to use. 

Control the False Discovery Rate (FDR)

Choose one of three approaches  to decide which P values are small
enough to flag as "discoveries". We recommend the adaptive method of
Benjamini, Krieger and Yekutieli (1), as it has more power. The original
FDR method of Benjamini and Hochberg (2) is better known, but has less
power. The method of Benjamini and Yekutieli makes fewer assumptions,
but has much less power.

Also set the value of Q, with the goal that no more than Q% of the
comparisons flagged as discoveries, are false discoveries (false positives).
Enter a percentage, not a fraction. If you want at most 5% of discoveries
to be false, enter "5" not "0.05" and not "5%". There really is no standard
value. If you enter a larger value, more comparisons will be flagged as
discoveries, but more of these will be false discoveries. 

 Statistical significance (control Type I error rate for the family of
comparisons)

Choose how Prism will correct for multiple comparisons. We recommend
using the Holm-Šídák method , which has the most power. The
alternatives are the methods of Bonferroni-Dunn  or Bonferroni-Šídák
.  The method we call Bonferroni-Dunn is often referred to simply as
Bonferroni. The method we call Bonferroni-Šídák is often referred to

132

122

348

127

125 125



STATISTICS WITH PRISM 7 559

© 1995-2016 GraphPad Software, Inc.

simply as Šídák. The two are very similar. The Bonferroni-Šídák method
has a bit more power but is less widely understood.

Set the value of alpha that applies to the entire family of P values. Prism
then decides which P values are small enough for the related comparison
to be designated "statistically significant" after correcting for multiple
comparisons. Enter a fraction, not a percentage.  If you want 5% of
comparisons under the null hypothesis to be falsely flagged as
"significant", enter 0.05 not 5. If you enter a larger value, more
comparisons will be flagged as "significant", but more of these will be
false positives. For statistical significance, alpha is often set to 0.05 when
making one or a few comparisons. But when making many comparisons,
you'll probably want to enter a higher value. 

Graphing

Check the option if you want to see a graph of P value rank vs. P value.
This is a common way to visualize the distribution of P values. 
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4.15.3 Interpreting results: Analyzing a stack of P values

Statistical significance approach

Adjusted P values

You entered each P value on a different row, and the results table has the
same number of rows, each with three values:

· The first column states whether the comparison associated with that P
values is statistically significant or not, stated simply as yes or no.

· The second column shows the P value you entered.

· The third column shows the adjusted P value. If the alpha value you
entered exactly equaled this adjusted P value, then this comparison
would be right at the border of being defined as "statistically
significant" or not.

Significant results

This table shows only the comparisons flagged as "statistically
significant". The table is sorted, with the smallest P value on top. Each
row shows the row title (or row number in the data table, if you didn't
enter titles), the P value you entered and the adjusted P value.

Ranked P value

This table is only created if you checked the option to graph the P value
distribution. The X values are the ranks of the P values (1 is smallest) and
the Y values are the P values themselves. The table is not all that useful
by itself, but is used to automatically create the graph. 

Threshold P value

A floating note on the results page tells you the threshold P value. If a P
value is less than this threshold, the result of the associated comparison
is considered to be "significant". This is not the same as the value of
alpha you entered. With the Bonferroni method, for example, the
threshold equals alpha/K where K is the number of P values you entered. 

http://projecteuclid.org/euclid.aos/1013699998
http://projecteuclid.org/euclid.aos/1013699998
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False Discovery Rate method

q values

You enter each P value on a different row, and the results table has the
same number of rows, each with three values:

· The first column states whether the comparison associated with that P
values is defined to be a "discovery" or not, stated simply as yes or
no.

· The second column shows the P value you entered.

· The third column shows the q value. If the Q value you entered exactly
equaled this q value, then this comparison would be right at the border
of being defined a discovery.

Discoveries

This table shows only the comparisons flagged as "discoveries". The table
is sorted, with the smallest P value on top. Each row shows the row title
(or row number in the data table, if you didn't enter titles), the P value
you entered and the q value

Ranked P value

This table is only created if you checked the option to graph the P value
distribution. The X values are the ranks of the P values (1 is smallest) and
the Y values are the P values themselves. The table is not all that useful
by itself, but is used to automatically create the graph. 

Threshold P value

A floating note on the results page tells you the threshold P value. If a P
value is less than this threshold, the result of the associated comparison
is considered to be a "discovery". This is not the same as the value of
alpha you entered.  

Estimated number of true null hypotheses

If you chose the  adaptive method of Benjamini, Krieger and Yekutieli,
Prism will report in a floating note the estimated number of true null
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hypotheses. The adaptive method works by first estimating this value,
then using it when deciding which P values are small enough to be called
"discoveries". 

4.16 Simulating data and Monte Carlo simulations

Simulating data is a powerful way to understand

statistical analyses and plan experiments. Monte
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Carlo analysis lets you simulate many data sets,

analyze each, and then look at the distribution of

parameters (results) of those analyses. This can let

you "experiment" with alternative experimental

designs via computer before you collect any data.
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Prism makes it easy, without requiring any

programming or scripting.

4.16.1 Simulating a data table

Simulate a Column data table

To simulate a family of column data sets with random error, start from
any data table or graph, click Analyze, open the Simulate data  category,
and then select Simulate Column Data. 
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On the Experimental design tab, choose the number of data sets, and the
mean of each data set. For each data set, enter the number of values you
wish to simulate for that data set (number of rows of data).

On the Random error tab, choose among several methods for generating
random scatter and also adding outliers. You must choose one setting for
the random values for all the data sets. For example, if you choose
Gaussian error (the most common), you can only choose one standard
deviation, which applies to all the data sets.

Simulate a 2x2 contingency table

To simulate a contingency table, start from any data table or graph, click
Analyze, open the Simulate data  category, and then select Simulate
Contingency Table. 

On the Experimental design tab, choose the sample size (total number of
subjects for both rows and both columns). Also specify which of four
experimental designs  you wish to simulate.

On the Rows and columns tab, name the two rows and two columns, and
specify (on average) how many subjects go in each.

Prism will use the binomial random values to decide how many subjects
go into each cell, maintaining the total you entered.

Note that this analysis only can simulate a 2x2 contingency table.

How Prism generates random numbers

Prism generates pseudo random numbers from the binomial or Poisson
distribution, using ideas adapted from pages 372-377 of Numerical
Recipes, third edition, by  WH Press and colleagues. 

 

4.16.2 How to: Monte Carlo analyses

How to begin a Monte Carlo analysis

463
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 Simulate a data table using  one of Prism's simulation analyses.. Note
that these simulations include random scatter, so will produce new results
when they are updated.

1. Analyze that simulated data set as appropriate.

2. From that results page, click Analyze and choose Monte-Carlo analysis.
This analysis will repeat the simulations many times, and tabulate
selected results. The Monte Carlo analysis will only be available for
analyses that create analysis constants. Note that linear regression
does not, but you can fit a straight line with the nonlinear regression
analysis. 

The explanations below explain the basic ideas of the Monte Carlo
analysis. Follow the example to learn the details. 

Simulations tab

How many simulations?

How many simulations should you run?  If you make only a few
simulations, the results will be affected too much by chance. Running
more simulations will give you more precise results, but you'll have to
wait longer for the calculations to repeat. When just playing around, it
might make sense to use as few as 100 simulations so you can see the
results instantly. When trying to polish simulation results, it can make
sense to use as many as 10,000 or 100,000 simulations. A good
compromise is 1000.

Append?

If you go back to run more simulations, check an option box to append
the new simulations to the existing results, rather than start fresh.

Random seed

The choice of random numbers used in a series of simulations depends on
the random number seed used to generate the first set of results. By
default, Prism picks this seed automatically (based on the time of day),
and presents this seed in a floating note superimposed on Monte Carlo
results. 

564

567
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If you want two or more Monte Carlo analyses to use precisely the same
data sets (so you can compare two ways of analyzing those data), enter
that random seed on the Simulation tab.

Parameters to tabulate tab

Prism lists all of the analysis constants generated by the analysis. Check
the ones whose values you want to tabulate. 

You cannot change the set of values included in this list. Let us know if
there are parameters missing, and we can add them in a future version.

Hits tab (optional)

If you skip this Hits tab, Prism will tabulate the selected parameters
(different columns) for each simulation (rows). 

Prism can also reduce the results down to a single number -- the fraction
of the simulations that are "hits". Define a hit to be when a value
tabulated by the analysis equals a certain value or is within a specified
range. Click New...Graph of existing data from this table, and choose a
parts-of-whole graph to create a pie graph of the fraction of hits vs. not
hits.

Prism can also tabulate the selected parameters only for simulations that
are hits, and/or for only the simulations that are not hits. Choose any or
all of these options (Hits, Not hits, All simulations) at the bottom of the
Hits tab. Each option you check will create its own results table.  

4.16.3 Monte Carlo example: Power of unpaired t test

Overview

This example will compute the power of an unpaired t test. The goal of
this example, however, is broader -- to show how easy it is to perform
Monte Carlo analyses with Prism and to show you how useful they can
be. 

The question here is this: Given a certain experimental design and
assumptions about random scatter, what is the chance (power) that an
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unpaired t test will give a P value less than 0.05 and thus be declared
statistically significant? 

Step 1. Simulate the first experiment

From anywhere, click New..Analysis and choose Simulate Column Data.
Choose to simulate two groups, with five values per group, sampled from
populations with means of 25 and 35 distributed according to a Gaussian
distribution with a SD of 10.
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Step 2. Analyze the data with a t test

From the simulated data table, click Analyze and choose t test from the
list of Column analyses. Accept all the default choices to perform an
unpaired t test, reporting a two-tail P value.

Step 3. View a few simulated results 

Copy the P value from the results and paste onto a graph of the data. It
will paste with a live link, so the P value will change if the values change.
To simulate new data with different random numbers, click the red die
icon, or drop the Change menu and choose Simulate Again

The layout below shows four such graphs placed on the layout as unlinked
pictures that do not update when the graph changes. Even though there
is only one graph in the project, this made it possible to put four different
versions of it (with different random data) onto the layout. You can see
that with random variation of the data, the P value varies a lot. 
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Step 4. Monte Carlo simulation

Start from the t test result, click Analyze and choose Monte Carlo
simulation. 

On the first (Simulations) tab, choose how many simulations you want
Prism to perform. This example used 1000 simulations.

On the second (Parameters to tabulate) tab, choose which parameters
you want to tabulate. The choice is the list of analysis constants that
Prism creates when it analyzes the data. For this example, we only want
to tabulate the P value (from the t test which compares means; don't mix
it up with the P value from the F test which compares variances).
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On the third (Hits) tab, define a criterion which makes a given simulated
result a "hit". For this example, we'll define a hit to mean statistical
significance with P<0.05. 

Click OK and Prism will run the simulations. Depending on the speed of
your computer, it will take a few seonds or a few dozen seconds. 

Step 5. Monte-Carlo results

Distribution of P values

The results of the simulations are shown in two pages.
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One shows the tabulated parameters for all simulations. In this example,
we only asked to tabulate the P value, so this table is a list of 1000 (the
number of simulations requested) P values. To create a frequency
distribution from this table, click Analyze, and choose Frequency
Distribution. Choose a cumulative frequency distribution. You can see that
about a quarter of the P values are less than 0.05. 

Fraction of hits

The other results table summarizes the fraction of hits. For this set of
simulations, 27.5% of the simulations were hits (P value less than 0.05),
with a 95% confidence interval ranging from 24.8% to 30.4%. Another
way of stating these results is that the power of our experimental design
is 27.5%. 

Note that the simulations depend on random number generation, which is
initialized by the time of day you begin. So if your results might not be
identical to what is shown above.
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If we had run more simulations, of course that confidence interval would
be narrower. 

From this table, click New...Graph of existing data to create a pie or
percentage plot.

Step 6. Further explorations

Go back to step 1 and simulate a larger experiment, say with 10 values in
each group. Or 20 or 100. How much will that increase the power? 

Try reducing the definition of hit to be a P value less than 0.01 rather
than 0.05. How does that affect power?
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P values, multiplicity adjusted     124

P values, one- vs. two-tail     71

Paired data, defined     256

Paired t test     281

Paired t test, analysis checklist     166, 286

Paired t test, interpreting results     285

Paired t test, step by step     281

Parameters: Area under the curve     229

Parameters: Bland-Altman plot     552

Parameters: Column statistics     194

Parameters: Contingency tables     465

Parameters: Frequency distribution     216

Parameters: One-way ANOVA     353

Parameters: ROC curve     543

Parameters: Smooth, differentiate or integrate a
curve     225

Parameters: Survival analysis     492, 498

Parameters: t tests (and nonparametric tests)    
256

Pearson     534

Percentile plot     216

Percentiles     198

P-hacking     18

Planned comparisons     113, 117, 356

Population, defined     15

Positive predictive values, ROC     549
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Post test for trend     356

Post tests     113

Post tests, after comparing survival curves     518

Post tests, after one-way ANOVA     113

Post-hoc tests     113

Post-tests     18

Power of nonparametric tests     143

Power, defined     91

Pratt     314

Predicitve values from ROC curve     549

Predictive value     478

Probability vs. statistics     16

Probability Y axis     223

Proportion, confidence interval of     458

Proportional hazards     185, 520

Proportional hazards regression     490

Prospective     463

- Q -
Q (desired FDR)     132

Quartiles     198

- R -
r     535

r, interpreting     535

Random numbers     564

Random vs. fixed factors     182, 437

Randomized block     372

Randomized block, defined     397

Randomized blocks     353

Ratio of median survival times     512

Ratio t test     290

Ratio variables     29

Receiver-operator characteristic (ROC) curves    
541

Regression vs. correlation     539

Relative risk     475

Repeated measures     372

Repeated measures ANOVA, multiple comparisons
    378

Repeated measures two-way ANOVA     430

Repeated measures vs. "randomized block"     397

Repeated measures, defined     397

Repeated measures, one-way ANOVA     353

Repeated-measures one-way ANOVA     372

Results: Wilcoxon matched pairs test     314

Retrospective case-control study     463

ROC curve: Calculation details     548

ROC curves     541

Row statistics     234

- S -
Sample, defined     15

Savitsky, method to smooth curves     225

Scheffe's multiple comparisons     356

SD vs. SEM     49, 50

SD, interpreting     40

SEM vs. SD     49, 50

SEM, computing     47, 48

Sensitivity     478

Sensitivity in ROC curves     545

Sequential approach to P values     87

Shapiro-Wilk normality test     194

Sidak     343

Šídák-Bonferroni multiple comparisons     125

Sidak-Holm method     127

Sign test     484

Signed rank test, interpreting results     209, 251

Significant, defined     79

Simulating data with random error     564

Simulation, to demonstrate Gaussian distribution    
36

Skewness     204

Smoothing a curve     225

Spearman     534

Spearman correlation calculations     535

Specificity     478

Specifiicty in ROC curves     545

Sphericity     182, 353, 373, 437

Sphericity and multiple comparisons     378

Standard deviation, computing     43

Standard deviation, confidence interval of     45

Standard deviation, interpreting     40

Stars, used to denote significance     80

Statistics vs. probability     16

STDEV function of Excel     43

Stevens' categories of variables     29

Student-Newman-Keuls     132

Survival analysis     490
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- T -
t test, one sample     194

t test, paired     281, 285

t test, unpaired     267, 271

t test, use logs to compare ratios     290

Test for trend     356

Triimmed mean     214

Trimmed mean     202

Tukey     340

Tukey multiple comparisons test     130

Two outliers, masking     157

Two-stage step-up method of Benjamini, Krieger
and Yekuteili     348

Two-tail vs. one-tail P value     71

Two-way ANOVA     391, 418

Two-way ANOVA, experimental design     405

Two-way ANOVA, instructions     395, 446

Two-way ANOVA, interaction     418, 455

Two-way ANOVA, multiple comparisons     408

Two-way ANOVA, options     413

Two-way ANOVA, repeated measures     430

Two-way ANOVA. How to enter data.     393

Type I, II (and III) errors     94

- U -
Uncorrected Dunn's test     346

Unpaired t test     267

Unpaired t test, interpreting results     271

Unpaired t test, step by step     267

- V -
Variance, defined     200

Very significant, defined     80

- W -
Welch t test     256

Wilcoxon (used to compare survival curves)     507

Wilcoxon matched pairs test     311

Wilcoxon matched pairs test, analysis checklist    
171, 317

Wilcoxon matched pairs test, step by step     312

Wilcoxon signed rank test, choosing     194

Wilcoxon signed rank test, Interpreting results    
209, 251

Wilson method     460

Winsorized mean     202, 214

- Y -
Yates correction     469
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