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Preface

GraphPad Prism combines scientific graphics, statistics and curve fitting in
an easy to use program. If you don't already have Prism, go to
www.graphpad.com to learn about Prism and download a free
demonstration version.

Please also check our web site for a list of any corrections to this book, and
for additional information on data analysis. Tell your colleagues that this
entire book is available on the web site as an Acrobat pdf file.

GraphPad Prism comes with two volumes, of which you are reading one.
The other volume, Prism User's Guide, explains how to use Prism. This
book, Analyzing Data with GraphPad Prism, explains how to pick an
appropriate test and make sense of the results.

This book overlaps only a bit with my text, Intuitive Biostatistics, published
by Oxford University Press (ISBN 0195086074). The goal of  Intuitive
Biostatistics is to help the reader make sense of statistics encountered in the
scientific and clinical literature. It explains the ideas of statistics, without a
lot of detail about analyzing data. Its sections on ANOVA and nonlinear
regression are very short. The goal of this book (Analyzing Data with
GraphPad Prism) is to help you analyze your own data, with an emphasis
on nonlinear regression and its application to analyzing radioligand
binding, dose-response, and enzyme kinetic data.

If you have any comments about this book, or suggestions for the future,
please email me at hmotulsky@graphpad.com

Harvey Motulsky

March 1999
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Introduction to statistical
comparisons

Garbage in, garbage out
Computers are wonderful tools for analyzing data. But like any tool, data
analysis programs can be misused. If you enter incorrect data or pick an
inappropriate analysis, the results won't be helpful. Heed the first rule of
computers: Garbage in, garbage out.

While this volume provides far more background information than most
program manuals, it cannot entirely replace the need for statistics texts and
consultants. If you pick an inappropriate analysis, the results won't be
useful.

GraphPad provides free technical support when you encounter
problems with the program. However, we can only provide
limited free help with choosing statistics tests or interpreting the
results (consulting can sometimes be arranged for a fee).

When do you need statistical calculations?
When analyzing data, your goal is simple: You wish to make the strongest
possible conclusion from limited amounts of data. To do this, you need to
overcome two problems:

• Important differences can be obscured by biological variability and
experimental imprecision. This makes it difficult to distinguish real
differences from random variability.

• The human brain excels at finding patterns, even from random data.
Our natural inclination (especially with our own data) is to conclude
that differences are real, and to minimize the contribution of random
variability. Statistical rigor prevents you from making this mistake.
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Statistical analyses are necessary when observed differences are small
compared to experimental imprecision and biological variability. When
you work with experimental systems with no biological variability and little
experimental error, heed these aphorisms:

If you need statistics to analyze your experiment, then you've done the
wrong experiment.

If your data speak for themselves, don't interrupt!

But in many fields, scientists can't avoid large amounts of variability, yet
care about relatively small differences. Statistical methods are necessary to
draw valid conclusions from such data.

The key concept: Sampling from a population

Sampling from a population
The basic idea of statistics is simple: you want to extrapolate from the data
you have collected to make general conclusions about the larger
population from which the data sample was derived.

To do this, statisticians have developed methods based on a simple model:
Assume that all your data are randomly sampled from an infinitely large
population. Analyze this sample, and use the results to make inferences
about the population.

This model is an accurate description of some situations. For example,
quality control samples really are randomly selected from a large
population. Clinical trials do not enroll a randomly selected sample of
patients, but it is usually reasonable to extrapolate from the sample you
studied to the larger population of similar patients.

In a typical experiment, you don't really sample from a population. But you
do want to extrapolate from your data to a more general conclusion. The
concepts of sample and population can still be used if you define the
sample to be the data you collected, and the population to be the data you
would have collected if you had repeated the experiment an infinite
number of times.

Note that the term sample has a specific definition in statistics
that is very different than its usual definition. Learning new
meanings for commonly used words is part of the challenge of
learning statistics.
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The need for independent samples
It is not enough that your data are sampled from a population. Statistical
tests are also based on the assumption that each subject (or each
experimental unit) was sampled independently of the rest. The concept of
independence can be difficult to grasp. Consider the following three
situations.

• You are measuring blood pressure in animals. You have five animals
in each group, and measure the blood pressure three times in each
animal. You do not have 15 independent measurements, because the
triplicate measurements in one animal are likely to be closer to each
other than to measurements from the other animals. You should
average the three measurements in each animal. Now you have five
mean values that are independent of each other.

• You have done a biochemical experiment three times, each time in
triplicate. You do not have nine independent values, as an error in
preparing the reagents for one experiment could affect all three
triplicates. If you average the triplicates, you do have three
independent mean values.

• You are doing a clinical study, and recruit ten patients from an inner-
city hospital and ten more patients from a suburban clinic. You have
not independently sampled 20 subjects from one population. The
data from the ten inner-city patients may be closer to each other than
to the data from the suburban patients. You have sampled from two
populations, and need to account for this in your analysis.

Data are independent when any random factor that causes a value to be
too high or too low affects only that one value. If a random factor (that you
didn’t account for in the analysis of the data) can affect more than one
value, but not all of the values, then the data are not independent.

How you can use statistics to extrapolate from sample
to population
Statisticians have devised three basic approaches to make conclusions
about populations from samples of data:

The first method is to assume that the populations follow a special
distribution, known as the Gaussian (bell shaped) distribution. Once you
assume that a population is distributed in that manner, statistical tests let
you make inferences about the mean (and other properties) of the
population. Most commonly used statistical tests assume that the
population is Gaussian.

The second method is to rank all values from low to high, and then
compare the distribution of ranks. This is the principle behind most
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commonly used nonparametric tests, which are used to analyze data from
non-Gaussian distributions.

The third method is known as resampling. With this method, you create a
population of sorts, by repeatedly sampling values from your sample.This is
best understood by an example. Assume you have a single sample of five
values, and want to know how close that sample mean is likely to be from
the true population mean. Write each value on a card and place the cards
in a hat. Create many pseudo samples by drawing a card from the hat, and
returning it. Generate many samples of N=5 this way. Since you can draw
the same value more than once, the samples won’t all be the same. When
randomly selecting cards gets tedious, use a computer program instead.
The distribution of the means of these computer-generated samples gives
you information about how accurately you know the mean of the entire
population. The idea of resampling can be difficult to grasp. To learn about
this approach to statistics, read the instructional material available at
www.resample.com.  Prism does not perform any tests based on
resampling. Resampling methods are closely linked to bootstrapping
methods.

Limitations of statistics
The statistical model is simple: Extrapolate from the sample you collected
to a more general situation, assuming that your sample was randomly
selected from a large population. The problem is that the statistical
inferences can only apply to the population from which your samples were
obtained, but you often want to make conclusions that extrapolate even
beyond that large population.  For example,  you perform an experiment in
the lab three times. All the experiments used the same cell preparation, the
same buffers, and the same equipment. Statistical inferences let you make
conclusions about what would happen if you repeated the experiment
many more times with that same cell preparation, those same buffers, and
the same equipment. You probably want to extrapolate further to what
would happen if someone else repeated the experiment with a different
source of cells, freshly made buffer and different instruments.
Unfortunately, statistical calculations can't help with this further
extrapolation. You must use scientific judgment and common sense to
make inferences that go beyond the limitations of statistics. Thus, statistical
logic is only part of data interpretation.

The Gaussian distribution
When many independent random factors act in an additive manner to
create variability, data will follow a bell-shaped distribution called the
Gaussian distribution, illustrated in the figure below. The left panel shows
the distribution of a large sample of data. Each value is shown as a dot,
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with the points moved horizontally to avoid too much overlap. This is
called a column scatter graph. The frequency distribution, or histogram, of
the values is shown in the middle panel. It shows the exact distribution of
values in this particular sample. The right panel shows an ideal Gaussian
distribution.
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The Gaussian distribution has some special mathematical properties that
form the basis of many statistical tests. Although no data follow that
mathematical ideal exactly, many kinds of data follow a distribution that is
approximately Gaussian.

The Gaussian distribution is also called a Normal distribution.
Don’t confuse this use of the word “normal” with its usual
meaning.

The Gaussian distribution plays a central role in statistics because of a
mathematical relationship known as the Central Limit Theorem. To
understand this theorem, follow this imaginary experiment:

1. Create a population with a known distribution (which does not have
to be Gaussian).

2. Randomly pick many samples from that population. Tabulate the
means of these samples.

3. Draw a histogram of the frequency distribution of the means.

The central limit theorem says that if your samples are large enough, the
distribution of means will follow a Gaussian distribution even if the
population is not Gaussian. Since most statistical tests (such as the t test and
ANOVA) are concerned only with differences between means, the Central
Limit Theorem lets these tests work well even when the populations are not
Gaussian. For this to be valid, the samples have to be reasonably large.
How large is that? It depends on how far the population distribution differs
from a Gaussian distribution. Assuming the population doesn't have a
really weird distribution, a sample size of ten or so is generally enough to
invoke the Central Limit Theorem.
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To learn more about why the ideal Gaussian distribution is so useful, read
about the Central Limit Theorem in any statistics text.

Confidence intervals

Confidence interval of a mean
The mean you calculate from a sample is not likely to be exactly equal to
the population mean. The size of the discrepancy depends on the size and
variability of the sample. If your sample is small and variable, the sample
mean may be quite far from the population mean. If your sample is large
with little scatter, the sample mean will probably be very close to the
population mean. Statistical calculations combine sample size and
variability (standard deviation) to generate a confidence interval (CI) for the
population mean. You can calculate intervals for any desired degree of
confidence, but 95% confidence intervals are most common. If you assume
that your sample is randomly selected from some population (that follows a
Gaussian distribution), you can be 95% sure that the confidence interval
includes the population mean. More precisely, if you generate many 95%
CI from many data sets, you expect the CI to include the true population
mean in 95% of the cases and not to include the true mean value in the
other 5%. Since you usually don't know the population mean, you'll never
know when this happens.

Confidence intervals of other parameters
Statisticians have derived methods to generate confidence intervals for
almost any situation. For example when comparing groups, you can
calculate the 95% confidence interval for the difference between the group
means. Interpretation is straightforward. If you accept the assumptions,
there is a 95% chance that the interval you calculate includes the true
difference between population means.

Similarly, methods exist to compute a 95% confidence interval for a
proportion, the ratio of proportions, the best-fit slope of linear regression,
and almost any other statistical parameter.

Nothing special about 95%
There is nothing magical about 95%. You could calculate confidence
intervals for any desired degree of confidence. If you want more
confidence that an interval contains the true parameter, then the intervals
have to be wider. So 99% confidence intervals are wider than 95%
confidence intervals, and 90% confidence intervals are narrower than 95%
confidence intervals.
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P values

What is a P value?
Assume that you've collected data from two samples of animals treated
with different drugs. You've measured an enzyme in each animal's plasma,
and the means are different. You want to know whether that difference is
due to an effect of the drug – whether the two populations have different
means. Observing different sample means is not enough to persuade you to
conclude that the populations have different means. It is possible that the
populations have the same mean (the drugs have no effect on the enzyme
you are measuring), and that the difference you observed is simply a
coincidence. There is no way you can ever be sure if the difference you
observed reflects a true difference or if it is just a coincidence of random
sampling. All you can do is calculate probabilities.

Statistical calculations can answer this question: If the populations really
have the same mean, what is the probability of observing such a large
difference (or larger) between sample means in an experiment of this size?
The answer to this question is called the P value.

The P value is a probability, with a value ranging from zero to one. If the P
value is small, you’ll conclude that the difference between sample means is
unlikely to be a coincidence. Instead, you’ll conclude that the populations
have different means.

What is a null hypothesis?
When statisticians discuss P values, they use the term null hypothesis. The
null hypothesis simply states that there is no difference between the groups.
Using that term, you can define the P value to be the probability of
observing a difference as large or larger than you observed if the null
hypothesis were true.

Common misinterpretation of a P value
Many people misunderstand P values. If the P value is 0.03, that means that
there is a 3% chance of observing a difference as large as you observed
even if the two population means are identical (the null hypothesis is true).
It is tempting to conclude, therefore, that there is a 97% chance that the
difference you observed reflects a real difference between populations and
a 3% chance that the difference is due to chance.  However, this would be
an incorrect conclusion. What you can say is that random sampling from
identical populations would lead to a difference smaller than you observed
in 97% of experiments and larger than you observed in 3% of experiments.
This distinction may be more clear after you read "A Bayesian perspective
on interpreting statistical significance" on page 15.
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One- vs. two-tail P values
When comparing two groups, you must distinguish between one- and two-
tail P values.

Start with the null hypothesis that the two populations really are the same
and that the observed discrepancy between sample means is due to
chance.

Note: This example is for an unpaired t test that compares the
means of two groups. The same ideas can be applied to other
statistical tests.

The two-tail P value answers this question: Assuming the null hypothesis is
true, what is the chance that randomly selected samples would have means
as far apart as (or further than) you observed in this experiment with either
group having the larger mean?

To interpret a one-tail P value, you must predict which group will have the
larger mean before collecting any data. The one-tail P value answers this
question: Assuming the null hypothesis is true, what is the chance that
randomly selected samples would have means as far apart as (or further
than) observed in this experiment with the specified group having the
larger mean?

A one-tail P value is appropriate only when previous data, physical
limitations or common sense tell you that a difference, if any, can only go
in one direction. The issue is not whether you expect a difference to exist –
that is what you are trying to find out with the experiment. The issue is
whether you should interpret increases and decreases in the same manner.

You should only choose a one-tail P value when two things are true.

• You must predict which group will have the larger mean (or
proportion) before you collect any data.

• If the other group ends up with the larger mean – even if it is quite a
bit larger -- you must be willing to attribute that difference to chance.

It is usually best to use a two-tail P value for these reasons:

• The relationship between P values and confidence intervals is easier
to understand with two-tail P values.

• Some tests compare three or more groups, which makes the concept
of tails inappropriate (more precisely, the P values have many tails). A
two-tail P value is more consistent with the P values reported by
these tests.

• Choosing a one-tail P value can pose a dilemma. What would you do
if you chose to use a one-tail P value, observed a large difference
between means, but the "wrong" group had the larger mean? In other
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words, the observed difference was in the opposite direction to your
experimental hypothesis. To be rigorous, you must conclude that the
difference is due to chance, even if the difference is huge. While
tempting, it is not fair to switch to a two-tail P value or to reverse the
direction of the experimental hypothesis. You avoid this situation by
always using two-tail P values.

Hypothesis testing and statistical significance

Statistical hypothesis testing
Much of statistical reasoning was developed in the context of quality
control where you need a definite yes or no answer from every analysis.
Do you accept or reject the batch? The logic used to obtain the answer is
called hypothesis testing.

First, define a threshold P value before you do the experiment. Ideally, you
should set this value based on the relative consequences of missing a true
difference or falsely finding a difference. In practice, the threshold value
(called α) is almost always set to 0.05 (an arbitrary value that has been
widely adopted).

Next, define the null hypothesis. If you are comparing two means, the null
hypothesis is that the two populations have the same mean. In most
circumstances, the null hypothesis is the opposite of the experimental
hypothesis that the means come from different populations.

Now, perform the appropriate statistical test to compute the P value. If the
P value is less than the threshold, state that you "reject the null hypothesis"
and that the difference is "statistically significant". If the P value is greater
than the threshold, state that you "do not reject the null hypothesis" and
that the difference is "not statistically significant". You cannot conclude that
the null hypothesis is true. All you can do is conclude that you don’t have
sufficient evidence to reject the null hypothesis.

Statistical significance in science
The term significant is seductive, and easy to misinterpret. Using the
conventional definition with alpha=0.05, a result is said to be statistically
significant when the result would occur less than 5% of the time if the
populations were really identical.

It is easy to read far too much into the word significant because the
statistical use of the word has a meaning entirely distinct from its usual
meaning. Just because a difference is statistically significant does not mean
that it is biologically or clinically important or interesting. Moreover, a
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result that is not statistically significant (in the first experiment) may turn
out to be very important.

If a result is statistically significant, there are two possible explanations:

• The populations are identical, so there really is no difference. By
chance, you obtained larger values in one group and smaller values
in the other. Finding a statistically significant result when the
populations are identical is called making a Type I error. If you define
statistically significant to mean “P<0.05”, then you’ll make a Type I
error in 5% of experiments where there really is no difference.

• The populations really are different, so your conclusion is correct.
The difference may be large enough to be scientifically interesting.
Or it may be tiny and trivial.

"Extremely significant" results
Intuitively, you may think that P=0.0001 is more statistically significant
than P=0.04. Using strict definitions, this is not correct. Once you have set
a threshold P value for statistical significance, every result is either
statistically significant or is not statistically significant. Degrees of statistical
significance are not distinguished. Some statisticians feel very strongly
about this. Many scientists are not so rigid, and refer to results as being
"barely significant", "very significant" or "extremely significant".

Prism summarizes the P value using the words in the middle column of this
table. Many scientists label graphs with the symbols of the third column.
These definitions are not entirely standard. If you report the results in this
way, you should define the symbols in your figure legend.

P value Wording Summary
>0.05 Not significant ns

0.01 to 0.05 Significant *

0.001 to 0.01 Very significant **

< 0.001 Extremely significant ***

Report the actual P value
The concept of statistical hypothesis testing works well for quality control,
where you must decide to accept or reject an item or batch based on the
results of a single analysis. Experimental science is more complicated than
that, because you often integrate many kinds of experiments before
reaching conclusions. You don't need to make a significant/not significant
decision for every P value. Instead, report exact P values, so you and your
readers can interpret them as part of a bigger picture.



 Introduction to statistical comparisons 13 www.graphpad.com

The tradition of reporting only “P<0.05” or “P>0.05” began in the days
before computers were readily available. Statistical tables were used to
determine whether the P value was less than or greater than 0.05, and it
would have been very difficult to determine the P value exactly. Today,
with most statistical tests, it is very easy to compute exact P values, and you
shouldn’t feel constrained to only report whether the P value is less than or
greater than some threshold value.

Statistical power

Type II errors and power
When a study reaches a conclusion of "no statistically significant
difference", you should not necessarily conclude that the treatment was
ineffective. It is possible that the study missed a real effect because you
used a small sample or your data were quite variable. In this case you
made a Type II error — obtaining a "not significant" result when in fact
there is a difference.

When interpreting the results of an experiment that found no significant
difference, you need to ask yourself how much power the study had to find
various hypothetical differences if they existed. The power depends on the
sample size and amount of variation within the groups, where variation is
quantified by the standard deviation (SD).

Here is a precise definition of power: Start with the assumption that the two
population means differ by a certain amount and that the SD of the
populations has a particular value. Now assume that you perform many
experiments with the sample size you used, and calculate a P value for
each experiment. Power is the fraction of these experiments that would
have a P value less than α (the largest P value you deem “significant”,
usually set to 0.05). In other words, power equals the fraction of
experiments that would lead to statistically significant results. Prism does
not compute power, but the companion program GraphPad StatMate does.

Example of power calculations
Motulsky et al. asked whether people with hypertension (high blood
pressure) had altered numbers of α2-adrenergic receptors on their platelets
(Clinical Science 64:265-272, 1983). There are many reasons to think that
autonomic receptor numbers may be altered in hypertensives. They studied
platelets because they are easily accessible from a blood sample. The
results are shown here:
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Variable Hypertensives Controls
Number of subjects 18 17

Mean receptor number
(receptors per cell)

257 263

Standard Deviation 59.4 86.6

The two means were almost identical, and a t test gave a very high P value.
The authors concluded that the platelets of hypertensives do not have an
altered number of α2 receptors.

What was the power of this study to find a difference if there was one? The
answer depends on how large the difference really is. Prism does not
compute power, but the companion program GraphPad StatMate does.
Here are the results shown as a graph.
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If the true difference between means was 50.58, then this study had only
50% power to find a statistically significant difference. In other words, if
hypertensives really averaged 51 more receptors per cell, you’d find a
statistically significant difference in about half of studies of this size, but
would not find a statistically significant difference in the other half of the
studies. This is about a 20% change (51/257), large enough that it could
possibly have a physiological impact.

If the true difference between means was 84 receptors/cell, then this study
had 90% power to find a statistically significant difference. If hypertensives
really had such a large difference, you’d find a statistically significant
difference in 90% of studies this size and would find a not significant
difference in the other 10% of studies.

All studies have low power to find small differences and high power to find
large differences. However, it is up to you to define “low” and “high” in the
context of the experiment, and to decide whether the power was high
enough for you to believe the negative results. If the power is too low, you
shouldn’t reach a firm conclusion until the study has been repeated with
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more subjects. Most investigators aim for 80% or 90% power to detect a
difference.

Since this study had only a 50% power to detect a difference of 20% in
receptor number (50 sites per platelet, a large enough difference to possibly
explain some aspects of hypertension physiology), the negative conclusion
is not solid.

A Bayesian perspective on interpreting statistical
significance

Imagine that you are screening drugs to see if they lower blood pressure.
Based on the amount of scatter you expect to see, and the minimum
change you would care about, you’ve chosen the sample size for each
experiment to have 80% power to detect the difference you are looking for
with a P value less than 0.05. What happens when you repeat the
experiment many times?

The answer is “it depends”. It depends on the context of your experiment.
Let’s look at the same experiment performed in three contexts. First, we’ll
assume that you know a bit about the pharmacology of the drugs, and
expect 10% of the drugs to be active. In this case, the prior probability is
10%. Second, we’ll assume you know a lot about the pharmacology of the
drugs, and expect 80% to be active. Third, we’ll assume that the drugs
were selected at random, and you expect only 1% to be active in lowering
blood pressure.

What happens when you perform 1000 experiments in each of these
contexts. The details of the calculations are shown on pages 143-145 of
Intuitive Biostatistics, by Harvey Motulsky (Oxford University Press, 1995).
Since the power is 80%, you expect 80% of truly effective drugs to yield a
P value less than 0.05 in your experiment. Since you set the definition of
statistical significance to 0.05, you expect 5% of ineffective drugs to yield a
P value less than 0.05. Putting these calculations together creates these
tables.

A. Prior probability=10% Drug really
works

Drug really
doesn’t work

Total

P<0.05 “significant” 80 45 125

P>0.05, “not significant” 20 855 875

Total 100 900 1000
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B. Prior probability=80% Drug really
works

Drug really
doesn’t work

Total

P<0.05 “significant” 640 10 650

P>0.05, “not significant” 160 190 350

Total 800 200 1000

C. Prior probability=1% Drug really
works

Drug really
doesn’t work

Total

P<0.05 “significant” 8 50 58

P>0.05, “not significant” 2 940 942

Total 10 990 1000

The total for each column is determined by the prior probability – the
context of your experiment. The prior probability equals the fraction of the
experiments that are in the leftmost column. To compute the number of
experiments in each row, use the definition of power and alpha. Of the
drugs that really work, you won’t obtain a P value less than 0.05 in every
case. You chose a sample size to obtain a power of 80%, so 80% of the
truly effective drugs yield “significant” P values, and 20% yield “not
significant” P values.  Of the drugs that really don’t work (middle column),
you won’t get “not significant” results in every case. Since you defined
statistical significance to be “P<0.05” (alpha=0.05), you will see a
“significant” result in 5% of experiments performed with drugs that are
really inactive and a “not significant” result in the other 95%.

If the P value is less than 0.05, so the results are “statistically significant”,
what is the chance that the drug is really active? The answer is different for
each experiment.

Experiments with P<0.05
and...

Prior probability ...drug really
works

...drug really
doesn’t work

Fraction of
experiments
with P<0.05
where drug
really works

A. Prior probability=10% 80 45 80/125 = 64%

B. Prior probability=80% 640 10 640/650 = 98%

C. Prior probability=1% 8 50 8/58 = 14%

For experiment A, the chance that the drug is really active is 80/125 or
64%. If you observe a statistically significant result, there is a 64% chance
that the difference is real and a 36% chance that the difference was caused
by random sampling. For experiment B, there is a 98.5% chance that the
difference is real. In contrast, if you observe a significant result in
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experiment C, there is only a 14% chance that the result is real and a 86%
chance that it is a coincidence of random sampling. For experiment C, the
vast majority of “significant’ results are due to chance.

Your interpretation of a “statistically significant” result depends on the
context of the experiment. You can’t interpret a P value in a vacuum. Your
interpretation depends on the context of the experiment. Interpreting results
requires common sense, intuition, and judgment.

Beware of multiple comparisons
Interpreting an individual P value is easy. If the null hypothesis is true, the
P value is the chance that random selection of subjects would result in a
difference (or correlation or association...) as large (or larger) than observed
in your study. If the null hypothesis is true, there is a 5% chance of
randomly selecting subjects such that the trend is statistically significant.

However, many scientific studies generate more than one P value. Some
studies in fact generate hundreds of P values. Interpreting multiple P values
can be difficult.

If you test several independent null hypotheses, and leave the threshold at
0.05 for each comparison, there is greater than a 5% chance of obtaining at
least one "statistically significant" result by chance. The second column in
the table below shows you how much greater.
Number of
Independent Null
Hypotheses

Probability  of obtaining
one or more P values less
than 0.05 by chance

Threshold to keep overall
risk of type I error equal
to 0.05

1 5% 0.0050
2 10% 0.0253
3 14% 0.0170
4 19% 0.0127
5 23% 0.0102
6 26% 0.0085
7 30% 0.0073
8 34% 0.0064
9 37% 0.0057

10 40% 0.0051
20 64% 0.0026
50 92% 0.0010
100 99% 0.0005
N 100(1.00 - 0.95N) 1.00 - 0.95(1/N).
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To maintain the chance of randomly obtaining at least one statistically
significant result at 5%, you need to set a stricter (lower) threshold for each
individual comparison. This is tabulated in the third column of the table. If
you only conclude that a difference is statistically significant when a P
value is less than this value, then you’ll have only a 5% chance of finding
any “significant” difference by chance among all the comparisons.

For example, if you test three null hypotheses and use the traditional cutoff
of alpha=0.05 for declaring each P value to be significant, there would be
a 14% chance of observing one or more significant P values, even if all
three null hypotheses were true. To keep the overall chance at 5%, you
need to lower the threshold for significance to 0.0170.

If you compare three or more groups, account for multiple comparisons
using post tests following one-way ANVOA. These methods account both
for multiple comparisons and the fact that the comparisons are not
independent. See “How post tests work” on page 74.

You can only account for multiple comparisons when you know about all
the comparisons made by the investigators. If you report only “significant”
differences, without reporting the total number of comparisons, others will
not be able to properly evaluate your results. Ideally, you should plan all
your analyses before collecting data, and then report all the results.

Distinguish between studies that test a hypothesis from studies that
generate a hypothesis. Exploratory analyses of large databases can generate
hundreds of P values, and scanning these can generate intriguing research
hypotheses. To test these hypotheses, you'll need a different set of data.

Outliers

What is an outlier?
When analyzing data, you'll sometimes find that one value is far from the
others. Such a value is called an outlier, a term that is usually not defined
rigorously. When you encounter an outlier, you may be tempted to delete
it from the analyses. First, ask yourself these questions:

• Was the value entered into the computer correctly? If there was an
error in data entry, fix it.

• Were there any experimental problems with that value? For example,
if you noted that one tube looked funny, you have justification to
exclude the value resulting from that tube without needing to perform
any calculations.

• Is the outlier caused by biological diversity? If each value comes from
a different person or animal, the outlier may be a correct value. It is
an outlier not because of an experimental mistake, but rather because
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that individual may be different from the others. This may be the
most exciting finding in your data!

After answering no to those three questions, you have to decide what to do
with the outlier. There are two possibilities.

• One possibility is that the outlier was due to chance. In this case, you
should keep the value in your analyses. The value came from the
same distribution as the other values, so should be included.

• The other possibility is that the outlier was due to a mistake - bad
pipetting, voltage spike, holes in filters, etc. Since including an
erroneous value in your analyses will give invalid results, you should
remove it. In other words, the value comes from a different
population than the other and is misleading.

The problem, of course, is that you can never be sure which of these
possibilities is correct.

No mathematical calculation can tell you for sure whether the outlier came
from the same or different population than the others. But statistical
calculations can answer this question: If the values really were all sampled
from a Gaussian distribution, what is the chance that you'd find one value
as far from the others as you observed? If this probability is small, then you
will conclude that the outlier is likely to be an erroneous value, and you
have justification to exclude it from your analyses.

Statisticians have devised several methods for detecting outliers. All the
methods first quantify how far the outlier is from the other values. This can
be the difference between the outlier and the mean of all points, the
difference between the outlier and the mean of the remaining values, or the
difference between the outlier and the next closest value. Next, standardize
this value by dividing by some measure of scatter, such as the SD of all
values, the SD of the remaining values, or the range of the data. Finally,
compute a P value answering this question: If all the values were really
sampled from a Gaussian population, what is the chance of randomly
obtaining an outlier so far from the other values? If the P value is small, you
conclude that the deviation of the outlier from the other values is
statistically significant.

Prism does not perform any sort of outlier detection. If you want to perform
an outlier test by hand, you can calculate Grubb's test, described below.

Detecting outliers with Grubb's test
The Grubbs' method for assessing outliers is particularly easy to
understand. This method is also called the ESD method (extreme
studentized deviate).
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The first step is to quantify how far the outlier is from the others. Calculate
the ratio Z as the difference between the outlier and the mean divided by
the SD. Calculate the mean and SD from all the values, including the
outlier. Calculate Z for all the values, but only perform the Grubb's test
with the most extreme outlier, the value that leads to the largest value of Z.

z
mean value

SD
=

−

Since 5% of the values in a Gaussian population are more than 1.96
standard deviations from the mean, your first thought might be to conclude
that the outlier comes from a different population if Z is greater than 1.96.
This approach would only work when you know the population mean and
SD from other data. Although this is rarely the case in experimental
science, it is often the case in quality control. You know the overall mean
and SD from historical data, and want to know whether the latest value
matches the others. This is the basis for quality control charts.

When analyzing experimental data, you don't know the SD of the
population. Instead, you calculate the SD from the data. The presence of an
outlier increases the calculated SD. Since the presence of an outlier
increases both the numerator (difference between the value and the mean)
and denominator (SD of all values), Z does not get very large. In fact, no

matter how the data are distributed, Z can not get larger than ( ) /N N−1
where N is the number of values. For example, if N=3, Z cannot be larger
than 1.555 for any set of values.

Grubbs and others have tabulated critical values for Z, which are tabulated
below for P=0.05 (two-tail). The critical value increases with sample size,
as expected.

If your calculated value of Z is greater than the critical value in the table,
then the P value is less than 0.05. This means that there is less than a 5%
chance that you'd encounter an outlier so far from the others (in either
direction) by chance alone, if all the data were really sampled from a single
Gaussian distribution. Note that the method only works for testing the most
extreme value in the sample (if in doubt, calculate Z for all values, but only
calculate a P value for Grubbs' test from the largest value of Z).
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N Critical Z 5% N Critical Z 5%
3 1.15 27 2.86
4 1.48 28 2.88
5 1.71 29 2.89
6 1.89 30 2.91
7 2.02 31 2.92
8 2.13 32 2.94
9 2.21 33 2.95

10 2.29 34 2.97
11 2.34 35 2.98
12 2.41 36 2.99
13 2.46 37 3.00
14 2.51 38 3.01
15 2.55 39 3.03
16 2.59 40 3.04
17 2.62 50 3.13
18 2.65 60 3.20
19 2.68 70 3.26
20 2.71 80 3.31
21 2.73 90 3.35
22 2.76 100 3.38
23 2.78 110 3.42
24 2.80 120 3.44
25 2.82 130 3.47
26 2.84 140 3.49

Consult the references below for larger tables. You can also calculate an
approximate P value as follows.

1. Calculate a t ratio from N (number of values in the sample) and Z
(calculated for the suspected outlier as shown above).

t N N Z
N NZ

=
−

− −

( )
( )

2
1

2

2 2

2. Determine the P value corresponding with that value of t with N-2
degrees of freedom. Use the Excel formula =TDIST(t,df,2),
substituting values for t and df (the third parameter is 2, because you
want a two-tailed P value).

3. Multiply the P value you obtain in step 2 by N. The result is an
approximate P value for the outlier test. This P value is the chance of
observing one point so far from the others if the data were all
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sampled from a Gaussian distribution. If Z is large, this P value will
be very accurate. With smaller values of Z, the calculated P value
may be too large

The most that Grubbs' test (or any outlier test) can do is tell you that a
value is unlikely to have come from the same Gaussian population as the
other values in the group. You then need to decide what to do with that
value. I would recommend removing significant outliers from your
calculations in situations where experimental mistakes are common and
biological variability is not a possibility. When removing outliers, be sure
to document your decision. Others feel that you should never remove an
outlier unless you noticed an experimental problem. Beware of a natural
inclination to remove outliers that get in the way of the result you hope for,
but to keep outliers that enhance the result you hope for.

If you use nonparametric tests, outliers will affect the results very little so
do not need to be removed.

If you decide to remove the outlier, you then may be tempted to run
Grubbs' test again to see if there is a second outlier in your data. If you do
this, you cannot use the table shown above. Rosner has extended the
method to detecting several outliers in one sample. See the first reference
below for details.

Here are two references:

• B Iglewicz and DC Hoaglin. How to Detect and Handle Outliers
(Asqc Basic References in Quality Control, Vol 16) Amer Society for
Quality Control, 1993.

• V Barnett, T Lewis, V Rothamsted.  Outliers in Statistical Data (Wiley
Series in Probability and Mathematical Statistics. Applied Probability
and Statistics) John Wiley & Sons, 1994.
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Analyzing one group

Entering data to analyze one group
Prism can calculate descriptive statistics of a column of values, test whether
the group mean or median differs significantly from a hypothetical value,
and test whether the distribution of values differs significantly from a
Gaussian distribution. Prism can also create a frequency distribution
histogram.

When you choose a format for the data table, choose a single column of Y
values. Choose to have no X column (or choose an X column for labeling
only). Enter the values for each group into a separate Y column. If your data
table includes an X column, be sure to use it only for labels. Values you
enter into the X column will not be analyzed by the analyses discussed
here.

If you format the Y columns for entry of replicate values (for example,
triplicates), Prism first averages the replicates in each row. It then calculates
the column statistics on the means, without considering the SD or SEM of
each row. If you enter ten rows of triplicate data, the column statistics are
calculated from the ten row means, not from the 30 individual values. If
you format the Y columns for entry of mean and SD (or SEM) values, Prism
calculates column statistics for the means and ignores the SD or SEM values
you entered.

Prism provides two analyses for analyzing columns of numbers.

• Use the frequency distribution analysis to tabulate the distribution of
values in the column (and create a histogram).

• Use the column statistics analysis to compute descriptive statistics, to
test for normality, and to compare the mean (or median) of the group
against a theoretical value using a one-sample t test or the Wilcoxon
rank sum test.
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Frequency distributions
A frequency distribution shows the distribution of Y values in each data set.
The range of Y values is divided into “bins” and Prism determines how
many values fall into each bin.

Click Analyze and select built-in analyses. Then choose Frequency
Distribution from the list of statistical analyses to bring up the parameters
dialog.

Histograms generally look best when the bin width is a round number and
there are 10-20 bins. Either use the default settings, ot clear the “auto”
option to enter the center of the first bin and the width of all bins.

If you entered replicate values, Prism can either place each replicate into its
appropriate bin, or average the replicates and only place the mean into a
bin.

All values too small to fit in the first bin are omitted from the analysis. Enter
an upper limit to omit larger values from the analysis.

Select Relative frequencies to determine the fraction of values in each bin,
rather than the number of values in each bin. For example, if you have 50
data points of which 15 fall into the third bin, the results for the third bin
will be 0.30 (15/50) rather than 15.

Select Cumulative binning to see the cumulative distribution. Each bin
contains the number of values that fall within or below that bin. By
definition, the last bin contains the total number of values.
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Column statistics
From your data table, click Analyze and choose built-in analyses. Then
choose Column Statistics from the list of statistical analyses to bring up the
parameters dialog.

Choose the descriptive statistics you want to determine. Note that CI means
confidence interval.

Check "test whether the distribution is Gaussian" to perform a normality
test.

To determine whether the mean of each column differs from some
hypothetical value, choose the one-sample t test, and enter the hypothetical
value, which must come from outside this experiment. The hypothetical
value could be a value that indicates no change such as 0.0, 1.0 or 100, or
it could come from theory or previous experiments.

The one-sample t test assumes that the data are sampled from a Gaussian
distribution. The Wilcoxon rank sum test compares whether the median of
each column differs from a hypothetical value. It does not assume that the
distribution is Gaussian, but generally has less power than the one-sample t
test. Choosing between a one-sample t test and a Wilcoxon rank sum test
involves similar considerations to choosing between an unpaired t test and
the Mann-Whitney nonparametric test. See "t test or nonparametric test?"
on page 42.
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To interpret the results, see "Interpreting descriptive statistics" on page
26,"The results of normality tests" on page 29, "The results of a one-sample
t test" on page 30, or "The results of a Wilcoxon rank sum test" on page 34.

Interpreting descriptive statistics

SD and CV
The standard deviation (SD) quantifies variability. If the data follow a bell-
shaped Gaussian distribution, then 68% of the values lie within one SD of
the mean (on either side) and 95% of the values lie within two SD of the
mean. The SD is expressed in the same units as your data.

Prism calculates the SD using the equation below. (Each yi is a value, ymean

is the average, and N is sample size).

SD
y y

N
i mean=
−

−
∑ ( )2

1

The standard deviation computed this way (with a denominator of N-1) is
called the sample SD, in contrast to the population SD which would have a
denominator of N.  Why is the denominator N-1 rather than N? In the
numerator, you compute the difference between each value and the mean
of those values. You don’t know the true mean of the population; all you
know is the mean of your sample.  Except for the rare cases where the
sample mean happens to equal the population mean, the data will be
closer to the sample mean than it will be to the population mean. This
means that the numerator will be too small. So the denominator is reduced
as well. It is reduced to N-1 because that is the number of degrees of
freedom in your data. There are N-1 degrees of freedom, because you
could calculate the remaining value from N-1 of the values and the sample
mean.

The coefficient of variation (CV) equals the standard deviation divided by
the mean (expressed as a percent). Because it is a unitless ratio, you can
compare the CV of variables expressed in different units. It only makes
sense to report CV for variables where zero really means zero, such as
mass or enzyme activity. Don't calculate CV for variables, such as
temperature, where the definition of zero is somewhat arbitrary.

SEM
The standard error of the mean (SEM) is a measure of how far your sample
mean is likely to be from the true population mean. The SEM is calculated
by this equation:
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SEM SD
N

=

With large samples, the SEM is always small. By itself, the SEM is difficult
to interpret. It is easier to interpret the 95% confidence interval, which is
calculated from the SEM.

95% Confidence interval
The confidence interval quantifies the precision of the mean. The mean
you calculate from your sample of data points depends on which values
you happened to sample. Therefore, the mean you calculate is unlikely to
equal the overall population mean exactly. The size of the likely
discrepancy depends on the variability of the values (expressed as the SD)
and the sample size. Combine those together to calculate a 95%
confidence interval (95% CI), which is a range of values. You can be 95%
sure that this interval contains the true population mean. More precisely, if
you generate many 95% CIs from many data sets, you expect the CI to
include the true population mean in 95% of the cases and not to include
the true mean value in the other 5% of the cases. Since you don't know the
population mean, you'll never know when this happens.

The confidence interval extends in each direction by a distance calculated
from the standard error of the mean multiplied by a critical value from the t
distribution. This value depends on the degree of confidence you want
(traditionally 95%, but it is possible to calculate intervals for any degree of
confidence) and on the number of degrees of freedom in this experiment
(N-1). With large samples, this multiplier equals 1.96. With smaller
samples, the multiplier is larger.

Quartiles and range
Quartiles divide the data into four groups, each containing an equal
number of values. Quartiles divided by the 25th percentile, 50th percentile,
and 75th percentile. One quarter of the values are less than or equal to the
25th percentile. Three quarters of the values are less than or equal to the
75th percentile. The median is the 50th percentile.

Prism computes percentile values by first computing R= P*(N+1)/100,
where P is 25, 50 or 75 and N is the number of values in the data set. The
result is the rank that corresponds to the percentile value. If there are 68
values, the 25th percentile corresponds to a rank equal to .25*69=17.25.
So the 25th percentile lies between the value of the 17th and 18th value
(when ranked from low to high). Prism computes the 25th percentile as the
average of those two values (some programs report the value one quarter of
the way between the two).
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Geometric mean
The geometric mean is the antilog of the mean of the logarithm of the
values. It is less affected by outliers than the mean.

Which error bar should you choose?
It is easy to be confused about the difference between the standard
deviation (SD) and standard error of the mean (SEM).

The SD quantifies scatter — how much the values vary from one another.

The SEM quantifies how accurately you know the true mean of the
population. The SEM gets smaller as your samples get larger. This makes
sense, because the mean of a large sample is likely to be closer to the true
population mean than is the mean of a small sample.

The SD does not change predictably as you acquire more data. The SD
quantifies the scatter of the data, and increasing the size of the sample does
not increase the scatter. The SD might go up or it might go down. You can't
predict. On average, the SD will stay the same as sample size gets larger.

If the scatter is caused by biological variability, your probably will want to
show the variation. In this case, graph the SD rather than the SEM. You
could also instruct Prism to graph the range, with error bars extending from
the smallest to largest value. Also consider graphing every value, rather
than using error bars.

If you are using an in vitro system with no biological variability, the scatter
can only result from experimental imprecision. In this case, you may not
want to show the scatter, but instead show how well you have assessed the
mean. Graph the mean and SEM or the mean with 95% confidence
intervals.

Ideally, the choice of which error bar to show depends on the source of the
variability and the point of the experiment. In fact, many scientists always
show the mean and SEM, to make the error bars as small as possible.

Other results
For other results, see "The results of normality tests" on page 29, "The
results of a one-sample t test" on page 30, or "The results of a Wilcoxon
rank sum test" on page 34.

The results of normality tests

How the normality test works
Prism tests for deviations from Gaussian distribution using the Kolmogorov-
Smirnov (KS) test. Since the Gaussian distribution is also called the Normal
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distribution, the test is called a normality test. The KS statistic (which some
other programs call D) quantifies the discrepancy between the distribution
of your data and an ideal Gaussian distribution – larger values denoting
larger discrepancies. It is not informative by itself, but is used to compute a
P value.

Prism calculates KS using the method of Kolmogorov and Smirnov.
However, the method originally published by those investigators cannot be
used to calculate the P value because their method assumes that you know
the mean and SD of the overall population (perhaps from prior work).
When analyzing data, you rarely know the overall population mean and
SD. You only know the mean and SD of your sample. To compute the P
value, therefore, Prism uses the Dallal and Wilkinson approximation to
Lilliefors' method (Am. Statistician, 40:294-296, 1986). Since that method
is only accurate with small P values, Prism simply reports "P>0.10" for
large P values.

How to think about results from a normality test
The P value from the normality test answers this question: If you randomly
sample from a Gaussian population, what is the probability of obtaining a
sample that deviates from a Gaussian distribution as much (or more so) as
this sample does? More precisely, the P value answers this question: If the
population is really Gaussian, what is the chance that a randomly selected
sample of this size would have a KS value as large as, or larger than,
observed?

By looking at the distribution of a small sample of data, it is hard to tell
whether or not the values came from a Gaussian distribution. Running a
formal test does not make it easier. The tests simply have little power to
discriminate between Gaussian and non-Gaussian populations with small
sample sizes. How small? If you have fewer than five values, Prism doesn’t
even attempt to test for normality. But the test doesn’t really have much
power to detect deviations from Gaussian distribution unless you have
several dozen values.

Your interpretation of the results of a normality test depends on the P value
calculated by the test and on the sample size.
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P value Sample
size

Conclusion

Small
(>0.05)

Any The data failed the normality test. You can conclude
that the population is unlikely to be Gaussian.

Large Large The data passed the normality test. You can conclude
that the population is likely to be Gaussian, or nearly
so. How large does the sample have to be? There is no
firm answer, but one rule-of-thumb is that the normality
tests are only useful when your sample size is a few
dozen or more.

Large Small You will be tempted to conclude that the population is
Gaussian. But that conclusion may be incorrect. A large
P value just means that the data are not inconsistent
with a Gaussian population. That doesn't exclude the
possibility of a non-Gaussian population. Small sample
sizes simply don't provide enough data to discriminate
between Gaussian and non-Gaussian distributions. You
can't conclude much about the distribution of a
population if your sample contains fewer than a dozen
values.

The results of a one-sample t test

How a one-sample t test works
A one-sample t test compares the mean of a single column of numbers
against a hypothetical mean you entered. Prism calculates the t ratio from
this equation:

t Sample Mean Hypothetical Mean
Standard Error of Mean

=
−

A P value is computed from the t ratio and the numbers of degrees of
freedom (which equals sample size minus 1).

How to think about results from the one-sample t test
Look first at the P value, which answers this question: If the data were
sampled from a Gaussian population with a mean equal to the hypothetical
value you entered, what is the chance of randomly selecting N data points
and finding a mean as far from the hypothetical value (or further) as
observed here?
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“Statistically significant” is not the same as “scientifically important”. Before
interpreting the P value or confidence interval, you should think about the
size of the difference you are seeking. How large a difference  (between the
population mean and the hypothetical mean) would you consider to be
scientifically important? How small a difference would you consider to be
scientifically trivial? You need to use scientific judgment and common
sense to answer these questions. Statistical calculations cannot help, as the
answers depend on the context of the experiment.

You will interpret the results differently depending on whether the P value
is small or large.

If the P value is small (one-sample t test)
If the P value is small (usually defined to mean less than 0.05), then it is
unlikely that the discrepancy you observed between sample mean and
hypothetical mean is due to a coincidence arising from random sampling.
You can reject the idea that the difference is a coincidence, and conclude
instead that the population has a mean different than the hypothetical value
you entered. The difference is statistically significant. But is the difference
scientifically significant? The confidence interval helps you decide.

The true difference between population mean and hypothetical mean is
probably not the same as the difference observed in this experiment. There
is no way to know the true difference between the population mean and
the hypothetical mean. Prism presents the uncertainty as a 95% confidence
interval. You can be 95% sure that this interval contains the true difference
between the overall (population) mean and the hypothetical value you
entered.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a discrepancy that is
scientifically important or scientifically trivial.

Lower confidence
limit

Upper
confidence limit

Conclusion

Trivial Trivial Although the true difference is not
zero (since the P value is low), the
difference is tiny and uninteresting.
The data have a mean distinct from
the hypothetical value, but the
discrepancy is too small to be
scientifically interesting.
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Trivial Important Since the confidence interval ranges
from a difference that you think is
biologically trivial to one you think
would be important, you can’t reach a
strong conclusion from your data. You
can conclude that the data has a mean
distinct from the hypothetical value
you entered, but don’t know whether
that difference is scientifically trivial or
important. You’ll need more data to
obtain a clear conclusion.

Important Important Since even the low end of the
confidence interval represents a
difference large enough to be
considered biologically important, you
can conclude that the data have a
mean distinct from the hypothetical
value, and the discrepancy is large
enough to be scientifically relevant.

If the P value is large
If the P value is large, the data do not give you any reason to conclude that
the overall mean differs from the hypothetical value you entered. This is
not the same as saying that the true mean equals the hypothetical value.
You just don’t have evidence of a difference.

How large could the true difference really be?  Because of random
variation, the difference between the hypothetical mean and the sample
mean in this experiment is unlikely to be equal to the true difference
between population mean and hypothetical mean. There is no way to
know the true difference between the population mean and the
hypothetical mean. Prism presents the uncertainty as a 95% confidence
interval. You can be 95% sure that this interval contains the true difference
between the overall (population) mean of the data and the hypothetical
mean you entered. When the P value is larger than 0.05, the 95%
confidence interval will start with a negative number (the hypothetical
mean is larger than the actual mean) and go up to a positive number (the
actual mean is larger than the hypothetical mean).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent differences that would
be scientifically important or scientifically trivial.
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Lower
confidence
limit

Upper
confidence
limit

Conclusion

Trivial Trivial You can reach a crisp conclusion. Either the
data has a mean equal to the hypothetical
mean or they differ by a trivial amount.

Trivial Large You can’t reach a strong conclusion. The
data are consistent with a mean slightly
smaller than the hypothetical mean, equal to
the hypothetical mean, or larger than the
hypothetical mean, perhaps large enough to
be scientifically important.  To reach a clear
conclusion, you need to repeat the
experiment with more subjects.

Large Trivial You can’t reach a strong conclusion. The
data are consistent with a mean smaller than
the hypothetical mean (perhaps small
enough to be scientifically important), equal
to the hypothetical mean, or slightly larger
than the hypothetical mean.  You can’t
make a clear conclusion without repeating
the experiment with more subjects.

Large Large You can’t reach a strong conclusion. The
data are consistent with a mean smaller than
the hypothetical mean (perhaps small
enough to be scientifically important), equal
to the hypothetical mean, or larger than the
hypothetical mean (perhaps large enough
to be scientifically important). In other
words, you can't draw any conclusion at all.
You need to repeat the experiment with
more subjects.

Checklist. Is a one-sample t test the right test for these
data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from a one-
sample t test, ask yourself these questions:
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Question Discussion
Is the population
distributed according to a
Gaussian distribution?

The one sample t test assumes that you have sampled
your data from a population that follows a Gaussian
distribution. While this assumption is not too
important with large samples, it is important with
small sample sizes, especially when N is less than 10.
Prism tests for violations of this assumption, but
normality tests have limited utility. See"The results of
normality tests" on page 29. If your data do not come
from a Gaussian distribution, you have three options.
Your best option is to transform the values to make
the distribution more Gaussian, perhaps by
transforming all values to their reciprocals or
logarithms. Another choice is to use the Wilcoxon
rank sum nonparametric test instead of the t test. A
final option is to use the t test anyway, knowing that
the t test is fairly robust to departures from a Gaussian
distribution with large samples.

Are the “errors”
independent?

The term “error” refers to the difference between
each value and the group mean. The results of a t test
only make sense when the scatter is random – that
whatever factor caused a value to be too high or too
low affects only that one value. Prism cannot test this
assumption. See "The need for independent samples"
on page 5.

If you chose a one-tail P
value, did you predict
correctly?

If you chose a one-tail P value, you should have
predicted whether the mean of your data would be
larger than or smaller than the hypothetical mean.
Prism does not ask you to record this prediction, but
assumes that it is correct. If your prediction was
wrong, then ignore the P value reported by Prism and
state that P>0.50. See “One- vs. two-tail P values” on
page 10.

The results of a Wilcoxon rank sum test

How the Wilcoxon rank sum test works
A Wilcoxon rank sum test compares the median of a single column of
numbers against a hypothetical median you entered.

Prism follows these steps:
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1. Calculate how far each value is from the hypothetical median.

2. Ignore values that exactly equal the hypothetical value. Call the
number of remaining values N.

3. Rank these distances, paying no attention to whether the values are
higher or lower than the hypothetical value.

4. For each value that is lower than the hypothetical value, multiply the
rank by negative 1.

5. Sum the positive ranks.  Prism reports this value.

6. Sum the negative ranks. Prism also reports this value.

7. Add the two sums together. This is the sum of signed ranks, which
Prism reports as W.

If the data really were sampled from a population with the hypothetical
mean, you'd expect W to be near zero. If W (the sum of signed ranks) is far
from zero, the P value will be small. The P value answers this question:
Assuming that you randomly sample N values from a population with the
hypothetical median, what is the chance that W will be as far from zero (or
further) than you observed?

Don’t confuse the Wilcoxon rank sum test (compare one group with
hypothetical median) with the Wilcoxon matched pairs test (compare
medians of two paired groups). See “The results of a Wilcoxon matched
pairs test” on page 59.

With small samples, Prism computes an exact P value. With larger samples,
Prism uses an approximation that is quite accurate.

How to think about the results of a Wilcoxon rank sum
test
The Wilcoxon signed rank test is a nonparametric test that compares the
median of one column of numbers to a theoretical median.

Look first at the P value, which answers this question: If the data were
sampled from a population with a median equal to the hypothetical value
you entered, what is the chance of randomly selecting N data points and
finding a median as far (or further) from the hypothetical value as observed
here?

If the P value is small, you can reject the idea that the difference is a
coincidence, and conclude instead that the population has a median
distinct from the hypothetical value you entered.

If the P value is large, the data do not give you any reason to conclude that
the overall median differs from the hypothetical median. This is not the
same as saying that the medians are the same. You just have no compelling
evidence that they differ.  If you have small samples, the Wilcoxon test has
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little power. In fact, if you have five or fewer values, the Wilcoxon test will
always give a P value greater than 0.05 no matter how far the sample
median is from the hypothetical median.

Checklist. Is the Wilcoxon test right for these data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
results from a Wilcoxon test, ask yourself these questions (Prism cannot
help you answer them):

Question Discussion
Are the “errors”
independent?

The term “error” refers to the difference between each
value and the group median. The results of a Wilcoxon
test only make sense when the scatter is random – that
any factor that causes a value to be too high or too low
affects only that one value. Prism cannot test this
assumption. See “The need for independent samples” on
page 5.

Are the data clearly
sampled from a non-
Gaussian
population?

By selecting a nonparametric test, you have avoided
assuming that the data were sampled from a Gaussian
distribution. But there are drawbacks to using a
nonparametric test. If the populations really are Gaussian,
the nonparametric tests have less power (are less likely to
give you a small P value), especially with small sample
sizes. Furthermore, Prism (along with most other
programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is
clearly not bell-shaped, consider transforming the values
(perhaps with logs or reciprocals) to create a Gaussian
distribution and then using a one-sample t test.

Are the data
distributed
symmetrically?

The Wilcoxon test does not assume that the data are
sampled from a Gaussian distribution.  However it does
assume that the data are distributed symmetrically around
their median.

If you chose a one-
tail P value, did you
predict correctly?

If you chose a one-tail P value, you should have predicted
which group has the larger median before collecting data.
Prism does not ask you to record this prediction, but
assumes it is correct. If your prediction was wrong, ignore
the P value reported by Prism and state that P>0.50. See
“One- vs. two-tail P values” on page 10.



 Analyzing one group 37 www.graphpad.com

Row means and totals
If you enter data with replicate Y values, Prism will automatically graph
mean and SD (or SEM). You don’t have to choose any analyses. Use
settings on the Symbols dialog (double-click on any symbol to see it) to plot
individual points or to choose SD, SEM, 95%CI or range error bars.

To view a table of mean and SD (or SEM) values, use the Row Means or
Totals analysis. Click Analyze and choose built-in analyses. Then choose
Row means and totals from the list of data manipulations to bring up this
dialog.

First, decide on the scope of the calculations. If you have entered more
than one data set in the table, you have two choices. Most often, you’ll
calculate a row total/mean for each data set. The results table will have the
same number of data sets as the input table. The other choice is to calculate
one row total/mean for the entire table. The results table will then have a
single data set containing the grand totals or means.

Then decide what to calculate: row totals, row means with SD or row
means with SEM. To review the difference between SD and SEM see
"Interpreting descriptive statistics" on page 26.
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t tests and nonparametric
comparisons

Introduction to comparing of two groups
Prism can compare two groups with a paired or unpaired t test, or with the
nonparametric Mann-Whitney or Wilcoxon matched pairs test. These tests
compare measurements (continuous variables) such as weight, enzyme
activity, or receptor number. To compare two proportions see
“Contingency tables” on page 121. To compare survival curves, see
“Survival curves” on page 109.

Entering data to compare two groups with a t test (or
a nonparametric test)

Enter the data into two Y columns (data sets). Format the data table for
single columns of Y values and no X column (since X values are ignored by
the t test analysis). The two groups do not have be the same size (its ok to
leave some cells empty).

If you have already averaged your data, format the data table for mean, SD
(or SEM) and N. With this format, you can't pick nonparametric or paired
tests which require raw data. Enter data on only one row.
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Indexed data
Many statistics programs expect you to enter data in an indexed format, as
shown below. One column contains all the data, and the other column
designates the group. Prism cannot analyze data entered in index format.
However Prism can import indexed or stacked data. Read the chapter on
importing data in the Prism User's Guide.

Group Value
1 34

1 43

1 39

2 45

2 47

2 52

Advantages of transforming the data first
Before comparing two data sets, consider whether you should first
transform the values. The t test depends on the assumption that your data
are sampled from populations that follow a Gaussian distribution. If your
data do not follow a Gaussian (normal) distribution, you may be able to
transform the values to create a Gaussian distribution. This table shows
some common normalizing transformations:

Type of data and distribution Normalizing transform
Count (C comes from a Poisson distribution) C

Proportion (P comes from a binomial
distribution)

Arcsine P

Measurement (M comes from a lognormal
distribution)

Log(M)

Time or duration (D) 1
D

If you know the distribution of your population, transforming the values to
create a Gaussian distribution is a good thing to do. A normalizing
transform will add power to your analyses. If you cannot transform your
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data to create a Gaussian distribution, choose a nonparametric test. See
"Paired or unpaired test" on page 41.

Choosing an analysis to compare two groups
Go to the data or results table you wish to analyze (see "Entering data to
compare two groups with a t test (or a nonparametric test)" on page 39).
Press the Analyze button, and choose built-in analyses. Then select t tests
from the Statistical Analyses section. If your table has more than two
columns, select the two columns you wish to compare. (If you want to
compare three or more columns, see “One-way ANOVA and
nonparametric comparisons” on page 65.  Press ok from the Analyze dialog
to bring up the parameters dialog for t tests and related nonparametric tests:

Paired or unpaired test?
When choosing a test, you need to decide whether to use a paired test.
Choose a paired test when the two columns of data are matched. Here are
some examples:

• You measure a variable (perhaps, weight) before an intervention, and
then measure it in the same subjects after the intervention.

• You recruit subjects as pairs, matched for variables such as age,
ethnic group and disease severity. One of the pair gets one treatment,
the other gets an alternative treatment.

• You run a laboratory experiment several times, each time with a
control and treated preparation handled in parallel.

• You measure a variable in twins, or child/parent pairs.
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More generally, you should select a paired test whenever you expect a
value in one group to be closer to a particular value in the other group than
to a randomly selected value in the other group.

Ideally, the decision about paired analyses should be made before the data
are collected. Certainly the matching should not be based on the variable
you are comparing. If you are comparing blood pressures in two groups, it
is ok to match based on age or zip code, but it is not ok to match based on
blood pressure.

t test or nonparametric test?
The t test, like many statistical tests, assumes that you have sampled data
from populations that follow a Gaussian bell-shaped distribution. Biological
data never follow a Gaussian distribution precisely, because a Gaussian
distribution extends infinitely in both directions, and so it includes both
infinitely low negative numbers and infinitely high positive numbers! But
many kinds of biological data follow a bell-shaped distribution that is
approximately Gaussian. Because ANOVA, t tests and other statistical tests
work well even if the distribution is only approximately Gaussian
(especially with large samples), these tests are used routinely in many fields
of science.

An alternative approach does not assume that data follow a Gaussian
distribution. In this approach, values are ranked from low to high and the
analyses are based on the distribution of ranks. These tests, called
nonparametric tests, are appealing because they make fewer assumptions
about the distribution of the data. But there is a drawback. Nonparametric
tests are less powerful than the parametric tests that assume Gaussian
distributions. This means that P values tend to be higher, making it harder
to detect real differences as being statistically significant. With large
samples, the difference in power is minor. With small samples,
nonparametric tests have little power to detect differences.

You may find it difficult to decide when to select nonparametric tests. You
should definitely choose a nonparametric test in these situations:

• The outcome variable is a rank or score with only a few categories.
Clearly the population is far from Gaussian in these cases.

• One, or a few, values are off scale, too high or too low to measure.
Even if the population is Gaussian, it is impossible to analyze these
data with a t test. Using a nonparametric test with these data is easy.
Assign an arbitrary low value to values that are too low to measure,
and an arbitrary high value to values too high to measure. Since the
nonparametric tests only consider the relative ranks of the values, it
won’t matter that you didn’t know one (or a few) of the values
exactly.
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• You are sure that the population is far from Gaussian. Before
choosing a nonparametric test, consider transforming the data (i.e. to
logarithms, reciprocals). Sometimes a simple transformation will
convert non-Gaussian data to a Gaussian distribution. See
“Advantages of transforming the data first” on page 40.

In many situations, perhaps most, you will find it difficult to decide
whether to select nonparametric tests. Remember that the Gaussian
assumption is about the distribution of the overall population of values, not
just the sample you have obtained in this particular experiment. Look at the
scatter of data from previous experiments that measured the same variable.
Also consider the source of the scatter. When variability is due to the sum
of numerous independent sources, with no one source dominating, you
expect a Gaussian distribution.

Prism performs normality testing in an attempt to determine whether data
were sampled from a Gaussian distribution, but normality testing is less
useful than you might hope (see "The results of normality" on page 29).
Normality testing doesn’t help if you have fewer than a few dozen (or so)
values.

Your decision to choose a parametric or nonparametric test matters the
most when samples are small for reasons summarized here:

Large samples
 (> 100 or so)

Small samples
(<12 or so)

Parametric tests Robust. P value will be nearly
correct even if population is
fairly far from Gaussian.

Not robust. If the population
is not Gaussian, the P value
may be misleading.

Nonparametric test Powerful. If the population is
Gaussian, the P value will be
nearly identical to the P value
you would have obtained
from a parametric test. With
large sample sizes,
nonparametric tests are almost
as powerful as parametric
tests.

Not powerful.  If the
population is Gaussian, the P
value will be higher than the
P value obtained from a t
test. With very small
samples, it may be
impossible for the P value to
ever be less than 0.05, no
matter how the values differ.
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Normality test Useful. Use a normality test to
determine whether the data
are sampled from a Gaussian
population.

Not very useful. Little power
to discriminate between
Gaussian and non-Gaussian
populations. Small samples
simply don't contain enough
information to let you make
inferences about the shape of
the distribution in the entire
population.

Assume equal variances?
The unpaired t test assumes that the two populations have the same
variances. Since the variance equals the standard deviation squared, this
means that the populations have the same standard deviation). A
modification of the t test (developed by Welch) can be used when you are
unwilling to make that assumption. Check the box for Welch's correction if
you want this test.

This choice is only available for the unpaired t test. With Welch's t test, the
degrees of freedom are calculated from a complicated equation and the
number is not obviously related to sample size.

Welch's t test is used rarely. Don't select it without good
reason.

One- or two-tail P value?
If you are comparing two groups, you need to decide whether you want
Prism to calculate a one-tail or two-tail P value. To understand the
difference, see “One- vs. two-tail P values” on page 10.

You should only choose a one-tail P value when:

• You predicted which group would have the larger mean (if the means
are in fact different) before collecting any data.

• You will attribute a difference in the wrong direction (the other group
ends up with the larger mean), to chance, no matter how large the
difference.

Since those conditions are rarely met, two-tail P values are usually more
appropriate.

Confirm test selection
Based on your choices, Prism will show you the name of the test you
selected.
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Test Paired Nonparametric Unequal variances
Unpaired t test No No No

Welch's t test No No Yes

Paired t test Yes No N/A

Mann-Whitney test No Yes N/A

Wilcoxon test Yes Yes N/A

Results
For help interpreting the results, see "The results of an unpaired t test" on
page 45, "The results of a paired t test" on page 51, "The results of a Mann-
Whitney test" on page 57, or "The results of a Wilcoxon matched pairs test"
on page 59.

The results of an unpaired t test

How the unpaired t test works
To calculate a P value for an unpaired t test, Prism first computes a t ratio.
The t ratio is the difference between sample means divided by the standard
error of the difference, calculated by pooling the SEMs of the two groups. If
the difference is large compared to the SE of the difference, then the t ratio
will be large (or a large negative number), and the P value is small. The
sign of the t ratio tells you only which group had the larger mean. The P
value is derived from the absolute value of t.

For the standard t test, the number of degrees of freedom (df) equals the
total sample size minus 2. Welch’s t test (a rarely used test which doesn't
assume equal variances) calculates df from a complicated equation. Prism
calculates the P value from t and df.

A standard t test assumes the two groups have equal variances. To test this
assumption, Prism calculates the variance of each group (the variance
equals the standard deviation squared) and then calculates F, which equals
the larger variance divided by the smaller variance. The degrees of freedom
for the numerator and denominator equal the sample sizes minus 1. From F
and the two df values, Prism computes a P value that answers this question:
If the two populations really have the same variance, what is the chance
that you’d randomly select samples and end up with F as large (or larger) as
observed in your experiment. If the P value is small, conclude that the
variances (and thus the standard deviations) are significantly different.
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Don’t base your conclusion just on this one F test. Also consider data from
other experiments in the series. If you conclude that the two populations
really do have different variances, you have three choices:

• Conclude that the two populations are different – that the treatment
had an effect. In many experimental contexts, the finding of different
variances is as important as the finding of different means. If the
variances are truly different, then the populations are different
regardless of what the t test concludes about differences between the
means. This may be the most important conclusion from the
experiment.

• Transform the data to equalize the variances, then rerun the t test.
You may find that converting values to their reciprocals or logarithms
will equalize the variances and also make the distributions more
Gaussian. See “Advantages of transforming the data first” on page 40.

• Rerun the t test without assuming equal variances using Welch’s
modified t test.

How to think about results from an unpaired t test
The unpaired t test compares the means of two groups, assuming that data
are sampled from Gaussian populations. The most important results are the
P value and the confidence interval.

The P value answers this question: If the populations really have the same
mean, what is the chance that random sampling would result in means as
far apart (or more so) than observed in this experiment?

“Statistically significant” is not the same as “scientifically important”. Before
interpreting the P value or confidence interval, you should think about the
size of the difference you are looking for. How large a difference would
you consider to be scientifically important? How small a difference would
you consider to be scientifically trivial? Use scientific judgment and
common sense to answer these questions. Statistical calculations cannot
help, as the answers depend on the context of the experiment.

You will interpret the results differently depending on whether the P value
is small or large.

If the P value is small
If the P value is small, then it is unlikely that the difference you observed is
due to a coincidence of random sampling. You can reject the idea that the
difference is a coincidence, and conclude instead that the populations have
different means. The difference is statistically significant, but is it
scientifically important? The confidence interval helps you decide.

Because of random variation, the difference between the group means in
this experiment is unlikely to equal the true difference between population
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means. There is no way to know what that true difference is. Prism presents
the uncertainty as a 95% confidence interval. You can be 95% sure that
this interval contains the true difference between the two means.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.

Lower confidence
limit

Upper
confidence
limit

Conclusion

Trivial difference Trivial difference Although the true difference is not zero
(since the P value is low) the true
difference between means is tiny and
uninteresting. The treatment had an effect,
but a small one.

Trivial difference Important
difference

Since the confidence interval ranges from
a difference that you think would be
biologically trivial to one you think would
be important, you can’t reach a strong
conclusion. You can conclude that the
means are different, but you don’t know
whether the size of that difference is
scientifically trivial or important. You’ll
need more data to obtain a clear
conclusion.

Important
difference

Important
difference

Since even the low end of the confidence
interval represents a difference large
enough to be considered biologically
important, you can conclude that there is
a difference between treatment means
and that the difference is large enough to
be scientifically relevant.

If the P value is large
If the P value is large, the data do not give you any reason to conclude that
the overall means differ. Even if the true means were equal, you would not
be surprised to find means this far apart just by coincidence. This is not the
same as saying that the true means are the same. You just don’t have
convincing evidence that they differ.

How large could the true difference really be?  Because of random
variation, the difference between the group means in this experiment is
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unlikely to be equal to the true difference between population means.
There is no way to know what that true difference is. Prism presents the
uncertainty as a 95% confidence interval. You can be 95% sure that this
interval contains the true difference between the two means. When the P
value is larger than 0.05, the 95% confidence interval will start with a
negative number (representing a decrease) and go up to a positive number
(representing an increase).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.

Lower
confidence
limit

Upper
confidence
limit

Conclusion

Trivial decrease Trivial increase You can reach a crisp conclusion. Either the
means really are the same or they differ by a
trivial amount. At most, the true difference
between means is tiny and uninteresting.

Trivial decrease Large increase You can’t reach a strong conclusion. The
data are consistent with the treatment
causing a trivial decrease, no change, or an
increase that might be large enough to be
important. To reach a clear conclusion, you
need to repeat the experiment with more
subjects.

Large decrease Trivial increase You can’t reach a strong conclusion. The
data are consistent with a trivial increase, no
change, or a decrease that may be large
enough to be important. You can’t make a
clear conclusion without repeating the
experiment with more subjects.

Large decrease Large increase You can’t conclude anything until you
repeat the experiment with more subjects.

Checklist. Is an unpaired t test the right test for these
data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from an
unpaired t test, ask yourself the questions below. Prism can help you
answer the first two questions. You'll have to answer the others based on
experimental design.
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Question Discussion
Are the populations
distributed according
to a Gaussian
distribution?

The unpaired t test assumes that you have sampled your
data from populations that follow a Gaussian distribution.
While this assumption is not too important with large
samples, it is important with small sample sizes (especially
with unequal sample sizes). Prism tests for violations of
this assumption, but normality tests have limited utility.
See "The results of normality" on page 29. If your data do
not come from Gaussian distributions, you have three
options. Your best option is to transform the values to
make the distributions more Gaussian (See “Advantages of
transforming the data first” on page 40). Another choice is
to use the Mann-Whitney nonparametric test instead of
the t test. A final option is to use the t test anyway,
knowing that the t test is fairly robust to violations of a
Gaussian distribution with large samples.

Do the two
populations have the
same variances?

The unpaired t test assumes that the two populations have
the same variances (and thus the same standard deviation).

Prism tests for equality of variance with an F test. The P
value from this test answers this question: If the two
populations really have the same variance, what is the
chance that you’d randomly select samples whose ratio of
variances is as far from 1.0 (or further) as observed in your
experiment. A small P value suggests that the variances
are different.

Don’t base your conclusion solely on the F test. Also think
about data from other similar experiments. If you have
plenty of previous data that convinces you that the
variances are really equal, ignore the F test (unless the P
value is really tiny) and interpret the t test results as usual.

In some contexts, finding that populations have different
variances may be as important as finding different means.

Are the data
unpaired?

The unpaired t test works by comparing the difference
between means with the pooled standard deviations of the
two groups. If the data are paired or matched, then you
should choose a paired t test instead. If the pairing is
effective in controlling for experimental variability, the
paired t test will be more powerful than the unpaired test.
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Are the “errors”
independent?

The term “error” refers to the difference between each
value and the group mean. The results of a t test only
make sense when the scatter is random – that whatever
factor caused a value to be too high or too low affects only
that one value. Prism cannot test this assumption. You
must think about the experimental design. For example,
the errors are not independent if you have six values in
each group, but these were obtained from two animals in
each group (in triplicate). In this case, some factor may
cause all triplicates from one animal to be high or low.
See “The need for independent samples” on page 5.

Are you comparing
exactly two groups?

Use the t test only to compare two groups. To compare
three or more groups, use one-way ANOVA followed by
post tests. It is not appropriate to perform several t tests,
comparing two groups at a time. Making multiple
comparisons increases the chance of finding a statistically
significant difference by chance and makes it difficult to
interpret P values and statements of statistical significance.

Do both columns
contain data?

If you want to compare a single set of experimental data
with a theoretical value (perhaps 100%) don’t fill a
column with that theoretical value and perform an
unpaired t test.  Instead, use a one-sample t test. See “The
results of a one-sample t test” on page 30.

Do you really want to
compare means?

The unpaired t test compares the means of two groups. It
is possible to have a tiny P value – clear evidence that the
population means are different – even if the two
distributions overlap considerably. In some situations – for
example, assessing the usefulness of a diagnostic test –
you may be more interested in the overlap of the
distributions than in differences between means.

If you chose a one-tail
P value, did you
predict correctly?

If you chose a one-tail P value, you should have predicted
which group would have the larger mean before
collecting any data. Prism does not ask you to record this
prediction, but assumes that it is correct. If your prediction
was wrong, then ignore the P value reported by Prism and
state that P>0.50. See “One- vs. two-tail P values” on
page 10.
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The results of a paired t test

How a paired t test works
The paired t test compares two paired groups. It calculates the difference
between each set of pairs, and analyzes that list of differences based on the
assumption that the differences in the entire population follow a Gaussian
distribution.

First Prism calculates the difference between each set of pairs, keeping
track of sign. If the value in column B is larger, then the difference is
positive. If the value in column A is larger, then the difference is negative.
The t ratio for a paired t test is the mean of these differences divided by the
standard error of the differences. If the t ratio is large (or is a large negative
number), the P value will be small. The number of degrees of freedom
equals the number of pairs minus 1. Prism calculates the P value from the t
ratio and the number of degrees of freedom.

Test for adequate pairing
The whole point of using a paired experimental design and a paired test is
to control for experimental variability. Some factors you don’t control in
the experiment will affect the before and the after measurements equally,
so they will not affect the difference between before and after. By analyzing
only the differences, therefore, a paired test corrects for those sources of
scatter.

If pairing is effective, you expect the before and after measurements to vary
together. Prism quantifies this by calculating the Pearson correlation
coefficient, r. (See “Correlation coefficient” on page 137.) From r, Prism
calculates a P value that answers this question: If the two groups really are
not correlated at all, what is the chance that randomly selected subjects
would have a correlation coefficient as large (or larger) as observed in your
experiment? The P value has one-tail, as you are not interested in the
possibility of observing a strong negative correlation.

If the pairing was effective, r will be positive and the P value will be small.
This means that the two groups are significantly correlated, so it made
sense to choose a paired test.

If the P value is large (say larger than 0.05), you should question whether it
made sense to use a paired test. Your choice of whether to use a paired test
or not should not be based on this one P value, but also on the
experimental design and the results you have seen in other similar
experiments.

If r is negative, it means that the pairing was counterproductive! You expect
the values of the pairs to move together – if one is higher, so is the other.
Here the opposite is true – if one has a higher value, the other has a lower
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value. Most likely this is just a matter of chance. If r is close to -1, you
should review your experimental design, as this is a very unusual result.

How to think about results of a paired t test
The paired t test compares two paired groups so you can make inferences
about the size of the average treatment effect (average difference between
the paired measurements). The most important results are the P value and
the confidence interval.

The P value answers this question: If the treatment really had no effect,
what is the chance that random sampling would result in an average effect
as far from zero (or more so) as observed in this experiment?

“Statistically significant” is not the same as “scientifically important”. Before
interpreting the P value or confidence interval, you should think about the
size of the treatment effect you are looking for. How large a difference
would you consider to be scientifically important? How small a difference
would you consider to be scientifically trivial? Use scientific judgment and
common sense to answer these questions. Statistical calculations cannot
help, as the answers depend on the context of the experiment.

You will interpret the results differently depending on whether the P value
is small or large.

If the P value is small
If the P value is small, then it is unlikely that the treatment effect you
observed is due to a coincidence of random sampling. You can reject the
idea that the treatment does nothing, and conclude instead that the
treatment had an effect. The treatment effect is statistically significant. But is
it scientifically significant? The confidence interval helps you decide.

Random scatter affects your data, so the true average treatment effect is
probably not the same as the average of the differences observed in this
experiment. There is no way to know what that true effect is. Prism
presents the uncertainty as a 95% confidence interval. You can be 95%
sure that this interval contains the true treatment effect (the true mean of
the differences between paired values).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.
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Lower
confidence limit

Upper
confidence
limit

Conclusion

Trivial difference Trivial
difference

Although the true effect is not zero (since
the P value is low) it is tiny and
uninteresting. The treatment had an effect,
but a small one.

Trivial difference Important
difference

Since the confidence interval ranges from a
difference that you think are biologically
trivial to one you think would be
important, you can’t reach a strong
conclusion from your data. You can
conclude that the treatment had an effect,
but you don’t know whether it is
scientifically trivial or important. You’ll
need more data to obtain a clear
conclusion.

Important
difference

Important
difference

Since even the low end of the confidence
interval represents a treatment effect large
enough to be considered biologically
important, you can conclude that the
treatment had an effect large enough to be
scientifically relevant.

If the P value is large
If the P value is large, the data do not give you any reason to conclude that
the treatment had an effect. This is not the same as saying that the treatment
had no effect. You just don’t have evidence of an effect.

How large could the true treatment effect really be?  The average difference
between pairs in this experiment is unlikely to equal the true average
difference between pairs (because of random variability). There is no way
to know what that true difference is. Prism presents the uncertainty as a
95% confidence interval. You can be 95% sure that this interval contains
the true treatment effect. When the P value is larger than 0.05, the 95%
confidence interval will start with a negative number (representing a
decrease) and go up to a positive number (representing an increase).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.
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Lower
confidence
limit

Upper
confidence
limit

Conclusion

Trivial decrease Trivial increase You can reach a crisp conclusion. Either the
treatment has no effect or a tiny one.

Trivial decrease Large increase You can’t reach a strong conclusion. The data
are consistent with the treatment causing a
trivial decrease, no change, or an increase that
may be large enough to be important. To
reach a clear conclusion, you need to repeat
the experiment with more subjects.

Large decrease Trivial increase You can’t reach a strong conclusion. The data
are consistent with a trivial increase, no
change, or a decrease that may be large
enough to be important. You can’t make a
clear conclusion without repeating the
experiment with more subjects.

Large decrease Large increase You can’t reach any conclusion.

Checklist. Is the paired t test the right test for these
data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from a
paired t test, ask yourself these questions. Prism can help you answer the
first two questions listed below. You'll have to answer the others based on
experimental design.

Question Discussion
Are the differences
distributed according
to a Gaussian
distribution?

The paired t test assumes that you have sampled your
pairs of values from a population of pairs where the
difference between pairs follows a Gaussian distribution.
While this assumption is not too important with large
samples, it is important with small sample sizes. Prism
tests for violations of this assumption, but normality tests
have limited utility. If your data do not come from
Gaussian distributions, you have two options. Your best
option is to transform the values to make the
distributions more Gaussian (see “Advantages of
transforming the data first” on page 40).

Another choice is to use the Wilcoxon matched pairs
nonparametric test instead of the t test.
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Was the pairing
effective?

The pairing should be part of the experimental design
and not something you do after collecting data. Prism
tests the effectiveness of pairing by calculating the
Pearson correlation coefficient, r, and a corresponding P
value. See "Correlation coefficient" on page 137. If r is
positive and P is small, the two groups are significantly
correlated. This justifies the use of a paired test.

If this P value is large (say larger than 0.05), you should
question whether it made sense to use a paired test.
Your choice of whether to use a paired test or not should
not be based on this one P value, but also on the
experimental design and the results you have seen in
other similar experiments.

Are the pairs
independent?

The results of a paired t test only make sense when the
pairs are independent – that whatever factor caused a
difference (between paired values) to be too high or too
low affects only that one pair. Prism cannot test this
assumption. You must think about the experimental
design. For example, the errors are not independent if
you have six pairs of values, but these were obtained
from three animals, with duplicate measurements in
each animal. In this case, some factor may cause the
after-before differences from one animal to be high or
low. This factor would affect two of the pairs, so they are
not independent. See "The need for independent
samples" on page 5.

Are you comparing
exactly two groups?

Use the t test only to compare two groups. To compare
three or more matched groups, use repeated measures
one-way ANOVA followed by post tests. It is not
appropriate to perform several t tests, comparing two
groups at a time.

If you chose a one-tail
P value, did you
predict correctly?

If you chose a one-tail P value, you should have
predicted which group would have the larger mean
before collecting data. Prism does not ask you to record
this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value
and state that P>0.50. See “One- vs. two-tail P values”
on page 10.
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Do you care about
differences or ratios?

The paired t test analyzes the differences between pairs.
With some experiments, you may observe a very large
variability among the differences. The differences are
larger when the control value is larger. With these data,
you’ll get more consistent results if you look at the ratio
(treated/control) rather than the difference (treated –
control). See below.

Ratio t tests
The paired t test analyzes the differences between pairs. With some kinds
of data, you may observe a very large variability among the differences.
The differences are larger when the control value is larger. With these data,
you’ll get more consistent results if you look at the ratio (treated/control)
rather than the difference (treated – control).

Analyzing ratios can lead to problems because ratios are intrinsically
asymmetric – all decreases are expressed as ratios between zero and one;
all increases are expressed as ratios greater than 1.0. Instead it makes more
sense to look at the logarithm of ratios. Then no change is zero (the
logarithm of 1.0), increases are positive and decreases are negative. Note
that the logarithm of the ratio Treated/Control equals log(treated) minus
log(control). This makes it easy to perform a ratio t test with Prism.

If you have paired data and think that it makes more sense to look at ratios
rather than differences, follow these steps.

1. Transform both columns to logarithms.

2. Click analyze and perform a paired t test.

3. Interpret the P value: If there really were no differences between
control and treated values, what is the chance of obtaining a ratio as
far from 1.0 as was observed?

4. Prism also reports the confidence interval of the difference, which
equals the confidence interval of the log(ratio). Take the antilog of
each end of the interval (with a calculator) to compute the 95%
confidence interval of the ratio.

The results of a Mann-Whitney test

How the Mann-Whitney test works
The Mann-Whitney test, also called the rank sum test, is a nonparametric
test that compares two unpaired groups. To perform the Mann-Whitney
test, Prism first ranks all the values from low to high, paying no attention to
which group each value belongs. If two values are the same, then they both
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get the average of the two ranks for which they tie. The smallest number
gets a rank of 1. The largest number gets a rank of N, where N is the total
number of values in the two groups. Prism then sums the ranks in each
group, and reports the two sums. If the sums of the ranks are very different,
the P value will be small.

The P value answers this question: If the populations really have the same
median, what is the chance that random sampling would result in a sum of
ranks as far apart (or more so) as observed in this experiment?

If your samples are small, and there are no ties, Prism calculates an exact P
value. If your samples are large, or if there are ties, it approximates the P
value from a Gaussian approximation. Here, the term Gaussian has to do
with the distribution of sum of ranks, and does not imply that your data
need to follow a Gaussian distribution. The approximation is quite accurate
with large samples, and is standard (used by all statistics programs).

How to think about the results of a Mann-Whitney test
The Mann-Whitney test is a nonparametric test to compare two unpaired
groups. The key result is a P value that answers this question: If the
populations really have the same median, what is the chance that random
sampling would result in medians as far apart (or more so) as observed in
this experiment?

If the P value is small, you can reject the idea that the difference is a
coincidence, and conclude instead that the populations have different
medians.

If the P value is large, the data do not give you any reason to conclude that
the overall medians differ. This is not the same as saying that the medians
are the same. You just have no compelling evidence that they differ.  If you
have small samples, the Mann-Whitney test has little power. In fact, if the
total sample size is seven or less, the Mann-Whitney test will always give a
P value greater than 0.05 no matter how much the groups differ.

Checklist. Is the Mann-Whitney test the right test for
these data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
results from a Mann-Whitney test, ask yourself these questions (Prism
cannot help you answer them):
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Question Discussion
Are the “errors”
independent?

The term “error” refers to the difference between each value
and the group median. The results of a Mann-Whitney test
only make sense when the scatter is random – that whatever
factor caused a value to be too high or too low affects only
that one value. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors
are not independent if you have six values in each group, but
these were obtained from two animals in each group (in
triplicate). In this case, some factor may cause all triplicates
from one animal to be high or low. See “The need for
independent samples” on page 5.

Are the data unpaired? The Mann-Whitney test works by ranking all the values from
low to high, and comparing the mean rank in the two groups.
If the data are paired or matched, then you should choose a
Wilcoxon matched pairs test instead.

Are you comparing
exactly two groups?

Use the Mann-Whitney test only to compare two groups. To
compare three or more groups, use the Kruskal-Wallis test
followed by post tests. It is not appropriate to perform several
Mann-Whitney (or t) tests, comparing two groups at a time.

Are the shapes of the
two distributions
identical?

The Mann-Whitney test does not assume that the populations
follow Gaussian distributions. But it does assume that the
shape of the two distributions is identical. The medians may
differ – that is what you are testing for – but the test assumes
that the shape of the two distributions is identical. If two
groups have very different distributions, transforming the data
may make the distributions more similar.

Do you really want to
compare medians?

The Mann-Whitney test compares the medians of two groups.
It is possible to have a tiny P value – clear evidence that the
population medians are different – even if the two
distributions overlap considerably.

If you chose a one-tail
P value, did you
predict correctly?

If you chose a one-tail P value, you should have predicted
which group would have the larger median before collecting
any data. Prism does not ask you to record this prediction, but
assumes that it is correct. If your prediction was wrong, then
ignore the P value reported by Prism and state that P>0.50.
See “One- vs. two-tail P values” on page 10.
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Are the data sampled
from non-Gaussian
populations?

By selecting a nonparametric test, you have avoided assuming
that the data were sampled from Gaussian distributions. But
there are drawbacks to using a nonparametric test. If the
populations really are Gaussian, the nonparametric tests have
less power (are less likely to give you a small P value),
especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence
intervals when calculating nonparametric tests. If the
distribution is clearly not bell-shaped, consider transforming
the values to create a Gaussian distribution and then using a t
test.

The results of a Wilcoxon matched pairs test

How the Wilcoxon matched pairs test works
The Wilcoxon test is a nonparametric test that compares two paired groups.
It calculates the difference between each set of pairs, and analyzes that list
of differences. The P value answers this question: If the median difference
in the entire population is zero (the treatment is ineffective), what is the
chance that random sampling would result in a median as far from zero (or
further) as observed in this experiment?

In calculating the Wilcoxon test, Prism first computes the differences
between each set of pairs, and ranks the absolute values of the differences
from low to high. Prism then sums the ranks of the differences where
column A was higher (positive ranks), sums the ranks where column B was
higher (it calls these negative ranks), and reports the two sums. If the two
sums of ranks are very different, the P value will be small. The P value
answers this question: If the treatment really had no effect overall, what is
the chance that random sampling would lead to a sum of ranks as far apart
(or more so) as observed here?

If your samples are small and there are no tied ranks, Prism calculates an
exact P value. If your samples are large or there are tied ranks, it calculates
the P value from a Gaussian approximation. The term Gaussian, as used
here, has to do with the distribution of sum of ranks, and does not imply
that your data need to follow a Gaussian distribution.

Test for effective pairing
The whole point of using a paired test is to control for experimental
variability. Some factors you don’t control in the experiment will affect the
before and the after measurements equally, so they will not affect the
difference between before and after. By analyzing only the differences,
therefore, a paired test corrects for these sources of scatter.
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If pairing is effective, you expect the before and after measurements to vary
together. Prism quantifies this by calculating the nonparametric Spearman
correlation coefficient, rs. From rs, Prism calculates a P value that answers
this question: If the two groups really are not correlated at all, what is the
chance that randomly selected subjects would have a correlation
coefficient as large (or larger) as observed in your experiment. Here the P
value is one-tail, as you are not interested in the possibility of observing a
strong negative correlation.

If the pairing was effective, rs will be positive and the P value will be small.
This means that the two groups are significantly correlated, so it made
sense to choose a paired test.

If the P value is large (say larger than 0.05), you should question whether it
made sense to use a paired test. Your choice of whether to use a paired test
or not should not be based on this one P value, but also on the
experimental design and the results you have seen in other similar
experiments (assuming you have repeated the experiments several times).

If rs is negative, it means that the pairing was counter productive! You
expect the values of the pairs to move together – if one is higher, so is the
other. Here the opposite is true – if one has a higher value, the other has a
lower value. Most likely this is just a matter of chance. If rs is close to -1,
you should review your procedures, as the data are unusual.

How to think about the results of a Wilcoxon matched
pairs test
The Wilcoxon matched pairs test is a nonparametric test to compare two
paired groups. It is also called the Wilcoxon matched pairs signed ranks
test.

The Wilcoxon test analyzes only the differences between the paired
measurements for each subject. The P value answers this question: If the
median difference really is zero overall, what is the chance that random
sampling would result in a median difference as far from zero (or more so)
as observed in this experiment?

If the P value is small, you can reject the idea that the difference is a
coincidence, and conclude instead that the populations have different
medians.

If the P value is large, the data do not give you any reason to conclude that
the overall medians differ. This is not the same as saying that the means are
the same. You just have no compelling evidence that they differ.  If you
have small samples, the Wilcoxon test has little power to detect small
differences.
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Checklist. Is the Wilcoxon test the right test for these
data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
results from a Wilcoxon matched pairs test, ask yourself these questions:

Question Discussion
Are the pairs
independent?

The results of a Wilcoxon test only make sense when
the pairs are independent – that whatever factor
caused a difference (between paired values) to be too
high or too low affects only that one pair. Prism cannot
test this assumption. You must think about the
experimental design. For example, the errors are not
independent if you have six pairs of values, but these
were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor
may cause the after-before differences from one animal
to be high or low. This factor would affect two of the
pairs (but not the other four), so these two are not
independent. See "The need for independent samples"
on page 5.

Is the pairing effective? The whole point of using a paired test is to control for
experimental variability, and thereby increase power.
Some factors you don’t control in the experiment will
affect the before and the after measurements equally,
so will not affect the difference between before and
after. By analyzing only the differences, therefore, a
paired test controls for some of the sources of scatter.

The pairing should be part of the experimental design
and not something you do after collecting data. Prism
tests the effectiveness of pairing by calculating the
Spearman correlation coefficient, rs, and a
corresponding P value. See “Results of correlation” on
page 137. If rs is positive and P is small, the two groups
are significantly correlated. This justifies the use of a
paired test.

If the P value is large (say larger than 0.05), you should
question whether it made sense to use a paired test.
Your choice of whether to use a paired test or not
should not be based solely on this one P value, but
also on the experimental design and the results you
have seen in other similar experiments.
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Are you comparing
exactly two groups?

Use the Wilcoxon test only to compare two groups. To
compare three or more matched groups, use the
Friedman test followed by post tests. It is not
appropriate to perform several Wilcoxon tests,
comparing two groups at a time.

If you chose a one-tail P
value, did you predict
correctly?

If you chose a one-tail P value, you should have
predicted which group would have the larger median
before collecting any data. Prism does not ask you to
record this prediction, but assumes that it is correct. If
your prediction was wrong, then ignore the P value
reported by Prism and state that P>0.50. See “One-
vs. two-tail P values” on page 10.

Are the data clearly
sampled from non-
Gaussian populations?

By selecting a nonparametric test, you have avoided
assuming that the data were sampled from Gaussian
distributions. But there are drawbacks to using a
nonparametric test. If the populations really are
Gaussian, the nonparametric tests have less power (are
less likely to give you a small P value), especially with
small sample sizes. Furthermore, Prism (along with
most other programs) does not calculate confidence
intervals when calculating nonparametric tests. If the
distribution is clearly not bell-shaped, consider
transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using a t
test. See “Advantages of transforming the data first” on
page 40.

Are the differences
distributed
symmetrically?

The Wilcoxon test first computes the difference
between the two values in each row, and analyzes
only the list of differences. The Wilcoxon test does not
assume that those differences are sampled from a
Gaussian distribution.  However it does assume that
the differences are distributed symmetrically around
their median.
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One-way ANOVA and
nonparametric comparisons

Introduction to comparisons of three or more groups
Prism can compare three or more groups with ordinary or repeated
measures ANOVA, or with the nonparametric Kruskal-Wallis or Friedman
tests. Following ANOVA, Prism can perform the Bonferroni, Tukey,
Newman-Keuls, or Dunnett’s post test. Following nonparametric ANOVA,
Prism can calculate the Dunn’s post test.

These tests compare measurements (continuous variables) such as weight,
enzyme activity, and receptor number. To compare proportions see
“Contingency tables” on page 121. To compare survival curves, see
“Survival curves” on page 109.

One-way ANOVA (and related nonparametric tests) compare three or more
groups when the data are categorized in one way. For example, you might
compare a control group with two treated groups. If your data are
categorized in two ways (for example you want to compare control with
two treated groups in both males and females) see "Two-way analysis of
variance" on page 93.

Entering data for ANOVA (and nonparametric tests)
Enter the data into three or more Y columns (data sets), formatted as a
single column of values. ANOVA calculations ignore the X column, so
you'll usually want to format the table with no X column. However, it is ok
to format the table with a text or numerical X column.

The groups do not have be the same size (its ok to leave some cells empty).

If you have already averaged your data, format the data table for mean, SD
(or SEM) and N. With this format, you can't pick nonparametric or paired
tests which require raw data. Enter data on only the first row.

If you format the table for replicate Y values, Prism averages the replicates
and bases the one-way ANOVA analysis only on the means.
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Indexed data
Many statistics programs expect you to enter data in an indexed format, as
shown below. One column contains all the data, and the other column
designates the group. Prism cannot analyze data entered in index format.
However Prism can import indexed or stacked data (see the chapter on
importing in the Prism User's Guide).

Group Value
1 34

1 43

1 39

2 45

2 47

2 52

3 76

3 99

3 82

Advantages of transforming the data first
Before comparing columns, consider whether you should first transform the
values. ANOVA depends on the assumption that your data are sampled
from populations that follow a Gaussian distribution. If your data do not
follow a Gaussian (normal) distribution, you may be able to transform the
values to create a Gaussian distribution. This table shows some common
normalizing transformations:

Type of data and distribution Normalizing transform
Count (C comes from a Poisson distribution) C

Proportion (P comes from a binomial
distribution)

Arcsine P

Measurement (M comes from a lognormal
distribution)

Log(M)

Time or duration (D) 1
D

If you know the distribution of your population, transforming the values to
create a Gaussian distribution is a good thing to do. A normalizing
transform will add power to your analyses. If you cannot transform your
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data to create a Gaussian distribution, choose a nonparametric test. See
"ANOVA or nonparametric test?" on page 68.

Choosing one-way ANOVA and related analyses
Start from the data or results table you wish to analyze (see "Entering data
for ANOVA (and nonparametric tests)" on page 65. Press the Analyze
button and choose built-in analyses. Then select One-way ANOVA from
the list of statistical analyses. If you don't wish to analyze all columns in the
table, select the columns you wish to compare. Press ok to bring up the
Parameters dialog.

Repeated measures test?
You should choose repeated measures test when the experiment uses
matched subjects. Here are some examples:

• You measure a variable in each subject before, during and after an
intervention.

• You recruit subjects as matched sets. Each subject in the set has the
same age, diagnosis and other relevant variables. One of the set gets
treatment A, another gets treatment B, another gets treatment C, etc.

• You run a laboratory experiment several times, each time with a
control and several treated preparations handled in parallel.

• You measure a variable in triplets, or grandparent/parent/child
groups.
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More generally, you should select a repeated measures test whenever you
expect a value in one group to be closer to a particular value in the other
groups than to a randomly selected value in the another group.

Ideally, the decision about repeated measures analyses should be made
before the data are collected. Certainly the matching should not be based
on the variable you are comparing. If you are comparing blood pressures in
two groups, it is ok to match based on age or zip code, but it is not ok to
match based on blood pressure.

The term repeated measures applies strictly when you give treatments
repeatedly to one subject. The other examples are called randomized block
experiments (each set of subjects is called a block and you randomly assign
treatments within each block). The analyses are identical for repeated
measures and randomized block experiments, and Prism always uses the
term repeated measures.

ANOVA or nonparametric test?
ANOVA, as well as other statistical tests, assumes that you have sampled
data from populations that follow a Gaussian bell-shaped distribution.
Biological data never follow a Gaussian distribution precisely, because a
Gaussian distribution extends infinitely in both directions, so it includes
both infinitely low negative numbers and infinitely high positive numbers!
But many kinds of biological data follow a bell-shaped distribution that is
approximately Gaussian. Because ANOVA works well even if the
distribution is only approximately Gaussian (especially with large samples),
these tests are used routinely in many fields of science.

An alternative approach does not assume that data follow a Gaussian
distribution. In this approach, values are ranked from low to high and the
analyses are based on the distribution of ranks. These tests, called
nonparametric tests, are appealing because they make fewer assumptions
about the distribution of the data. But there is a drawback. Nonparametric
tests are less powerful than the parametric tests that assume Gaussian
distributions. This means that P values tend to be higher, making it harder
to detect real differences as being statistically significant. If the samples are
large the difference in power is minor. With small samples, nonparametric
tests have little power to detect differences. With very small groups,
nonparametric tests have zero power – the P value will always be greater
than 0.05.

You may find it difficult to decide when to select nonparametric tests. You
should definitely choose a nonparametric test in these situations:

• The outcome variable is a rank or score with only a few categories.
Clearly the population is far from Gaussian in these cases.
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• One, or a few, values are off scale, too high or too low to measure.
Even if the population is Gaussian, it is impossible to analyze these
data with a t test or ANOVA. Using a nonparametric test with these
data is easy. Assign an arbitrary low value to values too low to
measure, and an arbitrary high value to values too high to measure.
Since the nonparametric tests only consider the relative ranks of the
values, it won’t matter that you didn’t know one (or a few) of the
values exactly.

• You are sure that the population is far from Gaussian. Before
choosing a nonparametric test, consider transforming the data
(perhaps to logarithms or reciprocals). Sometimes a simple
transformation will convert non-Gaussian data to a Gaussian
distribution.

In many situations, perhaps most, you will find it difficult to decide
whether to select nonparametric tests. Remember that the Gaussian
assumption is about the distribution of the overall population of values, not
just the sample you have obtained in this particular experiment. Look at the
scatter of data from previous experiments that measured the same variable.
Also consider the source of the scatter. When variability is due to the sum
of numerous independent sources, with no one source dominating, you
expect a Gaussian distribution.

Prism performs normality testing in an attempt to determine whether data
were sampled from a Gaussian distribution, but normality testing is less
useful than you might hope (see "The results of normality tests" on page
29). Normality testing doesn’t help if you have fewer than a few dozen (or
so) values.

Your decision to choose a parametric or nonparametric test matters the
most when samples are small for reasons summarized here:
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Large samples
 (> 100 or so)

Small samples
(<12 or so)

Parametric tests Robust. P value will be
nearly correct even if
population is fairly far from
Gaussian.

Not robust. If the population
is not Gaussian, the P value
may be misleading.

Nonparametric test Powerful. If the population is
Gaussian, the P value will be
nearly identical to the P
value you would have
obtained from a parametric
test. With large sample sizes,
nonparametric tests are
almost as powerful as
parametric tests.

Not powerful.  If the
population is Gaussian, the
P value will be higher than
the P value obtained from
ANOVA. With very small
samples, it may be
impossible for the P value to
ever be less than 0.05, no
matter how the values differ.

Normality test Useful. Use a normality test
to determine whether the
data are sampled from a
Gaussian population.

Not very useful. Little power
to discriminate between
Gaussian and non-Gaussian
populations. Small samples
simply don't contain enough
information to let you make
inferences about the shape
of the distribution in the
entire population.

Which post test?
If you are comparing three or more groups, you may pick a post test to
compare pairs of group means. Prism offers these choices:

Choosing an appropriate post test is not straightforward, and different
statistics texts make different recommendations.

Select Dunnett’s test if one column represents control data, and you wish
to compare all other columns to that control column but not to each other.
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Select the test for linear trend, if the columns are arranged in a natural
order (i.e. dose or time) and you want to test whether there is a trend so
that values increase (or decrease) as you move from left to right across
columns.

Select the Bonferroni test for selected pairs of columns when you only
wish to compare certain column pairs. You must select those pairs based
on experimental design, and ideally should specify the pairs of interest
before collecting any data. If you base your decision on the results (i.e.
compare the smallest with the largest mean), then you have effectively
compared all columns, and it is not appropriate to use the test for selected
pairs.

Select the Bonferroni, Tukey, or Newman-Keuls test (also known as the
Student-Newman, Keuls or SNK test) if you want to compare all pairs of
columns.

The only advantage of the Bonferroni method is that it is easy to
understand. Its disadvantage is that it is too conservative, leading to P
values that are too high and confidence intervals that are too wide. This is a
minor concern when you compare only a few columns, but is a major
problem when you have many columns. Don't use the Bonferroni test with
more than five groups.

Choosing between the Tukey and Newman-Keuls test is not
straightforward, and there appears to be no real consensus among
statisticians. The two methods are related, and the rationale for the
differences is subtle. The methods are identical when comparing the largest
group mean with the smallest. For other comparisons, the Newman-Keuls
test yields lower P values. The problem is that it is difficult to articulate
exactly what null hypotheses the Newman-Keuls P values test. For that
reason, and because the Newman-Keuls test does not generate confidence
intervals, we suggest selecting Tukey’s test. ( If you select the Tukey test
you are actually selecting the Tukey-Kramer test, which includes the
extension by Kramer to allow for unequal sample sizes.)

Confirm test selection
Based on the option boxes you selected, Prism will choose a test for you:

Test Matched Nonparametric
Ordinary one-way ANOVA No No

Repeated measures one-way
ANOVA

Yes No

Kruskal-Wallis test No Yes

Friedman test Yes Yes
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Results
For help interpreting the results, see "The results of one-way ANOVA" on
page 72, "The results of a Wilcoxon rank sum test" on page 34, "The results
of repeated measures one-way ANOVA" on page 82, or "The results of a
Friedman test" on page 89.

The results of one-way ANOVA

How one-way ANOVA works
One-way ANOVA compares three or more unmatched groups, based on
the assumption that the two populations are Gaussian. The P value answers
this question: If the populations really have the same mean, what is the
chance that random sampling would result in means as far apart (or more
so) as observed in this experiment?

ANOVA table
The P value is calculated from the ANOVA table. The key idea is that
variability among the values can be partitioned into variability among
group means and variability within the groups. Variability within groups is
quantified as the sum of squares of the differences between each value and
its group mean. This is the residual sum-of-squares. Total variability is
quantified as the sum of the squares of the differences between each value
and the grand mean (the mean of all values in all groups). This is the total
sum-of-squares. The variability between group means is calculated as the
total sum-of-squares minus the residual sum-of-squares. This is called the
between-groups sum-of-squares.

Even if the null hypothesis is true, you expect values to be closer (on
average) to their group means than to the grand mean. The calculation of
the degrees of freedom and mean square account for this. See a statistics
text for details. The end result is the F ratio. If the null hypothesis is true,
you expect F to have a value close to 1.0. If F is large, the P value will be
small. The P value answers this question: If the populations all have the
same mean, what is the chance that randomly selected groups would lead
to an F ratio as big (or bigger) as the one obtained in your experiment?

R2 value
R2 is the fraction of the overall variance (of all the data, pooling all the
groups) attributable to differences among the group means. It compares the
variability among group means with the variability within the groups. A
large value means that a large fraction of the variation is due to the
treatment that defines the groups. The R2 value is calculated from the
ANOVA table and equals the between group sum-of-squares divided by the
total sum-of-squares. Some programs (and books) don’t bother reporting
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this value. Others refer to it as η2 (eta squared) rather than R2. It is a
descriptive statistic that quantifies the strength of the relationship between
group membership and the variable you measured.

Bartlett's test for equal variances
ANOVA is based on the assumption that the populations all have the same
variance. If your samples have four or more values, Prism tests this
assumption with Bartlett's test. It reports the value of Bartlett's statistic with
a P value that answers this question: If the populations really have the same
variance, what is the chance that you’d randomly select samples whose
variances are as different (or more different) as observed in your
experiment. (Since the variance is the standard deviation squared, testing
for equal variances is the same as testing for equal standard deviations).

Bartlett's test is very sensitive to deviations from a Gaussian distribution –
more sensitive than the ANOVA calculations are. A low P value from
Bartlett's test may be due to data that are not Gaussian, rather than due to
unequal variances. Since ANOVA is fairly robust to non-Gaussian data (at
least when sample sizes are equal), the Bartlett’s test can be misleading.
Some statisticians suggest ignoring the Bartlett’s test, especially when the
sample sizes are equal (or nearly so).

If the P value is small, you have to decide whether you wish to conclude
that the variances of the two populations are different. Obviously Bartlett's
test is based only on the values in this one experiment. Think about data
from other similar experiments before making a conclusion.

If you conclude that the populations have different variances, you have
three choices:

• Conclude that the populations are different – the treatments had
an effect. In many experimental contexts, the finding of different
variances is as important as the finding of different means. If the
variances are truly different, then the populations are different
regardless of what ANOVA concludes about differences among
the means. This may be the most important conclusion from the
experiment.

• Transform the data to equalize the variances, then rerun the
ANOVA. Often you’ll find that converting values to their
reciprocals or logarithms will equalize the variances and make
the distributions more Gaussian.

• Use a modified ANOVA that does not assume equal variances.
Prism does not provide such a test.
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How post tests work
Post test for a linear trend
If the columns represent ordered and equally spaced (or nearly so) groups,
the post test for a linear trend determines whether the column means
increase (or decrease) systematically as the columns go from left to right.

The post test for a linear trend works by calculating linear regression on
column number vs. group mean. Prism reports the slope and r2, as well as
the P value for the linear trend. This P value answers this question: If there
really is no linear trend between column number and column mean, what
is the chance that random sampling would result in a slope as far from zero
(or further) than you obtained here? Equivalently, it is the chance of
observing a value of r2 that high or higher, just by coincidence of random
sampling.

Prism also reports a second P value testing for nonlinear variation. After
correcting for the linear trend, this P value tests whether the remaining
variability among column means is greater than expected by chance. It is
the chance of seeing that much variability due to random sampling.

Finally, Prism shows an ANOVA table which partitions total variability into
three components: linear variation, nonlinear variation, and random or
residual variation. It is used to compute the two F ratios, which lead to the
two P values. The ANOVA table is included to be complete, but will not be
of use to most scientists

For more information about the post test for a linear trend, see the excellent
text, Practical Statistics for Medical Research by DG Altman, published in
1991 by Chapman and Hall.

Other post tests
The Bonferroni, Tukey, Newman-Keuls and Dunnett’s post tests are all
modifications of t tests. They account for multiple comparisons, as well as
for the fact that the comparisons are interrelated.

Recall that n unpaired t test computes the t ratio as the difference between
two group means divided by the standard error of the difference (computed
from the standard errors of the two group means, and the two sample
sizes). The P value is then derived from t. The post tests work in a similar
way. Instead of dividing by the standard error of the difference, they divide
by a value computed from the residual mean square (shown on the
ANOVA table). Each test uses a different method to derive a P value from
this ratio,

For the difference between each pair of means, Prism reports the P value as
>0.05, <0.05, <0.01 or <0.001. These P values account for multiple
comparisons. Prism reports a P value for the difference between each pair
of means, but the probability values apply to the entire family of
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comparisons, not for each individual comparison. If the null hypothesis is
true (all the values are sampled from populations with the same mean),
then there is only a 5% chance that any one or more comparisons will have
a P value less than 0.05.

Prism also reports a 95% confidence interval for the difference between
each pair of means (except for the Newman-Keuls post test, which cannot
be used for confidence intervals). These intervals account for multiple
comparisons. There is a 95% chance that all of these intervals contain the
true differences between population, and only a 5% chance that any one or
more of these intervals misses the true difference. A 95% confidence
interval is computed for the difference between each pair of means, but the
95% probability applies to the entire family of comparisons, not to each
individual comparison.

How to think about results from one-way ANOVA
One-way ANOVA compares the means of three or more groups, assuming
that data are sampled from Gaussian populations. The most important
results are the P value and the post tests.

The overall P value answers this question: If the populations really have the
same mean, what is the chance that random sampling would result in
means as far apart from one another (or more so) as you observed in this
experiment?

If the overall P value is large, the data do not give you any reason to
conclude that the means differ. Even if the true means were equal, you
would not be surprised to find means this far apart just by coincidence.
This is not the same as saying that the true means are the same. You just
don’t have compellilng evidence that they differ.

If the overall P value is small, then it is unlikely that the differences you
observed are due to a coincidence of random sampling. You can reject the
idea that all the populations have identical means. This doesn’t mean that
every mean differs from every other mean, only that at least one differs
from the rest. Look at the results of post tests to identify where the
differences are.

How to think about the results of post tests
If the columns are organized in a natural order, the post test for linear trend
tells you whether the column means have a systematic trend, increasing (or
decreasing) as you go from left to right in the data table. See "Post test for a
linear trend" on page 74.

With other post tests, look at which differences between column means are
statistically significant. For each pair of means, Prism reports whether the P
value is less than 0.05, 0.01 or 0.001.
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“Statistically significant” is not the same as “scientifically important”. Before
interpreting the P value or confidence interval, you should think about the
size of the difference you are looking for. How large a difference would
you consider to be scientifically important? How small a difference would
you consider to be scientifically trivial? Use scientific judgment and
common sense to answer these questions. Statistical calculations cannot
help, as the answers depend on the context of the experiment.

As discussed below, you will interpret the post test results differently
depending on whether the difference is statistically significant or not.

If the difference is statistically significant
If the P value for a post test is small, then it is unlikely that the difference
you observed is due to a coincidence of random sampling. You can reject
the idea that those two populations have identical means.

Because of random variation, the difference between the group means in
this experiment is unlikely to equal the true difference between population
means. There is no way to know what that true difference is. With most
post tests (but not the Newman-Keuls test), Prism presents the uncertainty
as a 95% confidence interval for the difference between all (or selected)
pairs of means. You can be 95% sure that this interval contains the true
difference between the two means.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.
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Lower
confidence
limit

Upper
confidence limit

Conclusion

Trivial difference Trivial difference Although the true difference is not zero
(since the P value is low) the true
difference between means is tiny and
uninteresting. The treatment had an effect,
but a small one.

Trivial difference Important
difference

Since the confidence interval ranges from a
difference that you think is biologically
trivial to one you think would be
important, you can’t reach a strong
conclusion from your data. You can
conclude that the means are different, but
you don’t know whether the size of that
difference is scientifically trivial or
important. You’ll need more data to reach
a clear conclusion.

Important
difference

Important
difference

Since even the low end of the confidence
interval represents a difference large
enough to be considered biologically
important, you can conclude that there is a
difference between treatment means and
that the difference is large enough to be
scientifically relevant.

If the difference is not statistically significant
If the P value from a post test is large, the data do not give you any reason
to conclude that the means of these two groups differ. Even if the true
means were equal, you would not be surprised to find means this far apart
just by coincidence. This is not the same as saying that the true means are
the same. You just don’t have compelling evidence that they differ.

How large could the true difference really be?  Because of random
variation, the difference between the group means in this experiment is
unlikely to equal the true difference between population means. There is
no way to know what that true difference is. Prism presents the uncertainty
as a 95% confidence interval (except with the Newman-Keuls test). You
can be 95% sure that this interval contains the true difference between the
two means. When the P value is larger than 0.05, the 95% confidence
interval will start with a negative number (representing a decrease) and go
up to a positive number (representing an increase).
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To interpret the results in a scientific context, look at both ends of the
confidence interval for each pair of means, and ask whether those
differences would be scientifically important or scientifically trivial.

Lower
confidence limit

Upper
confidence
limit

Conclusion

Trivial decrease Trivial increase You can reach a crisp conclusion. Either the
means really are the same or they are
different by a trivial amount. At most, the
true difference between means is tiny and
uninteresting.

Trivial decrease Large increase You can’t reach a strong conclusion. The
data are consistent with the treatment
causing a trivial decrease, no change, or an
increase that might be large enough to be
important. To reach a clear conclusion, you
need to repeat the experiment with more
subjects.

Large decrease Trivial increase You can’t reach a strong conclusion. The
data are consistent with a trivial increase, no
change, or a decrease that may be large
enough to be important. You can’t make a
clear conclusion without repeating the
experiment with more subjects.

Large decrease Large increase You can't reach any conclusion. Repeat the
experiment with a much larger sample size.

Checklist. Is one-way ANOVA the right test for these
data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from a one-
way ANOVA, ask yourself the questions below. Prism can help answer the
first two questions. You'll need to answer the others based on experimental
design.
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Question Discussion
Are the populations
distributed according to
a Gaussian distribution?

One-way ANOVA assumes that you have sampled your
data from populations that follow a Gaussian distribution.
While this assumption is not too important with large
samples, it is important with small sample sizes (especially
with unequal sample sizes). Prism can test for violations of
this assumption, but normality tests have limited utility.
See "The results of normality" on page 29. If your data do
not come from Gaussian distributions, you have three
options. Your best option is to transform the values
(perhaps to logs or reciprocals) to make the distributions
more Gaussian (see “Advantages of transforming the data
first” on page 66. Another choice is to use the Kruskal-
Wallis nonparametric test instead of ANOVA. A final
option is to use ANOVA anyway, knowing that it is fairly
robust to violations of a Gaussian distribution with large
samples.

Do the populations have
the same standard
deviation?

One-way ANOVA assumes that all the populations have
the same standard deviation (and thus the same variance).
This assumption is not very important when all the groups
have the same (or almost the same) number of subjects,
but is very important when sample sizes differ.

Prism tests for equality of variance with Bartlett’s test. The
P value from this test answers this question: If the
populations really have the same variance, what is the
chance that you’d randomly select samples whose
variances are as different as those observed in your
experiment. A small P value suggests that the variances are
different.

Don’t base your conclusion solely on Bartlett’s test. Also
think about data from other similar experiments. If you
have plenty of previous data that convinces you that the
variances are really equal, ignore Bartlett’s test (unless the
P value is really tiny) and interpret the ANOVA results as
usual. Some statisticians recommend ignoring Bartlett’s test
altogether if the sample sizes are equal (or nearly so).

In some experimental contexts, finding different variances
may be as important as finding different means. If the
variances are different, then the populations are different --
regardless of what ANOVA concludes about differences
between the means.

 See “Bartlett's test for equal variances” on page 73.
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Are the data
unmatched?

One-way ANOVA works by comparing the differences
among group means with the pooled standard deviations
of the groups. If the data are matched, then you should
choose repeated measures ANOVA instead. If the
matching is effective in controlling for experimental
variability, repeated measures ANOVA will be more
powerful than regular ANOVA.

Are the “errors”
independent?

The term “error” refers to the difference between each
value and the group mean. The results of one-way ANOVA
only make sense when the scatter is random – that
whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this
assumption. You must think about the experimental
design. For example, the errors are not independent if you
have six values in each group, but these were obtained
from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be
high or low. See “The need for independent samples” on
page 5.

Do you really want to
compare means?

One-way ANOVA compares the means of three or more
groups. It is possible to have a tiny P value – clear
evidence that the population means are different – even if
the distributions overlap considerably. In some situations –
for example, assessing the usefulness of a diagnostic test –
you may be more interested in the overlap of the
distributions than in differences between means.

Is there only one factor? One-way ANOVA compares three or more groups defined
by one factor. For example, you might compare a control
group, with a drug treatment group and a group treated
with drug plus antagonist. Or you might compare a control
group with five different drug treatments.

Some experiments involve more than one factor. For
example, you might compare three different drugs in men
and women. There are two factors in that experiment: drug
treatment and gender. These data need to be analyzed by
two-way ANOVA, also called two factor ANOVA.  See
“Two-way analysis of variance” on page 93.
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Is the factor “fixed”
rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect
ANOVA. This tests for differences among the means of the
particular groups you have collected data from. Type II
ANOVA, also known as random-effect ANOVA, assumes
that you have randomly selected groups from an infinite (or
at least large) number of possible groups, and that you
want to reach conclusions about differences among ALL
the groups, even the ones you didn’t include in this
experiment. Type II random-effects ANOVA is rarely used,
and Prism does not perform it. If you need to perform
ANOVA with random effects variables, consider using the
program NCSS from www.ncss.com.

The results of repeated measures one-way ANOVA

How repeated measures ANOVA works
Repeated measures one-way ANOVA compares three or more matched
groups, based on the assumption that the differences between matched
values are Gaussian. For example, one-way ANOVA may compare
measurements made before, during and after an intervention, when each
subject was assessed three times.The P value answers this question: If the
populations really have the same mean, what is the chance that random
sampling would result in means as far apart (or more so) as observed in this
experiment?

ANOVA table
The P value is calculated from the ANOVA table. With repeated measures
ANOVA, there are three sources of variability: between columns
(treatments), between rows (individuals) and random (residual). The
ANOVA table partitions the total sum-of-squares into those three
components. It then adjusts for the number of groups and number of
subjects (expressed as degrees of freedom) to compute two F ratios. The
main F ratio tests the null hypothesis that the column means are identical.
The other F ratio tests the null hypothesis that the row means are identical
(this is the test for effective matching). In each case, the F ratio is expected
to be near 1.0 if the null hypothesis is true. If F is large, the P value will be
small.

The circularity assumption
Repeated measures ANOVA assumes that the random error truly is random.
A random factor that causes a measurement in one subject to be a bit high
(or low) should have no affect on the next measurement in the same
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subject. This assumption is called circularity or sphericity. It is closely
related to another term you may encounter, compound symmetry.

Repeated measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will be
too low. You’ll violate this assumption when the repeated measurements
are made too close together so that random factors that cause a particular
value to be high (or low) don’t wash away or dissipate before the next
measurement.  To avoid violating the assumption, wait long enough
between treatments so the subject is essentially the same as before the
treatment. When possible, also randomize the order of treatments.

You only have to worry about the assumption of circularity when you
perform a repeated measures experiment, where each row of data
represents repeated measurements from a single subject. It is impossible to
violate the assumption with  randomized block experiments, where each
row of data represents data from a matched set of subjects. See "Repeated
measures test?" on page 67

Was the matching effective?
A repeated measures experimental design can be very powerful, as it
controls for factors that cause variability between subjects. If the matching
is effective, the repeated measures test will yield a smaller P value than an
ordinary ANOVA. The repeated measures test is more powerful because it
separates between-subject variability from within-subject variability. If the
pairing is ineffective, however, the repeated measures test can be less
powerful because it has fewer degrees of freedom.

Prism tests whether the matching was effective and reports a P value that
tests the null hypothesis that the population row means are all equal. If this
P value is low, you can conclude that the matching is effective. If the P
value is high, you can conclude that the matching was not effective and
should consider using ordinary ANOVA rather than repeated measures
ANOVA.

How to think about results from repeated measures one-
way ANOVA
Repeated measures ANOVA compares the means of three or more matched
groups. The term repeated measures strictly applies only when you give
treatments repeatedly to each subject, and the term randomized block is
used when you randomly assign treatments within each group (block) of
matched subjects. The analyses are identical for repeated measures and
randomized block experiments, and Prism always uses the term repeated
measures.
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Your approach to interpreting repeated measures ANOVA results will be
the same as interpreting the results of ordinary one-way ANOVA. See
“How to think about results from one-way ANOVA” on page 75.

Checklist. Is repeated measures one way ANOVA the
right test for these data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from
repeated measures one-way ANOVA, ask yourself the questions listed
below. Prism can help you answer the first question. You must answer the
remaining questions based on experimental design.

Question Discussion
Was the matching
effective?

The whole point of using a repeated measures test is to
control for experimental variability. Some factors you don’t
control in the experiment will affect all the measurements
from one subject equally, so will not affect the difference
between the measurements in that subject. By analyzing
only the differences, therefore, a matched test controls for
some of the sources of scatter.

The matching should be part of the experimental design and
not something you do after collecting data. Prism tests the
effectiveness of matching with an F test (distinct from the
main F test of differences between columns). If the P value
for matching is large (say larger than 0.05), you should
question whether it made sense to use a repeated measures
test. Ideally, your choice of whether to use a repeated
measures test should  be based not only on this one P value,
but also on the experimental design and the results you have
seen in other similar experiments.

Are the subjects
independent?

The results of repeated measures ANOVA only make sense
when the subjects are independent. Prism cannot test this
assumption. You must think about the experimental design.
For example, the errors are not independent if you have six
rows of data, but these were obtained from three animals,
with duplicate measurements in each animal. In this case,
some factor may affect the measurements from one animal.
Since this factor would affect data in two (but not all) rows,
the rows (subjects) are not independent. See "The need for
independent samples" on page 5.
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Is the random
variability distributed
according to a
Gaussian distribution?

Repeated measures ANOVA assumes that each
measurement is the sum of an overall mean, a treatment
effect (the average difference between subjects given a
particular treatment and the overall mean),  an individual
effect (the average difference between measurements made
in a certain subject and the overall mean)  and a random
component. Furthermore, it assumes that the random
component follows a Gaussian distribution and that the
standard deviation does not vary between individuals (rows)
or treatments (columns). While this assumption is not too
important with large samples, it can be important with small
sample sizes. Prism does not test for violations of this
assumption.

Is there only one
factor?

One-way ANOVA compares three or more groups defined
by one factor. For example, you might compare a control
group, with a drug treatment group and a group treated with
drug plus antagonist. Or you might compare a control group
with five different drug treatments.

Some experiments involve more than one factor. For
example, you might compare three different drugs in men
and women. There are two factors in that experiment: drug
treatment and gender. Similarly, there are two factors if you
wish to compare the effect of drug treatment at several time
points. These data need to be analyzed by two-way
ANOVA, also called two factor ANOVA.

Is the factor “fixed”
rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect
ANOVA. This tests for differences among the means of the
particular groups you have collected data from. Type II
ANOVA, also known as random-effect ANOVA, assumes
that you have randomly selected groups from an infinite (or
at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the
groups, even the ones you didn’t include in this experiment.
Type II random-effects ANOVA is rarely used, and Prism
does not perform it.

The results of a Kruskal-Wallis test

How the Kruskal-Wallis test works
The Kruskal-Wallis test is a nonparametric test that compares three or more
unpaired groups. To perform the Kruskal-Wallis test, Prism first ranks all the
values from low to high, disregarding which group each value belongs. If
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two values are the same, then they both get the average of the two ranks for
which they tie. The smallest number gets a rank of 1. The largest number
gets a rank of N, where N is the total number of values in all the groups.
Prism then sums the ranks in each group, and reports the sums. If the sums
of the ranks are very different, the P value will be small.

The discrepancies among the rank sums are combined to create a single
value called the Kruskal-Wallis statistic (some books refer to this value as
H). A larger Kruskal-Wallis statistic corresponds to a larger discrepancy
among rank sums.

The P value answers this question: If the populations really have the same
median, what is the chance that random sampling would result in sums of
ranks as far apart (or more so) as observed in this experiment? More
precisely, if the null hypothesis is true then what is the chance of obtaining
a Kruskal-Wallis statistic as high (or higher) as observed in this experiment.

If your samples are small and no two values are identical (no ties), Prism
calculates an exact P value. If your samples are large or if there are ties, it
approximates the P value from the chi-square distribution. The
approximation is quite accurate with large samples. With medium size
samples, Prism can take a long time to calculate the exact P value. While it
does the calculations, Prism displays a progress dialog and you can press
Cancel to interrupt the calculations if an approximate P value is good
enough for your purposes.

How Dunn's post test works
Dunn’s post test compares the difference in the sum of ranks between two
columns with the expected average difference (based on the number of
groups and their size).

For each pair of columns, Prism reports the P value as >0.05, <0.05,
<0.01 or < 0.001. The calculation of the P value takes into account the
number of comparisons you are making. If the null hypothesis is true (all
data are sampled from populations with identical distributions, so all
differences between groups are due to random sampling), then there is a
5% chance that at least one of the post tests will have P<0.05. The 5%
chance does not apply to each comparison but rather to the entire family of
comparisons.

For more information on the post test, see Applied Nonparametric Statistics
by WW Daniel, published by PWS-Kent publishing company in 1990 or
Nonparametric Statistics for Behavioral Sciences by S Siegel and NJ
Castellan, 1988. The original reference is O.J. Dunn, Technometrics,
5:241-252, 1964.
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Prism refers to the post test as the Dunn's post test. Some books and
programs simply refer to this test as the post test following a Kruskal-Wallis
test, and don't give it an exact name.

How to think about a Kruskal-Wallis test
The Kruskal-Wallis test is a nonparametric test to compare three or more
unpaired groups. It is also called Kruskal-Wallis one-way analysis of
variance by ranks. The key result is a P value that answers this question: If
the populations really have the same median, what is the chance that
random sampling would result in medians as far apart (or more so) as you
observed in this experiment?

If the P value is small, you can reject the idea that the differences are all a
coincidence. This doesn’t mean that every group differs from every other
group, only that at least one group differs from one of the others. Look at
the post test results to see which groups differ from which other groups.

If the overall Kruskal-Wallis P value is large, the data do not give you any
reason to conclude that the overall medians differ. This is not the same as
saying that the medians are the same. You just have no compelling
evidence that they differ.  If you have small samples, the Kruskal-Wallis test
has little power. In fact, if the total sample size is seven or less, the Kruskal-
Wallis test will always give a P value greater than 0.05 no matter how the
groups differ.

How to think about post tests following the Kruskal-
Wallis test
Dunn’s post test calculates a P value for each pair of columns. These P
values answer this question: If the data were sampled from populations
with the same median, what is the chance that one or more pairs of
columns would have medians as far apart as observed here? If the P value
is low, you’ll conclude that the difference is statistically significant. The
calculation of the P value takes into account the number of comparisons
you are making. If the null hypothesis is true (all data are sampled from
populations with identical distributions, so all differences between groups
are due to random sampling), then there is a 5% chance that at least one of
the post tests will have P<0.05. The 5% chance does not apply separately
to each individual comparison but rather to the entire family of
comparisons.

Checklist. Is the Kruskal-Wallis test the right test for
these data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
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results from a Kruskal-Wallis test, ask yourself these questions about your
experimental design:

Question Discussion
Are the “errors”
independent?

The term “error” refers to the difference between each
value and the group median. The results of a Kruskal-
Wallis test only make sense when the scatter is random
– that whatever factor caused a value to be too high or
too low affects only that one value. Prism cannot test
this assumption. You must think about the experimental
design. For example, the errors are not independent if
you have nine values in each of three groups, but these
were obtained from two animals in each group (in
triplicate). In this case, some factor may cause all three
values from one animal to be high or low. See “The
need for independent samples” on page 5.

Are the data unpaired? If the data are paired or matched, then you should
consider choosing the Friedman test instead. If the
pairing is effective in controlling for experimental
variability, the Friedman test will be more powerful
than the Kruskal-Wallis test.

Are the data sampled
from non-Gaussian
populations?

By selecting a nonparametric test, you have avoided
assuming that the data were sampled from Gaussian
distributions. But there are drawbacks to using a
nonparametric test. If the populations really are
Gaussian, the nonparametric tests have less power (are
less likely to detect a true difference), especially with
small sample sizes. Furthermore, Prism (along with
most other programs) does not calculate confidence
intervals when calculating nonparametric tests. If the
distribution is clearly not bell-shaped, consider
transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using
ANOVA.  See “Advantages of transforming the data
first” on page 66.

Do you really want to
compare medians?

The Kruskal-Wallis test compares the medians of three
or more groups. It is possible to have a tiny P value –
clear evidence that the population medians are different
– even if the distributions overlap considerably.
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Are the shapes of the
distributions identical?

The Kruskal-Wallis test does not assume that the
populations follow Gaussian distributions. But it does
assume that the shapes of the distributions are identical.
The medians may differ – that is what you are testing for
– but the test assumes that the shapes of the
distributions are identical. If two groups have very
different distributions, consider transforming the data to
make the distributions more similar.

The results of a Friedman test

How the Friedman test works
The Friedman test is a nonparametric test that compares three or more
paired groups. The Friedman test first ranks the values in each matched set
(each row) from low to high. Each row is ranked separately. It then sums
the ranks in each group (column). If the sums are very different, the P value
will be small. Prism reports the value of the Friedman statistic, which is
calculated from the sums of ranks and the sample sizes.

The whole point of using a matched test is to control for experimental
variability between subjects, thus increasing the power of the test. Some
factors you don’t control in the experiment will increase (or decrease) all
the measurements in a subject. Since the Friedman test ranks the values in
each row, it is not affected by sources of variability that equally affect all
values in a row (since that factor won’t change the ranks within the row).

The P value answers this question: If the different treatments (columns)
really are identical, what is the chance that random sampling would result
in sums of ranks as far apart (or more so) as observed in this experiment?

If your samples are small, Prism calculates an exact P value. If your samples
are large, it calculates the P value from a Gaussian approximation. The
term Gaussian has to do with the distribution of sum of ranks, and does not
imply that your data need to follow a Gaussian distribution. With medium
size samples, Prism can take a long time to calculate the exact P value. You
can interrupt the calculations if an approximate P value meets your needs.

If two or more values (in the same row) have the same value, it is
impossible to calculate the exact P value, so Prism computes the
approximate P value.

Following Friedman's test, Prism can perform Dunn's post test. For details,
see Applied Nonparametric Statistics by WW Daniel, published by PWS-
Kent publishing company in 1990 or Nonparametric Statistics for
Behavioral Sciences by S Siegel and NJ Castellan, 1988. The original
reference is O.J. Dunn, Technometrics, 5:241-252, 1964. Note that some
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books and programs simply refer to this test as the post test following a
Friedman test, and don't give it an exact name.

How to think about a Friedman test
The Friedman test is a nonparametric test to compare three or more
matched groups. It is also called Friedman two-way analysis of variance by
ranks (because repeated measures one-way ANOVA is the same as two-
way ANOVA without any replicates.)

The P value answers this question: If the median difference really is zero,
what is the chance that random sampling would result in a median
difference as far from zero (or more so) as observed in this experiment?

If the P value is small, you can reject the idea that all of the differences
between columns are coincidences of random sampling, and conclude
instead that at least one of the treatments (columns) differs from the rest.
Then look at post test results to see which groups differ from which other
groups.

If the P value is large, the data do not give you any reason to conclude that
the overall medians differ. This is not the same as saying that the medians
are the same. You just have no compelling evidence that they differ.  If you
have small samples, Friedman’s test has little power.

How to think about post tests following the Friedman
test
Dunn’s post test compares the difference in the sum of ranks between two
columns with the expected average difference (based on the number of
groups and their size). For each pair of columns, Prism reports the P value
as >0.05, <0.05, <0.01 or < 0.001. The calculation of the P value takes
into account the number of comparisons you are making. If the null
hypothesis is true (all data are sampled from populations with identical
distributions, so all differences between groups are due to random
sampling), then there is a 5% chance that at least one of the post tests will
have P<0.05. The 5% chance does not apply to EACH comparison but
rather to the ENTIRE family of comparisons.

Checklist. Is the Friedman test the right test for these
data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
results from a Friedman test, ask yourself these questions:
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Question Discussion
Was the matching
effective?

The whole point of using a repeated measures test is to
control for experimental variability. Some factors you
don’t control in the experiment will affect all the
measurements from one subject equally, so they will not
affect the difference between the measurements in that
subject. By analyzing only the differences, therefore, a
matched test controls for some of the sources of scatter.

The matching should be part of the experimental design
and not something you do after collecting data. Prism
does not test the adequacy of matching with the Friedman
test.

Are the subjects
(rows) independent?

The results of a Friedman test only make sense when the
subjects (rows) are independent – that no random factor
has effected values in more than one row. Prism cannot
test this assumption. You must think about the
experimental design. For example, the errors are not
independent if you have six rows of data obtained from
three animals in duplicate. In this case, some random
factor may cause all the values from one animal to be high
or low. Since this factor would affect two of the rows (but
not the other four), the rows are not independent.

Are the data clearly
sampled from non-
Gaussian populations?

By selecting a nonparametric test, you have avoided
assuming that the data were sampled from Gaussian
distributions. But there are drawbacks to using a
nonparametric test. If the populations really are Gaussian,
the nonparametric tests have less power (are less likely to
give you a small P value), especially with small sample
sizes. Furthermore, Prism (along with most other
programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is
clearly not bell-shaped, consider transforming the values
(perhaps to logs or reciprocals) to create a Gaussian
distribution and then using repeated measures ANOVA.
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Two-way analysis of variance

Introduction to two-way ANOVA
Two-way ANOVA, also called two factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs in both men and women.

Two-way ANOVA simultaneously asks three questions:

1. Does the first factor systematically affect the results? In our example:
Are the mean responses the same for all three drugs?

2. Does the second factor systematically affect the results? In our
example: Are the mean responses the same for men and women?

3. Do the two factors interact? In our example: Are the difference
between drugs the same for men and women? Or equivalently, is the
difference between men and women the same for all drugs?

Although the outcome measure (dependent variable) is a continuous
variable, each factor must be categorical, for example: male or female; low,
medium or high dose; wild type or mutant. ANOVA is not an appropriate
test for assessing the effects of a continuous variable, such as blood
pressure or hormone level (use a regression technique instead).

Prism can perform ordinary two-way ANOVA accounting for repeated
measures when there is matching on one of the factors (but not both). Prism
cannot perform any kind of nonparametric two-way ANOVA.

Entering data for two-way ANOVA
Arrange your data so the data sets (columns) represent different levels of
one factor, and different rows represent different levels of the other factor.
For example, to compare three time points in men and women, enter your
data like this:
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The ANOVA calculations ignore any X values. You may wish to format the
X column as text in order to label your rows. Or you may omit the X
column altogether, or enter numbers.

You may leave some replicates blank, and still perform ordinary two-way
ANOVA (so long as you enter at least one value in each row for each data
set). You cannot perform repeated measures ANOVA if there are any
missing values.

If you have averaged your data elsewhere, you may format the data table to
enter mean, SD/SEM and N. The N values do not have to all be the same,
but you cannot leave N blank. You cannot perform repeated measures two-
way ANOVA if you enter averaged data.

Some programs expect you to enter two-way ANOVA data in an indexed
format. All the data are in one column, and two other columns are used to
denote different levels of the two factors. You cannot enter data in this way
into Prism. Prism can import indexed data with a single index variable, but
cannot import data with two index variables, as would be required for two-
way ANOVA.

As with one-way ANOVA, it often makes sense to transform data before
analysis, to make the distributions more Gaussian. See “Advantages of
transforming the data first” on page 66.

Choosing the two-way ANOVA analysis
Start from the data or results table you wish to analyze (see "Entering data
for two-way ANOVA" on page 93). Click Analyze and choose built-in
analyses. Then choose two-way ANOVA from the list of statistical analyses
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Variable names
Label the two factors to make the output more clear. If you don’t enter
names, Prism will use the generic names “Column factor” and “Row
factor”.

Repeated measures
You should choose a repeated measures analysis when the experiment
used paired or matched subjects. See "Repeated measures test?" on page
67. Prism can calculate repeated measures two-way ANOVA with matching
by either row or column, but not both. This is sometimes called a mixed
model.

The table above shows example data testing the effects of three doses of
drugs in control and treated animals. The decision to use repeated
measures depends on the experimental design.

Here is an experimental design that would require analysis using repeated
measures by row: The experiment was done with six animals, two for each
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dose. The control values were measured first in all six animals. Then you
applied a treatment to all the animals, and made the measurement again. In
the table above, the value at row 1, column A, Y1  (23) came from the
same animal as the value at row 1, column B, Y1 (28). The matching is by
row.

Here is an experimental design that would require analysis using repeated
measures by column: The experiment was done with four animals. First
each animal was exposed to a treatment (or placebo). After measuring the
baseline data  (dose=zero), you inject the first dose and make the
measurement again. Then inject the second dose and measure again. The
values in the first Y1 column (23, 34, 43) were repeated measurements
from the same animal. The other three columns came from three other
animals. The matching was by column.

The term repeated measures is appropriate for those examples, because
you made repeated measurements from each animal. Some experiments
involve matching but no repeated measurements. The term randomized
block experiments describes this kind of experiments. For example,
imagine that the three rows were three different cell lines. All the Y1 data
came from one experiment, and all the Y2 data came from another
experiment performed a month later.  The value at row 1, column A, Y1
(23.0) and the value at row 1, column B, Y1 (28.0) came from the same
experiment (same cell passage, same reagents). The matching is by row.
Randomized block data are analyzed identically to repeated measures data.
Prism only uses the term repeated measures.

It is also possible to design experiments with repeated measures in both
directions. Here is an example: The experiment was done with two
animals. First you measured the baseline (control, zero dose). Then you
injected dose 1 and made the next measurement, then dose 2 and
measured again. Then you gave the animal the experimental treatment,
waited an appropriate period of time, and made the three measurements
again. Finally, you repeated the experiment with another animal (Y2). So a
single animal provided data from both Y1 columns (23, 34, 43 and 28, 41,
56). Prism cannot perform two-way ANOVA with repeated measures in
both directions, and so cannot analyze this experiment.

Beware of matching within treatment groups -- that does not count as
repeated measures. Here is an example: The experiment was done with six
animals. Each animal was given one of two treatments at one of three
doses. The measurement was then made in duplicate. The value at row 1,
column A, Y1  (23) came from the same animal as the value at row 1,
column A, Y2 (24). Since the matching is within a treatment group, it is a
replicate, not a repeated measure. Analyze these data with ordinary two-
way ANOVA, not repeated measures ANOVA.
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Post tests following two-way ANOVA
If you have two data sets (columns), Prism can perform post tests to
compare the two means at each row. In the example above, data set A was
control and data set B was treated. Each row represents a different dose.
Prism can perform post tests to compare the control value and the treated
value at each dose. Although other kinds of post tests are possible after
two-way ANOVA, Prism only perform this one kind of post test (which
biologists use most frequently).

The results of two-way ANOVA

How two-way ANOVA works
Two-way ANOVA, determines how a response is affected by two factors.
For example, you might measure a response to three different drugs in both
men and women.

The ANOVA table breaks down the overall variability between
measurements (expressed as the sum of squares) into four components:

• Interactions between row and column. This is differences between
rows that is not the same at each column, equivalent to variation
between columns that is not the same at each row.

• Variability among columns.

• Variability among rows.

• Residual or error. Variation among replicates not related to systematic
differences between rows and columns.

With repeated measures ANOVA there is a fifth component: variation
between subjects.

The ANOVA table shows how the sum of squares is partitioned into the
four (or five) components. For each component, the table shows sum-of-
squares, degrees of freedom, mean square, and the F ratio. Each F ratio is
the ratio of the mean-square value for that source of variation to the
residual mean-square. (with repeated measures ANOVA, the denominator
of one F ratio is the mean square for matching rather than residual). If the
null hypothesis is true, the F ratio is likely to be close to 1.0. If the null
hypothesis is not true, the F ratio is likely to be greater than 1.0. The F
ratios are not very informative by themselves, but are used to determine P
values.
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How Prism computes two-way ANOVA

Model I (fixed effects) vs. Model II (random effects) ANOVA
To understand the difference between fixed and random factors, consider
an example of comparing responses in three species at three times. If you
were interested in those three particular species, then species is considered
to be a fixed factor. It would be a random factor if you were interested in
differences between species in general, and randomly selected those three
species. Time is considered to be a fixed factor if you chose time points to
span the interval you are interested in. Time would be a random factor if
you picked those three time points at random. Since this is not likely, time
is almost always considered to be a fixed factor.

When both row and column variables are fixed factors, the analysis is
called Model I ANOVA. When both row and column variables are random
factors, the analysis is called Model II ANOVA. When one is random and
one is fixed, it is termed mixed effects (Model III) ANOVA. Prism calculates
only Model I two-way ANOVA. Since most experiments deal with fixed-
factor variables, this is rarely a limitation.

ANOVA from data entered as mean, SD (or SEM) and N
If your data are balanced (same sample size for each condition), you'll get
the same results if you enter raw data, or mean, SD (or SEM) and N. If your
data are unbalanced, it is impossible to calculate precise results from data
entered as mean, SD (or SEM) and N. Instead, Prism uses a simpler method
called analysis of “unweighted means”. This method is detailed in LD
Fisher and G vanBelle, Biostatistics, John Wiley, 1993.  If sample size is the
same in all groups, and in some other special cases, this simpler method
gives exactly the same results as obtained by analysis of the raw data. In
other cases, however, the results will only be approximately correct. If your
data are almost balanced (just one or a few missing values), the ap-
proximation is a good one. When data are unbalanced, you should enter
individual replicates whenever possible

Two-way ANOVA calculations with missing values
If some values are missing, two-way ANOVA calculations are challenging.
Prism uses the method detailed in SA Glantz and BK Slinker, Primer of
Applied Regression and Analysis of Variance, McGraw-Hill, 1990 . This
method converts the ANOVA problem to a multiple regression problem,
and then displays the results as ANOVA. Prism performs multiple re-
gression three times — each time presenting columns, rows and interaction
to the multiple regression procedure in a different order. Although it
calculates each sum-of-squares three times, Prism only displays the sum-of-
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squares for the factor entered last into the multiple regression equation.
These are called Type III sum-of-squares.

Prism cannot perform repeated measures two-way ANOVA
with missing values.

Two-way ANOVA from unreplicated data
Prism can perform two-way ANOVA even if you have entered only a single
replicate for each column/row pair. This kind of data does not let you test
for interaction between rows and columns (random variability and
interaction can't be distinguished unless you measure replicates). Instead,
Prism assumes that there is no interaction, and only tests for row and
column effects. If this assumption is not valid, then the P values for row and
column effects won’t be meaningful.

The concept of repeated measures doesn't apply when your
data are unreplicated.

Repeated measures two-way ANOVA
Prism computes repeated measures two-way ANOVA calculations using the
standard method explained especially well in SA Glantz and BK Slinker,
Primer of Applied Regression and Analysis of Variance, McGraw-Hill,
1990.

Post tests following two-way ANOVA
Prism performs post tests following two-way ANOVA using the Bonferroni
method as detailed in pages 741-744 and 771 in J Neter, W Wasserman,
and MH Kutner, Applied Linear Statistical Models, 3rd edition, Irwin, 1990.

For each row, Prism calculates

t mean mean
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The numerator is the difference between the mean response in the two data
sets (usually control and treated) at a particular row (usually dose or time
point). The denominator combines the number of replicates in the two
groups at that dose with the mean square of the residuals (sometimes called
the mean square of the error), which is a pooled measure of variability at
all doses.

Statistical significance is determined by comparing the t ratio with the t
distribution for the number of df shown in the ANOVA table for MSresidual,
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applying the Bonferroni correction for multiple comparisons. The
Bonferroni correction lowers the P value that you consider to be significant
to 0.5 divided by the number of comparisons. This means that if you have
five rows of data, the P value has to be less than 0.01 (0.5/5) for any
particular row in order to be considered significant with P<0.05. This
correction ensures that the 5% probability applies to the entire family of
comparisons, and not separately to each individual comparison.

Confidence intervals at each row are computed using this equation:

Span = t MS 1
N
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N
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The critical value of t is abbreviated t* in that equation (not a standard
abbreviation). Its value does not depend on your data, only on your
experimental design. It depends on the number of degrees of freedom and
the number of rows (number of comparisons).

Post tests following repeated measures two-way ANOVA use exactly the
same equation if the repeated measures are by row. If the repeated
measures are by column, use MSsubject rather than MSresidual in both equations
above, and use the degrees of freedom for subjects (matching) rather than
the residual degrees of freedom.

How to think about results from two-way ANOVA
Two-way ANOVA partitions the overall variance of the outcome variable
into three components plus a residual (or error) term.

Interaction
The null hypothesis is that there is no interaction between columns (data
sets) and rows. More precisely, the null hypothesis states that any
systematic differences between columns are the same for each row and that
any systematic differences between rows are the same for each column. If
columns represent drugs and rows represent gender, then the null hy-
pothesis is that the differences between the drugs are consistent for men
and women.

The P value answers this question: If the null hypothesis is true, what is the
chance of randomly sampling subjects and ending up with as much (or
more) interaction than you have observed. Often the test of interaction is
the most important of the three tests.

If each row represents a time or concentration, there is no interaction if the
vertical difference between the curves is the same for all values of X. Some
statistics books say that there is no interaction when the curves are
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"parallel". But that term can be ambiguous. Pharmacologists consider two
dose-response curves “parallel” when two drugs have similar effects at very
low and very high concentrations, but different (and horizontally parallel)
effects at moderate concentrations. Two-way ANOVA of such data would
reject the null hypothesis of no interaction, because the difference between
Y values in the middle of the curves is very different than the difference at
the ends.
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If you entered only a single value for each row/column pair, it is impossible
to test for interaction between rows and columns. Instead, Prism assumes
that there is no interaction, and continues with the other calculations.
Depending on your experimental design, this assumption may or may not
make sense. The assumption cannot be tested without replicate values.

Note: If the interaction is statistically significant, it is difficult to
interpret the row and column effects. Statisticians often recom-
mend ignoring the tests of row and column effects when there
is a significant interaction.

Column factor
The null hypothesis is that the mean of each column (totally ignoring the
rows) is the same in the overall population, and that all differences we see
between column means are due to chance. If columns represent different
drugs, the null hypothesis is that all the drugs produced the same effect.
The P value answers this question: If the null hypothesis is true, what is the
chance of randomly obtaining column means as different (or more so) than
you have observed.

Row factor
The null hypothesis is that the mean of each row (totally ignoring the
columns) is the same in the overall population, and that all differences we
see between row means are due to chance. If the rows represent gender,
the null hypothesis is that the mean response is the same for men and
women. The P value answers this question: If the null hypothesis is true,
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what is the chance of randomly obtaining row means as different (or more
so) than you have observed.

Subject (matching)
For repeated measures ANOVA, Prism tests the null hypothesis that the
matching was not effective. You expect a low P value if the repeated
measures design was effective in controlling for variability between
subjects. If the P value was high, reconsider your decision to use repeated
measures ANOVA.

How to think about post tests following two-way ANOVA
If you have two data sets (columns), Prism can perform post tests to
compare the two means from each row.

For each row, Prism reports the 95% confidence interval for the difference
between the two means. These confidence intervals adjust for multiple
comparisons, so you can be 95% certain that all the intervals contain the
true difference between means.

For each row, Prism also reports the P value testing the null hypothesis that
the two means are really identical. Again, the P value computations take
into account multiple comparisons. If there really are no differences, there
is a 5% chance that any one (or more) of the P values will be less than
0.05. The 5% probability applies to the entire family of comparisons, not to
each individual P value.

If the difference is statistically significant
If the P value for a post test is small, then it is unlikely that the difference
you observed is due to a coincidence of random sampling. You can reject
the idea that those two populations have identical means.

Because of random variation, the difference between the group means in
this experiment is unlikely to equal the true difference between population
means. There is no way to know what that true difference is. With most
post tests (but not the Newman-Keuls test), Prism presents the uncertainty
as a 95% confidence interval for the difference between all (or selected)
pairs of means. You can be 95% sure that this interval contains the true
difference between the two means.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference between
means that would be scientifically important or scientifically trivial.
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Lower
confidence
limit

Upper
confidence limit

Conclusion

Trivial difference Trivial difference Although the true difference is not zero
(since the P value is low) the true
difference between means is tiny and
uninteresting. The treatment had an
effect, but a small one.

Trivial difference Important
difference

Since the confidence interval ranges
from a difference that you think are
biologically trivial to one you think
would be important, you can’t reach a
strong conclusion from your data. You
can conclude that the means are
different, but you don’t know whether
the size of that difference is
scientifically trivial or important. You’ll
need more data to draw a clear
conclusion.

Important
difference

Important
difference

Since even the low end of the
confidence interval represents a
difference large enough to be
considered biologically important, you
can conclude that there is a difference
between treatment means and that the
difference is large enough to be
scientifically relevant.

If the difference is not statistically significant
If the P value from a post test is large, the data do not give you any reason
to conclude that the means of these two groups differ. Even if the true
means were equal, you would not be surprised to find means this far apart
just by coincidence. This is not the same as saying that the true means are
the same. You just don’t have evidence that they differ.

How large could the true difference really be?  Because of random
variation, the difference between the group means in this experiment is
unlikely to equal the true difference between population means. There is
no way to know what that true difference is. Prism presents the uncertainty
as a 95% confidence interval (except with the Newman-Keuls test). You
can be 95% sure that this interval contains the true difference between the
two means. When the P value is larger than 0.05, the 95% confidence
interval will start with a negative number (representing a decrease) and go
up to a positive number (representing an increase).
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To interpret the results in a scientific context, look at both ends of the
confidence interval for each pair of means, and ask whether those
differences would be scientifically important or scientifically trivial.

Lower
confidence limit

Upper
confidence
limit

Conclusion

Trivial decrease Trivial increase You can reach a crisp conclusion. Either the
means really are the same or they are
different by a trivial amount. At most, the
true difference between means is tiny and
uninteresting.

Trivial decrease Large increase You can’t reach a strong conclusion. The
data are consistent with the treatment
causing a trivial decrease, no change, or a
large increase. To reach a clear conclusion,
you need to repeat the experiment with
more subjects.

Large decrease Trivial increase You can’t reach a strong conclusion. The
data are consistent with a trivial increase, no
change, or a decrease that may be large
enough to be important. You can’t make a
clear conclusion without repeating the
experiment with more subjects.

Large decrease Large increase You can't reach any conclusion. Repeat the
experiment with a much larger sample size.

Problems with post tests following two-way ANOVA
Post test are often used to compare dose-response curves or time course
curves. Using two-way ANOVA in this way presents two problems. One
problem is that ANOVA treats different doses (or time points) exactly as it
deals with different species or different drugs. ANOVA ignores the fact that
doses or time points come in order. You could jumble the doses in any
order, and get exactly the same ANOVA results. However, you did the
experiment to observe a trend, so you should be cautious about
interpreting results from an analysis method that doesn’t recognize trends.

Another problem with the ANOVA approach is that it is hard to interpret
the results. Knowing at which doses or time points the treatment had a
statistically significant effect doesn’t always help you understand the
biology of the system, and rarely helps you design new experiments. Some
scientists like to ask which is the lowest dose (or time) at which the effect of
the treatment is statistically significant. The post tests give you the answer,
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but the answer depends on sample size. Run more subjects, or more doses
or time points for each curve, and the answer will change. Rather than two-
way ANOVA, consider using linear or nonlinear regression to fit the curve
to a model and then compare the fits.

Checklist. Is two-way ANOVA the right test for these
data?
Before accepting the results of any statistical test, first think carefully about
whether you chose an appropriate test. Before accepting results from a one-
way ANOVA, ask yourself these questions:

Question Discussion
Are the populations
distributed according to
a Gaussian distribution?

Two-way ANOVA assumes that your replicates are
sampled from Gaussian distributions. While this
assumption is not too important with large samples, it
is important with small sample sizes, especially with
unequal sample sizes. Prism does not test for
violations of this assumption. If you really don't think
your data are sampled from a Gaussian distribution
(and no transform will make the distribution
Gaussian), you should consider performing non-
parametric two-way ANOVA. Prism does not offer
this test.

ANOVA also assumes that all sets of replicates have
the same SD overall, and that any differences
between SDs are due to random sampling.

Are the data matched? Standard two-way ANOVA works by comparing the
differences among group means with the pooled
standard deviations of the groups. If the data are
matched, then you should choose repeated measures
ANOVA instead. If the matching is effective in
controlling for experimental variability, repeated
measures ANOVA will be more powerful than regular
ANOVA.
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Are the “errors”
independent?

The term “error” refers to the difference between
each value and the mean of all the replicates. The
results of two-way ANOVA only make sense when
the scatter is random – that whatever factor caused a
value to be too high or too low affects only that one
value. Prism cannot test this assumption. You must
think about the experimental design. For example,
the errors are not independent if you have six
replicates, but these were obtained from two animals
in triplicate. In this case, some factor may cause all
values from one animal to be high or low. See “The
need for independent samples” on page 5.

Do you really want to
compare means?

Two-way ANOVA compares the means. It is possible
to have a tiny P value – clear evidence that the
population means are different – even if the
distributions overlap considerably. In some situations
– for example, assessing the usefulness of a
diagnostic test – you may be more interested in the
overlap of the distributions than in differences
between means.

Are there two factors? One-way ANOVA compares three or more groups
defined by one factor. For example, you might
compare a control group, with a drug treatment group
and a group treated with drug plus antagonist. Or you
might compare a control group with five different
drug treatments. Prism has a separate analysis for one-
way ANOVA.

Some experiments involve more than two factors. For
example, you might compare three different drugs in
men and women at four time points. There are three
factors in that experiment: drug treatment, gender and
time. These data need to be analyzed by three-way
ANOVA, also called three factor ANOVA. Prism does
not perform three-way ANOVA.
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Are both factors “fixed”
rather than “random”?

Prism performs Type I ANOVA, also known as fixed-
effect ANOVA. This tests for differences among the
means of the particular groups you have collected
data from. Different calculations are needed if you
randomly selected groups from an infinite (or at least
large) number of possible groups, and want to reach
conclusions about differences among ALL the groups,
even the ones you didn’t include in this experiment.
See "Model I (fixed effects) vs. Model II (random
effects) ANOVA" on page 98.

The circularity assumption in two-way repeated measures
ANOVA
Repeated measures ANOVA assumes that the random error truly is random.
A random factor that causes a measurement in one subject to be a bit high
(or low) should have no affect on the next measurement in the same
subject. This assumption is called circularity or sphericity. It is closely
related to another term you may encounter, compound symmetry.

Repeated measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will be
too low. You’ll violate this assumption when the repeated measurements
are made too close together so that random factors that cause a particular
value to be high (or low) don’t wash away or dissipate before the next
measurement.  To avoid violating the assumption, wait long enough
between treatments so the subject is essentially the same as before the
treatment. Also randomize the order of treatments, when possible.

You only have to worry about the assumption of circularity when your
experiment truly is a repeated measures experiment, with measurements
from a single subject. You don’t have to worry about circularity with
randomized block experiments, where you used a matched set of subjects
(or a matched set of experiments).
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Survival curves

Introduction to survival curves
With many kinds of experiments, the outcome is a survival time and you
wish to compare the survival of two or more groups. Prism creates survival
curves, which plot percent survival as a function of time, using the method
of Kaplan and Meier. Prism can also compare two or more survival curves
using the logrank test.

The name survival curve is a bit misleading. The methods described in this
chapter can analyze any kind of experiment where the result is expressed
as a time to a well-defined end point. Instead of death, the endpoint could
be occlusion of a vascular graft, first metastasis, or rejection of a
transplanted kidney. The event does not have to be dire. The event could
be restoration of renal function, discharge from a hospital, or graduation.

The end point must be a one-time event. Recurring events should not be
analyzed with survival curves.

Some kinds of survival data are better analyzed with nonlinear regression.
For example, don't use the methods in this chapter to analyze cell survival
curves plotting percent survival (Y) as a function of various doses of
radiation (X). The survival methods described in this chapter are only useful
if X is time.

Entering survival data

What are censored data?
When creating a survival curve, you rarely know the survival time for each
subject.  Some subjects are still alive at the end of the study. You know
how long they have survived so far, but don’t know how long they will
survive in the future. Others drop out of the study -- perhaps they moved to
a different city or wanted to take a medication disallowed on the protocol.
You know they survived a certain length of time on the protocol, but don’t
know how long they survived after that (or do know, but can’t use the
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information because they weren’t following the experimental protocol). In
both cases, information about these patients is censored. When calculating
and comparing survival curves, Prism automatically accounts for censored
data.

Arranging survival data
Format the data sheet for single Y values (no replicates; no error bars). Enter
each subject on a separate row in the table.

In the X column, enter time until censoring or death (or whatever event you
are tracking). Use any convenient unit, such as days or months. Time zero
does not have to be some specified calendar date; rather it is the time that
each subject entered the study. In many clinical studies, time zero spans
several calendar years as patients are enrolled.

Enter one code (usually Y=1) into the Y columns for rows where the sub-
ject died (or the event occurred) at the time shown in the X column. Enter
another code (usually Y=0) into the rows where the subject was censored
at that time.  Every subject in a survival study either dies or is censored.

Note: The term “death” is used for convenience. Survival
curves can be used to plot time to any nonrecurring event. The
event does not have to be death.

Each Y column represents a different treatment group. We suggest entering
the data as shown in the figure below: Place the X values for the subjects
for the first group at the top of the table with the Y codes in the first Y
column. Place the X values for the second group of subjects beneath those
for the first group (X values do not have to be sorted). Place the
corresponding Y codes in the second Y column, leaving the first column
blank. In the example below, data for group A were entered in the first 14
rows, and data for group B started in row 15.

If the treatment groups are intrinsically ordered (perhaps increasing dose)
maintain that order when entering data. Make the progression from column
A to column B to column C follow the natural order of the treatment
groups.
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Common questions about entering survival data
Question Answer
How do I enter data for subjects
still alive at the end of the
study?

Those subjects are said to be censored. You
know how long they survived so far, but don’t
know what will happen later. X is the # of days
(or months…) they were followed. Y is the code
for censored observations, usually zero.

What if two or more subjects
died at the same time?

Each subject must be entered on a separate row.
Enter the same X value on two (or more) rows.

How do I enter data for a
subject who died of an
unrelated cause?

Different investigators handle this differently.
Some treat a death as a death, no matter what
the cause. Others treat death of an unrelated
cause to be a censored observation. Ideally, this
decision should be made in the study design. If
the study design is ambiguous, you should
decide how to handle these data before
unblinding the study.

Do the X values have to be
entered in order?

No. You can enter the data in any order you
want.

How does Prism distinguish
between subjects who are alive
at the end of the study and
those who dropped out of the
study?

It doesn't. In either case, the observation is
censored. You know the patient was alive and
on the protocol for a certain period of time. After
that you can't know (patient still alive), or can't
use (patient stopped following the protocol) the
information. Survival analysis calculations treat
all censored subjects in the same way. Until the
time of censoring, censored subjects contribute
towards calculation of percent survival. After the
time of censoring, they are essentially missing
data.

I already have a life-table
showing percent survival at
various times. Can I enter this
table into Prism?

No. Prism only can analyze survival data if you
enter survival time for each subject. Prism can
not analyze data entered as a life table.

Can I enter a starting and
ending date, rather than
duration?

No. You must enter the number of days (or
months, or some other unit of time). Use a
spreadsheet to subtract dates to calculate
duration.
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Choosing a survival analysis
To create and compare survival curves with Prism, start from your table of
survival data (see "Entering survival data" on page 109). Press Analyze, and
choose built-in analyses. Then choose Survival analysis from the list of
statistical analyses.

Ordinarily, Y=0 indicates a censored subject and Y=1 indicates a death.
You may define other codes (use digits, not letters).

Choose whether you wish to report results as fractions or percents. Also
choose whether you want the curve to start at 100% (fractional survival) or
at 0% (fractional deaths). If the event is death, it is traditional to show
percent (or fraction) survival rather than percent deaths.  If the event is a
positive one (i.e. restoration of renal function), you’ll probably want to start
at 0% so the graph runs uphill.

Decide whether you wish censored subjects to appear on the survival
curves. The analysis will be identical either way; only the appearance of
the graph will differ. Censored subjects appear as a data point in a flat part
of the curve.

Choose whether you want to tabulate the uncertainty in survival as a
standard error or as a 95% confidence interval.
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Interpreting survival analysis

How survival analysis works

The fraction (or percent) survival at each time
Prism calculates survival fractions using the product limit or Kaplan-Meier
method. For each X value (time) Prism shows the fraction still alive (or the
fraction already dead, if you chose to begin the curve at 0.0 rather than
1.0). This table contains the numbers used to graph survival vs. time.

Prism also reports the uncertainty of the fractional survival as a standard
error or 95% confidence intervals. Standard errors are calculated by the
method of Greenwood. The 95% confidence intervals are computed as
1.96 times the standard error in each direction. In some cases the
confidence interval calculated this way would start below 0.0 or end above
1.0 (or 100%). In these cases, the error bars are clipped to avoid impossible
values.

On a second output view, Prism displays the number of patients still at risk
at each time. As subjects die and are censored, the number still being
followed decreases. This table also shows the median survival time for each
group.

Logrank test to compare survival curves
If you entered two or more data sets in the table, Prism compares the
survival curves and presents the comparison on a third output view.

Prism compares survival curves using the logrank test. If you entered two
data sets, the logrank test is equivalent to the Mantel-Haenszel test. This
test generates a P value testing the null hypothesis that the survival curves
are identical in the overall populations. In other words, the null hypothesis
is that the treatments did not change survival. The P value answers this
question: If the null hypothesis is true, what is the probability of randomly
selecting subjects whose survival curves are as different (or more so) than
was actually observed?

Prism always calculates two-tailed P values. If you wish to report a one-
tailed P value, you must have predicted which group would have the
longer median survival before collecting any data. If your prediction was
correct, the one-tail P value is half the two-tail P value. If your prediction
was wrong, the one-tail P value is greater than 0.50, and you must
conclude that the difference was due to chance, no matter how large it is.

  Analyzing Data with GraphPad Prism 110 Copyright (c) 1999 GraphPad Software Inc.

Logrank test for trend
If you entered three or more data sets, Prism also calculates the logrank test
for trend. This test is only meaningful if the data sets were entered in a
logical order, perhaps corresponding to dose or age. If the data sets are not
ordered (or not equally spaced), then you should ignore the results of the
logrank test for trend. The logrank test for trend calculates a P value testing
the null hypothesis that there is no linear trend between column number
and median survival.

Median survival
The median survival is the time at which half the subjects have died. The
example survival curve below shows 50% survival at 6 months, so median
survival is 6 months.
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If survival exceeds 50% at the longest time points, then median survival
cannot be computed. If the survival curve is horizontal at 50% survival,
Prism reports the median survival as the average of the first and last times at
which survival is 50%.

When comparing two survival curves, Prism also reports the ratio of the
median survival times along with its 95% confidence interval. You can be
95% sure that the true ratio of median survival times lies within that range.

Hazard ratio
If you compare two survival curves, Prism reports the hazard ratio and its
95% confidence interval.

The hazard is the slope of the survival curve – a measure of how rapidly
subjects are dying. The hazard ratio compares two treatments. If the hazard
ratio is 2.0, then the rate of deaths in one treatment group is twice the rate
in the other group.

The computation of the hazard ratio assumes that the ratio is consistent
over time, and that any differences are due to random sampling. So Prism
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reports a single hazard ratio, not a different hazard ratio for each time
interval. If two survival curves cross, the hazard ratios are not equal.

Reference for survival calculations
Most of the calculations are quite standard. Prism follows the calculations
as spelled out in detail in DG Altman, Practical Statistics for Medical
Research, 1991, Chapman and Hall.

For calculating the logrank test, Prism uses the second of the two methods
described in that reference (more difficult to calculate, but more accurate).
Some books call this method the Mantel-Haenszel logrank test.

How to think about survival curve results
As with any analysis, you need to look both at the P value and at the
confidence intervals.

This section applies only if you are comparing two survival curves. The
logrank test computes a P value that answers this question: If the two
populations have identical survival curves overall, what is that chance that
random sampling of subjects would lead to as big a difference in survival
(or bigger) as you observed.

To interpret the P value, you also need to consider a confidence interval.
Prism reports two confidence intervals: the confidence interval for the ratio
of median survival and the confidence interval for the hazard ratio. The
discussion below assumes that you are focusing on the ratio of median
survival times, but you can use the same logic if you focus on the hazard
ratio.

If the difference is statistically significant – the P value is small
If the P value is small, then it is unlikely that the difference you observed is
due to a coincidence of random sampling. You can reject the idea that the
two populations have identical survival characteristics.

Because of random variation, the ratio of median survival times (or the
hazard ratio) between the two groups in this experiment is unlikely to
equal the true ratio. There is no way to know what that true ratio is. Prism
presents the uncertainty as a 95% confidence interval for the ratio of
median survival times (and the hazard ratio). You can be 95% sure that this
interval contains the true ratio.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a ratio far enough from
1.0 to be scientifically important. How far is "far"? How close is "close"?
That depends on the reasons you did the experiment. In some cases, you
may think that a 10% increase or decrease in median survival would be
very important. In other cases you may care only about a 50% change.
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Lower
confidence
limit

Upper
confidence
limit

Conclusion

Close to 1.0 Close to 1.0 Although the true ratio is not 1.0 (since
the P value is low) the difference
between median survival is tiny and
uninteresting. The treatment had an
effect, but a small one.

Close to 1.0 Far from 1.0 Since the confidence interval ranges
from a ratio that you think is trivially
different than 1.0 to one you think is far
from 1.0, you can’t reach a strong
conclusion from your data. You can
conclude that the median survival times
are different, but you don’t know
whether the size of that difference is
scientifically trivial or important. You’ll
need more data to obtain a clear
conclusion.

Far from 1.0 Far from 1.0 Since even the low end of the
confidence interval represents a ratio far
from 1.0 and thus considered
biologically important, you can
conclude that there is a difference
between median survival times, and that
the difference is large enough to be
scientifically relevant.

If the difference is not statistically significant -- the P value is
large (logrank test)
If the P value from the logrank is large, the data do not give you any reason
to conclude that the median survival times of the two groups are really
different. Even if the true median survival times were equal, you would not
be surprised to find medians this far apart just by coincidence. This is not
the same as saying that the true median times are the same. You just don’t
have evidence that they differ.

How large could the true difference really be?  Because of random
variation, the ratio of median survival times in this experiment is unlikely to
equal the true ratio in the entire population. There is no way to know what
that true ratio is. Prism presents the uncertainty as a 95% confidence
interval (except with the Newman-Keuls test). You can be 95% sure that
this interval contains the true ratio of median survival times. When the P
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value is larger than 0.05, the 95% confidence interval will start with a ratio
below 1.0 (representing a decrease) and go up to a ratio greater than 1.0
(representing an increase).

To interpret the results in a scientific context, look at both ends of the
confidence interval, and ask whether they are close to or far from 1.0.

Lower
confidence
limit

Upper
confidence
limit

Conclusion

Close to 1.0 Close to 1.0 You can reach a crisp conclusion. Either
the median survival times really are the
same, or they are different by a trivial
amount. At most, the true difference
between median survival times is tiny and
uninteresting.

Close to 1.0 Far from 1.0 You can’t reach a strong conclusion. The
data are consistent with the treatment
causing a trivial decrease, no change, or a
large increase. To reach a clear conclusion,
you need to repeat the experiment with
more subjects.

Far from 1.0 Close to 1.0 You can’t reach a strong conclusion. The
data are consistent with a trivial increase,
no change, or a decrease that may be large
enough to be important. You can’t make a
clear conclusion without repeating the
experiment with more subjects.

Far from 1.0 Far from 1.0 You cannot reach any conclusion. Your
data are consistent with no change, or a
difference in either direction that may be
large enough to be scientifically relevant.
You can’t make a clear conclusion without
repeating the experiment with more
subjects.
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Checklist for interpreting survival analyses
Question Discussion
Are the subjects
independent?

Factors that influence survival should either affect all
subjects in a group, or just one subject. If the survival
of several subjects is linked, then you don’t have
independent observations. For example, if the study
pools data from two hospitals, the subjects are not
independent, as it is possible that subjects from one
hospital have different average survival times than
subjects from another. You could alter the median
survival curve by choosing more subjects from one
hospital and fewer from the other. To analyze these
data, use Cox proportional hazards regression which
Prism cannot perform.

Were the entry criteria
consistent?

Typically, subjects are enrolled over a period of
months or years. In these studies, it is important that
the starting criteria don't change during the enrollment
period. Imagine a cancer survival curve starting from
the date that the first metastasis was detected. What
would happen if improved diagnostic technology
detected metastases earlier? Even with no change in
therapy or in the natural history of the disease, survival
time will apparently increase. Here's why: Patients die
at the same age they otherwise would, but are
diagnosed when they are younger, and so live longer
with the diagnosis.

Was the end point
defined consistently?

If the curve is plotting time to death, then there can be
ambiguity about which deaths to count. In a cancer
trial, for example, what happens to subjects who die in
an automobile accident? Some investigators count
these as deaths, others count them as censored
subjects. Both approaches can be justified, but the
approach should be decided before the study begins. If
there is any ambiguity about which deaths to count,
the decision should be made by someone who doesn't
know which patient is in which treatment group.

If the curve plots time to an event other than death, it
is crucial that the event be assessed consistently
throughout the study.
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Is time of censoring is
unrelated to survival?

The survival analysis only is valid when the survival
times of censored patients are identical to the survival
of subjects who stayed with the study. If a large
fraction of subjects are censored, the validity of this as-
sumption is critical to the integrity of the results. There
is no reason to doubt that assumption for patients still
alive at the end of the study. When patients drop out
of the study, you should ask whether the reason could
affect survival.  A survival curve would be misleading,
for example, if many patients quit the study because
they were too sick to come to clinic, or because they
felt too well to take medication.

Does average survival
stay constant during the
course of the study?

Many survival studies enroll subjects over a period of
several years. The analysis is only meaningful if you
can assume that the average survival of the first few
patients is not different than the average survival of the
last few subjects. If the nature of the disease or the
treatment changes during the study, the results will be
difficult to interpret.

Is the assumption of
proportional hazards
reasonable?

The logrank test is only strictly valid when the survival
curves have proportional hazards. This means that the
rate of dying in one group is a constant fraction of the
rate of dying in the other group. This assumption has
proven to be reasonable for many situations. It would
not be reasonable, for example, if you are comparing a
medical therapy with a risky surgical therapy. At early
times, the rate of dying might be much higher in the
surgical group. At later times the rate of dying might be
greater in the medical group. Since the hazard ratio is
not consistent over time (the assumption of
proportional hazards is not reasonable), these data
should not be analyzed with a logrank test.

Were the treatment
groups defined before
data collection began?

It is not valid to divide a single group of patients (all
treated the same) into two groups based on whether
they responded to treatment (tumor got smaller, lab
tests got better). By definition, the responders must
have lived long enough to see the response. And they
may have lived longer anyway, regardless of treatment.
When you compare groups, the groups must be
defined before data collection begins.
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Graphing survival curves
The results sheet for survival analysis has several views. One is a table of
fractional survival as a function of time. Prism graphs this sheet to make a
survival curve. Below is an example, showing the data, the results sheet,
and the graph that Prism made automatically.
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Data Results sheet Default graph of results

Duration

Choices on the analysis parameters dialog made the graph start at 100%
and go down to zero, showing percent survival with its standard error at
every time at which a subject died. It also shows percent survival (with no
error bar) at the times at which a subject was censored (left the study, etc.).
You could change an option on the parameters dialog to not show these
censored points.

The automatic graph is not satisfactory. One problem is that the Y-axis
extends too far. Double-click on the axis, and change the range to go from
–10 to 110. Then double-click on one of the symbols to bring up the
Format Symbols to change the appearance. In graph A below, the data
points are shown as circles connected by a staircase. There are no error
bars. In graph B, the data points are shown as ticks (the choice fifth from
the bottom in the list of shapes). You only see ticks for censored subjects
because the other ticks are superimposed on the staircase. These two kinds
of survival graphs are commonly seen in the clinical literature.

Examples C and D include error bars to demonstrate how precisely you
know the survival curve. In example C, the data points are circles
connected by point-to-point lines. Error bars show plus and minus one
standard error (they would show 95% confidence, if you had selected that
choice in the analysis parameters dialog). Some statisticians dislike showing
survival data with point-to-point lines, because the survival in your sample
actually follows a staircase pattern – the survival changes only at the instant
each subject dies. Example D does not connect the points at all, but shows
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an error envelope. This is created by choosing  "- - - - - -" in the list of error
bar styles.
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Contingency tables

Introduction to contingency tables
Contingency tables summarize results where the outcome is a categorical
variable such as disease vs. no disease, pass vs. fail, artery open vs. artery
obstructed.

Use contingency tables to display the results of four kinds of experiments.

In a cross-sectional study, you recruit a single group of subjects and then
classify them by two criteria (row and column). As an example, let's
consider how to conduct a cross-sectional study of the link between
electromagnetic fields (EMF) and leukemia. To perform a cross-sectional
study of the EMF-leukemia link, you would need to study a large sample of
people selected from the general population. You would assess whether or
not each subject has been exposed to high levels of EMF. This defines the
two rows in the study. You then check the subjects to see whether or not
they have leukemia. This defines the two columns. It would not be a cross-
sectional study if you selected subjects based on EMF exposure or on the
presence of leukemia.

A prospective study starts with the potential risk factor and looks forward
to see what happens to each group of subjects. To perform a prospective
study of the EMF-leukemia link, you would select one group of subjects
with low exposure to EMF and another group with high exposure. These
two groups define the two rows in the table. Then you would follow all
subjects over time and tabulate the numbers that get leukemia. Subjects
that get leukemia are tabulated in one column; the rest are tabulated in the
other column.

A retrospective case-control study starts with the condition being studied
and looks backwards at potential causes. To perform a retrospective study
of the EMF-leukemia link, you would recruit one group of subjects with
leukemia and a control group that does not have leukemia but is otherwise
similar. These groups define the two columns. Then you would assess EMF
exposure in all subjects. Enter the number with low exposure in one row,
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and the number with high exposure in the other row. This design is also
called a case control study

In an experiment, you manipulate variables. Start with a single group of
subjects. Half get one treatment, half the other (or none). This defines the
two rows in the study. The outcomes are tabulated in the columns. For
example, you could perform a study of the EMF/leukemia link with
animals. Half are exposed to EMF, while half are not. These are the two
rows. After a suitable period of time, assess whether each animal has
leukemia. Enter the number with leukemia in one column, and the number
without leukemia in the other column. Contingency tables can also
tabulate the results of some basic science experiments. The rows represent
alternative treatments, and the columns tabulate alternative outcomes.

If the table has two rows and two columns, Prism computes P values using
either Fisher’s exact test or the chi-square test, and summarizes the data by
computing the relative risk, odds ratio or difference in proportions, along
with 95% confidence intervals. If the table has two rows and three or more
columns (or three or more rows and two columns) Prism calculates both
the chi-square test and the chi-square test for trend. With larger tables,
Prism only calculates the chi-square test.

Entering data into contingency tables
You must enter data in the form of a contingency table. Prism cannot
tabulate raw data to create a contingency table. Prism also cannot compare
proportions directly. You need to enter the number of subjects in each
category – you cannot enter fractions or percentages.

The values entered in a contingency table represent the number of subjects
actually observed in this experiment. Tables of averages, percentages or
rates are not contingency tables, and cannot be analyzed by chi-square and
related tests. Note also that the columns define mutually exclusive
categories, as do the rows. A subject can be in one or the other, but not
both.

Most contingency tables have two rows (two groups) and two columns (two
possible outcomes). For data from prospective and experimental studies,
the top row usually represents exposure to a risk factor or treatment, and
the bottom row is for controls. The left column usually tabulates the
number of individuals with disease; the right column is for those without
the disease. In case-control retrospective studies, the left column is for
cases; the right column is for controls. The top row tabulates the number of
individuals exposed to the risk factor; the bottom row is for those not
exposed.

If your experimental design matched patients and controls, you should not
analyze your data with contingency tables. Instead you should use
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McNemar's test. This test is not offered by Prism, but it is included in the
companion program GraphPad StatMate.

Choosing how to analyze a contingency table
To analyze a contingency table, start from your data table (see "Entering
data into contingency tables" on page 122). Press Analyze and choose
built-in analyses. Then choose Contingency table analysis from the list of
statistical tests.

Prism offers two methods for calculating a P value from tables with two
rows and two columns: Fisher’s exact test and the chi-square test. We
recommend always picking Fisher’s test, as it calculates a P value that is
exactly correct. The only advantage of the chi-square test is that it is easier
to calculate by hand, and so is better known. We don’t recommend using it
to analyze contingency tables with two rows and two columns.

If you choose a chi-square test, also choose whether to apply Yates'
continuity correction. This correction is designed to make the approximate
results from a chi-square test more accurate with small samples.
Statisticians disagree about whether to use it. If you always select Fisher's
exact test (recommended), Yates' correction is of no concern.

If your table includes very large numbers (thousands), Prism will
automatically perform the chi-square test even if you select Fisher's test.
This is because the Fisher's test calculations are slow with large samples.
With large samples, the chi-square test is very accurate and Yates'
continuity correction has negligible effect.
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Choose a two-sided P value, unless you have a good reason to pick a one-
sided P value. (With contingency tables, Prism refers to “two-sided” P
values rather than “two-tail P value” -- the distinction is subtle and not
worth worrying about.) See “One- vs. two-tail P values” on page 10.

If your table has more than two rows or two columns, Prism always
calculates the chi-square test. You have no choice. Extensions to Fisher's
exact test have been developed for larger tables, but Prism doesn't offer
them.

If your table has two columns and three or more rows, you may also select
the chi-square test for trend. This calculation tests whether there is a linear
trend between row number and the fraction of subjects in the left column.
It only makes sense when the rows are arranged in a natural order (i.e. age,
dose, time) and are equally spaced.

Prism can summarize data on a two by two table with the relative risk,
difference between proportions (P1-P2) and/or the odds ratio. If your data
came from an experimental, cross-sectional or prospective study,
summarize the data by choosing the relative risk or P1-P2. If your data
came from a retrospective case-control study, pick only the odds ratio.

Interpreting analyses of contingency tables

How analyses of 2x2 contingency tables work
If your table has two rows and two columns, Prism computes relative risk,
odds ratio and P1-P2 using the equations below:

Outcome 1 Outcome 2

Group 1 A B

Group 2 C D

Relative Risk

Odds Ratio
A

B
C

D

= +

+

− =
+

−
+

=

A
A B

C
C D

P P A
A B

C
C D

1 2
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If any of the four values in the contingency table are zero,
Prism adds 0.5 to all values before calculating the relative risk,
odds ratio and P1-P2 (to avoid dividing by zero).

The word "risk" is appropriate when the first row is the exposed or treated
group and the left column is the bad outcome. With other kinds of data, the
term "risk" isn't appropriate, but you may still be interested in the ratio of
proportions. Prism calculates the 95% confidence interval for the relative
risk using the approximation of Katz. You can be 95% certain that this
range includes the true relative risk.

If your data are from a case-control retrospective study, neither the relative
risk nor P1-P2 is meaningful.  Instead, Prism calculates an odds ratio and
the confidence interval of the odds ratio using the approximation of Woolf.
If the disease is rare, you can think of an odds ratio as an approximation of
the relative risk.

Prism computes the P value using either the chi-square test or Fisher's exact
test.

How analyses of larger contingency tables work
If your table has two columns and more than two rows (or two rows and
more than two columns), Prism will perform both the chi-square test for
independence and the chi-square test for trend.

The chi-square test for independence asks whether there is an association
between the variable that defines the rows and the variable that defines the
columns.

Prism first computes the expected values for each value. These expected
values are calculated from the row and column totals, and are not
displayed in the results. The discrepancies between the observed values
and expected values are then pooled to compute chi-square, which is
reported. A large value of chi-square tells you that there is a large
discrepancy. The P value answers this question: If there is really no
association between the variable that defines the rows and the variable that
defines the columns, then what is the chance that random sampling would
result in a chi-square value as large (or larger) as you obtained in this
experiment.

The P value from the chi-square test for trend answers this question: If
there is no linear trend between row (column) number and the fraction of
subjects in the left column (top row), what is the chance that you would
happen to observe such a strong trend as a coincidence of random
sampling? If the P value is small, you will conclude that there is a
statistically significant trend.
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For more information about the chi-square test for trend, see the excellent
text, Practical Statistics for Medical Research by D. G. Altman, published in
1991 by Chapman and Hall.

How to think about the relative risk, odds ratio and P1-
P2
To understand the differences between the relative risk, odds ratio and P1-
P2 consider this example. There are two groups of subjects, denoted by
two rows. There are two outcomes denoted by columns:

 

Method Description
Difference between
proportions

In the example, disease progressed in 28% of the
placebo-treated patients and in 16% of the AZT-treated
subjects. The difference is 28% - 16% = 12%.

Relative risk The ratio is 16%/28%=0.57. A subject treated with
AZT has 57% the chance of disease progression as a
subject treated with placebo. The word "risk" is not
always appropriate. Think of the relative risk as being
simply the ratio of proportions.

Odds ratio This is a more difficult concept. There isn't much point
in calculating an odds ratio for experimental or
prospective studies. When analyzing case-control
retrospective studies, however, you cannot
meaningfully calculate the difference between
proportions or the relative risk. The odds ratio is used
to summarize the results of these kinds of studies. See
a biostatistics or epidemiology book for details.

How to think about P values from a 2x2 contingency
table
The P value answers this question: If there really is no association between
the variable defining the rows and the variable defining the columns in the
overall population, what is the chance that random sampling would result
in an association as strong (or stronger) as observed in this experiment?
Equivalently, if there really is no association between rows and columns
overall, what is the chance that random sampling would lead to a relative
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risk or odds ratio as far (or further) from 1.0 (or P1-P2 as far from 0.0) as
observed in this experiment?

 “Statistically significant” is not the same as “scientifically important”.
Before interpreting the P value or confidence interval, you should think
about the size of the relative risk, odds ratio or P1-P2 you are looking for.
How large does the value need to be for you consider it to be scientifically
important? How small a value would you consider to be scientifically
trivial? Use scientific judgment and common sense to answer these
questions. Statistical calculations cannot help, as the answers depend on
the context of the experiment.

You will interpret the results differently depending on whether the P value
is small or large.

If the P value is small
If the P value is small, then it is unlikely that the association you observed
is due to a coincidence of random sampling. You can reject the idea that
the association is a coincidence, and conclude instead that the population
has a relative risk or odds ratio different than 1.0 (or P1-P2 different than
zero). The association is statistically significant. But is it scientifically
important? The confidence interval helps you decide.

Your data include the effects of random sampling, so the true relative risk
(or odds ratio or P1-P2) is probably not the same as the value calculated
from the data in this experiment. There is no way to know what that true
value is. Prism presents the uncertainty as a 95% confidence interval. You
can be 95% sure that this interval contains the true relative risk, odds ratio
or P1-P2.

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent values that would be
scientifically important or scientifically trivial.
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Lower
confidence
limit

Upper
confidence
limit Conclusion

Trivial Trivial Although the true relative risk or odds ratio is
not 1.0 (and the true P1-P2 is not 0.0) the
association is tiny and uninteresting. The
variables defining the rows is associated with
the variable defining the columns, but
weakly.

Trivial Important Since the confidence interval ranges from a
relative risk (or odds ratio or P1-P2) that you
think is biologically trivial to one you think
would be important, you can’t reach a strong
conclusion from your data. You can conclude
that the rows and columns are associated, but
you don’t know whether the association is
scientifically trivial or important. You’ll need
more data to obtain a clear conclusion.

Important Important Since even the low end of the confidence
interval represents an association large
enough to be considered biologically
important, you can conclude that the rows
and columns are associated, and the
association is strong enough to be
scientifically relevant.

If the P value is large
If the P value is large, the data do not give you any reason to conclude that
the relative risk or odds ratio differs from 1.0 (or P1-P2 differs from 0.0).
This is not the same as saying that the true relative risk or odds ratio equals
1.0 (or P1-P2 equals 0.0). You just don’t have evidence that they differ.

How large could the true relative risk really be?  Your data include the
effects of random sampling, so the true relative risk (or odds ratio or P1-P2)
is probably not the same as the value calculated from the data in this
experiment. There is no way to know what that true value is. Prism
presents the uncertainty as a 95% confidence interval. You can be 95%
sure that this interval contains the true relative risk (or odds ratio or P1-P2).
When the P value is larger than 0.05, the 95% confidence interval includes
the null hypothesis (relative risk or odds ratio equal to 1.0 or P1-P2 equal
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to zero) and extends from a negative association (RR<1.0, OR<1.0, or P1-
P2<0.0) to a positive association (RR>1.0, OR>1.0, or P1-P2>0.0)

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent an association that
would be scientifically important or scientifically trivial.

Lower
confidence
limit

Upper
confidence
limit

Conclusion

Trivial Trivial You can reach a crisp conclusion. Either
there is no association between rows and
columns, or it is trivial. At most, the true
association between rows and columns is
tiny and uninteresting.

Trivial Large You can’t reach a strong conclusion. The
data are consistent with the treatment
causing a trivial negative association, no
association, or a large positive association.
To reach a clear conclusion, you need to
repeat the experiment with more subjects.

Large Trivial You can’t reach a strong conclusion. The
data are consistent with a trivial positive
association, no association, or a large
negative association. You can’t make a clear
conclusion without repeating the
experiment with more subjects.

Large Large You can’t reach any conclusion at all. You
need more data.

Checklist. Are contingency table analyses appropriate
for your data?
Before interpreting the results of any statistical test, first think carefully
about whether you have chosen an appropriate test. Before accepting
results from a chi-square or Fisher’s test, ask yourself these questions:
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Question Discussion
Are the subjects
independent?

The results of a chi-square or Fisher’s test only make sense if each
subject (or experimental unit) is independent of the rest. That
means that any factor that affects the outcome of one subject only
affects that one subject. Prism cannot test this assumption. You
must think about the experimental design. For example, suppose
that the rows of the table represent two different kinds of
preoperative antibiotics and the columns denote whether or not
there was a postoperative infection. There are 100 subjects.
These subjects are not independent if the table combines results
from 50 subjects in one hospital with 50 subjects from another
hospital. Any difference between hospitals, or the patient groups
they serve, would affect half the subjects but not the other half.
You do not have 100 independent observations. To analyze this
kind of data, use the Mantel-Haenszel test or logistic regression.
Neither of these tests are offered by Prism.

Are the data
unpaired?

In some experiments, subjects are matched for age and other
variables. One subject in each pair receives one treatment while
the other subject gets the other treatment. These data should be
analyzed by special methods such as McNemar’s test (which
Prism does not do, but GraphPad's StatMate program does).
Paired data should not be analyzed by chi-square or Fisher’s test.

Is your table really
a contingency
table?

To be a true contingency table, each value must represent
numbers of subjects (or experimental units). If it tabulates
averages, percentages, ratios, normalized values, etc. then it is
not a contingency table and the results of chi-square or Fisher’s
tests will not be meaningful.

Does your table
contain only data?

The chi-square test is not only used for analyzing contingency
tables. It can also be used to compare the observed number of
subjects in each category with the number you expect to see
based on theory. Prism cannot do this kind of chi-square test. It is
not correct to enter observed values in one column and expected
in another. When analyzing a contingency table with the chi-
square test, Prism generates the expected values from the data –
you do not enter them.

Are the rows or
columns arranged
in a natural order?

If your table has two columns and more than two rows (or two
rows and more than two columns), Prism will perform the chi-
square test for trend as well as the regular chi-square test. The
results of the test for trend will only be meaningful if the rows (or
columns) are arranged in a natural order, such as age, duration,
or time. Otherwise, ignore the results of the chi-square test for
trend and only consider the results of the regular chi-square test.
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The confidence interval of a proportion
When an experiment has two possible outcomes, the results are expressed
as a proportion. Out of N experiments (or subjects), you observed one
outcome (termed "success") in S experiments (or subjects) and the
alternative outcome in N-S experiments. Success occurred in S/N of the
experiments (or subjects), and we will call that proportion p. Since your
data are derived from random sampling, the true proportion of success in
the overall population is almost certainly not p. A 95% confidence interval
quantifies the uncertainty. You can be 95% sure the overall proportion of
success is within the confidence interval.

How to compute the 95% CI of a proportion
Prism does not compute the confidence interval of a single proportion, but
does compute the confidence interval of two proportions when analyzing a
2x2 contingency table. Prism's companion program StatMate computes a
confidence interval of a single proportion. Both programs (and many
others) compute a confidence interval of a proportion using a method
developed by Clopper and Pearson (Biometrika 26:404-413, 1934). The
result is labeled an "exact" confidence interval (in contrast to the
approximate intervals you can calculate conveniently by hand).

If you want to compute the 95% confidence interval by hand, most books
present the Wald equation:
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However, there is a better way. The Wald approximation is known to work
well only with large N and proportions not too close to 0.0 or 1.0.
Computer simulations by several investigators demonstrate that the so-
called exact confidence intervals are also approximations. They are wider
than they need to be, and so generally give you more than 95%
confidence. The discrepancy varies depending on the values of S and N.
The so-called "exact" confidence intervals are not, in fact, exactly correct.
For all values of S and N, you can be sure that you get at least 95%
confidence, but the intervals may be wider than they need to be.

Agresti and Coull (The American Statistician. 52:119-126, 1998)
recommend a method they term the modified Wald method. It is easy to
compute by hand and is more accurate than the so-called "exact" method.
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In some cases, the lower limit calculated using that equation is less than
zero. If so, set the lower limit to 0.0. Similarly, if the calculated upper limit
is greater than 1.0, set the upper limit to 1.0.

This method works very well. For any values of S and N, there is close to a
95% chance that it contains the true proportion. With some values of S and
N, the degree of confidence can a bit less than 95%, but it is never less
than 92%.

Where did the numbers 2 and 4 in the equation come from? Those values
are actually z and z2, where z is a critical value from the Gaussian
distribution. Since 95% of all values of a normal distribution lie within 1.96
standard deviations of the mean, z=1.96 (which we round to 2.0) for 95%
confidence intervals.

Note that the confidence interval is centered on p’, which is not the same
as p, the proportion of experiments that were "successful". If p is less than
0.5, p’ is higher than p. If p is greater than 0.5, p' is less than p. This makes
sense as the confidence interval can never extend below zero or above
one. So the center of the interval is between p and 0.5.

The meaning of "95% confidence" when the numerator
is zero
If the numerator of a proportion is zero, the "95% confidence interval"
really gives you 97.5% confidence. Here’s why. When the proportion does
not equal zero, we define the 95% confidence interval so that there is a
2.5% chance that the true proportion is less than the lower limit of the
interval, and a 2.5% chance that the true proportion is higher than the
upper limit. This leaves a 95% chance (100% -2.5% - 2.5%) that the
interval includes the true proportion. When the numerator is zero, we
know that the true proportion cannot be less than zero, so we only need to
compute an upper confidence limit. If we use the usual equations, we
define the upper limit so that there is only a 2.5% chance that the true
proportion is higher. Since the uncertainty only goes one way you’ll
actually have a 97.5% CI (100% - 2.5%). The advantage of this approach is
consistency with CIs computed for proportions where the numerator is not
zero.

If you don’t care about consistency with other data, but want to really
calculate a 95% CI, you can do that by computing a "90% CI". This is
computed so that there is a 5% chance that the true proportion is higher
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than the upper limit. If the numerator is zero, there is no chance of the
proportion being less than zero, so the "90% CI" reported by StatMate (or
other programs) really gives you 95% confidence (and StatMate tells you
this). For the example above, StatMate says that the "90% confidence
interval" for a proportion with the numerator = 0 and the denominator =
41 extends from 0.00% to 7.04%.

A shortcut equation for a confidence interval when the
numerator equals zero
JA Hanley and A Lippman-Hand (J. Am. Med. Assoc., 249: 17431745,
1983) devised a simple shortcut equation for estimating the 95%
confidence interval. If you observe zero events in N trials, you can be 95%
sure that the true rate is less than 3/N. To compute the usual "95%
confidence interval" (which really gives you 97.5% confidence), estimate
the upper limit as 3.5/N. This equation is so simple, you can do it by hand
in a few seconds.

Here is an example. You observe 0 dead cells in 10 cells you examined.
What is the 95% confidence interval for the true proportion of dead cells.
The "exact 95% CI" (calculated by StatMate) is 0.00% to 30.83. The
adjusted Wald equation gives a "95%" confidence interval of 0.0 to
32.61%. The shortcut equation computes upper confidence limits of 35%
(3.5/10). With such small N, the shortcut equation overestimates the
confidence limit, but it is useful as a ballpark estimate.

Another example: You have observed no adverse drug reactions in the first
250 patients treated with a new antibiotic. What is the confidence interval
for the true rate of drug reactions? StatMate tells us that the true rate could
be as high as 1.46% (95% CI). The shortcut equation computes the upper
limits as 1.40% (3.5/250). The adjusted Wald equation computes the upper
limit as 1.87%. With large N, the shortcut equation is reasonably exact.
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Correlation

Introduction to correlation
When two variables vary together, statisticians say that there is a lot of
covariation or correlation. The correlation coefficient, r, quantifies the
direction and magnitude of correlation.

Correlation is not the same as linear regression, but the two are related.
Linear regression finds the line that best predicts Y from X. Correlation
quantifies how well X and Y vary together. In some situations, you might
want to perform both calculations.

Correlation only makes sense when both X and Y variables are outcomes
you measure. If you control X (i.e., time, dose, concentration), don’t use
correlation, use linear regression. See "Linear regression" on page 141.

Correlation calculations do not discriminate between X and Y, but rather
quantify the relationship between the two variables.  Linear regression does
discriminate between X and Y. Linear regression finds the best line that
predicts Y from X by minimizing the sum of the square of the vertical
distances of the points from the regression line. The X and Y variables are
not symmetrical in the regression calculations. Therefore only choose
regression, rather than correlation, if you can clearly define which variable
is X and which is Y.

Entering data for correlation
Format the data table with numbers for X and single values for Y.

If you enter Y values for several groups (into columns A, B, ...) Prism will
report the correlation of X with each of the Y variables. Prism, however,
cannot calculate a correlation matrix showing the correlation coefficient of
each variable with each other variable.

If you format the Y columns for replicates (for example, triplicates), Prism
averages each set of replicates and considers this list of averages to be Y. If
you format the Y columns to enter mean and  SD (or SEM) on each row,
Prism analyzes only the means and ignores the SD or SEM values.
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Choosing a correlation analysis
To calculate correlation, start from your data table . Click the Analyze
button, select built-in analyses, then select Correlation from the list of
statistical analyses. If you have entered replicate values, Prism computes
the average of each set of replicates and uses the averages for correlation
calculations. If you entered mean and SD (or SEM) on each row, Prism
performs calculations with the mean values, but ignores the SD or SEM
values.

Choose one of two correlation tests. Pearson correlation calculations are
based on the assumption that both X and Y values are sampled from
populations that follow a Gaussian distribution, at least approximately.
With large samples, this assumption is not too important. If you don’t wish
to make the Gaussian assumption, select nonparametric (Spearman)
correlation instead. Spearman correlation makes no assumption about the
distribution of the values, as the calculations are based on ranks, not the
actual values.

Prism can compute either a one-tailed or two-tailed P value. We suggest
almost always choosing a two-tailed P value. You should only choose a
one-tail P value when you have specified the anticipated sign of the
correlation coefficient before collecting any data and are willing to attribute
any correlation in the “wrong” direction to chance, no matter how large it
is. See “One- vs. two-tail P values” on page 10.
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Results of correlation

How correlation works
Correlation coefficient
The correlation coefficient, r, ranges from -1 to +1. The nonparametric
Spearman correlation coefficient, abbreviated rs, has the same range.

Value of r (or rs) Interpretation
r= 0 The two variables do not vary together at all.

0 > r > 1 The two variables tend to increase or decrease together.

r = 1.0 Perfect correlation.

-1 > r > 0 One variable increases as the other decreases.

r = -1.0 Perfect negative or inverse correlation.

If r or rs is far from zero, there are four possible explanations:

• The X variable helps determine the value of the Y variable.

• The Y variable helps determine the value of the X variable.

• Another variable influences both X and Y.

• X and Y don’t really correlate at all, and you just happened to
observe such a strong correlation by chance. The P value
determines how often this could occur.

r2

Perhaps the best way to interpret the value of r is to square it to calculate r2.
Statisticians call this quantity the coefficient of determination, but scientists
call it r squared. It is has a value that ranges from zero to one, and is the
fraction of the variance in the two variables that is shared. For example, if
r2=0.59, then 59% of the variance in X can be explained by variation in Y.
Likewise, 59% of the variance in Y can be explained by (or goes along
with) variation in X. More simply, 59% of the variance is shared between X
and Y.

Prism only calculates an r2 value from the Pearson correlation coefficient. It
is not appropriate to compute r2 from the nonparametric Spearman
correlation coefficient.

P value
The P value answers this question: If there really is no correlation between
X and Y in the overall population, what is the chance that random sampling

  Analyzing Data with GraphPad Prism 136 Copyright (c) 1999 GraphPad Software Inc.

would result in a correlation coefficient as far from zero (or further) as
observed in this experiment?

How to think about results of linear correlation
Look first at a graph of your data to see how X and Y vary together. Then
look at the value of r (or rs) which quantifies the correlation. Finally, look at
the P value.

If the P value is small, you can reject the idea that the correlation is a
coincidence. Look at the confidence interval for r. You can be 95% sure
that the true population r lies somewhere within that range.

If the P value is large, the data do not give you any reason to conclude that
the correlation is real. This is not the same as saying that there is no
correlation at all. You just have no compelling evidence that the correlation
is real and not a coincidence. Look at the confidence interval for r. It will
extend from a negative correlation to a positive correlation.  If the entire
interval consists of values near zero that you would consider biologically
trivial, then you have strong evidence that either there is no correlation in
the population or that there is a weak (biologically trivial) association. On
the other hand, if the confidence interval contains correlation coefficients
that you would consider biologically important, then you couldn't make
any strong conclusion from this experiment. To make a strong conclusion,
you’ll need data from a larger experiment.

Checklist. Is correlation the right analysis for these
data?
To check that correlation is an appropriate analysis for these data, ask
yourself these questions. Prism cannot help answer them.
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Question Discussion
Are the subjects
independent?

Correlation assumes that any random factor affects only
one subject, and not others. You would violate this
assumption if you choose half the subjects from one group
and half from another. A difference between groups
would affect half the subjects and not the other half.

Are X and Y measured
independently?

The calculations are not valid if X and Y are intertwined.
You’d violate this assumption if you correlate midterm
exam scores with overall course score, as the midterm
score is one of the components of the overall score.

Were X values
measured (not
controlled)?

If you controlled X values (i.e. concentration, dose or
time) you should calculate linear regression rather than
correlation.

Is the covariation linear? A correlation analysis would not be helpful if Y increases
as X increases up to a point, and then Y decreases as X
increases further. You might obtain a low value of r even
though the two variables are strongly related. The
correlation coefficient quantifies linear covariation only.

Are X and Y distributed
according to Gaussian
distributions?

To accept the P value from standard (Pearson) correlation,
the X and Y values must each be sampled from
populations that follow Gaussian distributions. Spearman
nonparametric correlation does not make this assumption.
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Linear regression

Introduction to linear regression
Linear regression analyzes the relationship between two variables, X and Y.
For each subject (or experimental unit), you know both X and Y and you
want to find the best straight line through the data. In some situations, the
slope and/or intercept have a scientific meaning. In other cases, you use the
linear regression line as a standard curve to find new values of X from Y, or
Y from X.

The term "regression", like many statistical terms, is used in
statistics quite differently than it is used in other contexts. The
method was first used to examine the relationship between the
heights of fathers and sons. The two were related, of course,
but the slope is less than 1.0. A tall father tended to have sons
shorter than himself; a short father tended to have sons taller
than himself. The height of sons regressed to the mean. The
term "regression" is now used for many sorts of curve fitting.

Prism determines and graphs the best-fit linear regression line, optionally
including a 95% confidence interval or 95% prediction interval bands. You
may also force the line through a particular point (usually the origin), cal-
culate residuals, calculate a runs test, or compare the slopes and intercepts
of two or more regression lines.

In general, the goal of linear regression is to find the line that best predicts
Y from X. Linear regression does this by finding the line that minimizes the
sum of the squares of the vertical distances of the points from the line.

Note that linear regression does not test whether your data are
linear (except via the runs test). It assumes that your data are
linear, and finds the slope and intercept that make a straight
line best fit your data.
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Avoid Scatchard, Lineweaver-Burke and similar
transforms
Before analyzing your data with linear regression, stop and ask yourself
whether it might make more sense to fit your data with nonlinear
regression. If you have transformed nonlinear data to create a linear
relationship, you will probably be better off using nonlinear regression on
the untransformed data.

Before nonlinear regression was readily available, the best way to analyze
nonlinear data was to transform the data to create a linear graph, and then
analyze the transformed data with linear regression. Examples include
Lineweaver-Burke plots of enzyme kinetic data, Scatchard plots of binding
data, and logarithmic plots of kinetic data. These methods are outdated,
and should not be used to analyze data.

The problem with these methods is that the transformation distorts the
experimental error. Linear regression assumes that the scatter of points
around the line follows a Gaussian distribution and that the standard devia-
tion is the same at every value of X. These assumptions are rarely true after
transforming data. Furthermore, some transformations alter the relationship
between X and Y. For example, in a Scatchard plot the value of X (bound)
is used to calculate Y (bound/free), and this violates the assumption of
linear regression that all uncertainty is in Y while X is known precisely. It
doesn't make sense to minimize the sum of squares of the vertical distances
of points from the line, if the same experimental error appears in both X
and Y directions.

Since the assumptions of linear regression are violated, the values derived
from the slope and intercept of the regression line are not the most accurate
determinations of the variables in the model. Considering all the time and
effort you put into collecting data, you want to use the best possible
technique for analyzing your data. Nonlinear regression produces the most
accurate results.

This figure below shows the problem of transforming data. The left panel
shows data that follows a rectangular hyperbola (binding isotherm). The
right panel is a Scatchard plot of the same data (see "Scatchard plots" on
page 253). The solid curve on the left was determined by nonlinear
regression. The solid line on the right shows how that same curve would
look after a Scatchard transformation. The dotted line shows the linear
regression fit of the transformed data. Scatchard plots can be used to
determine the receptor number (Bmax, determined as the X-intercept of the
linear regression line) and dissociation constant (Kd, determined as the
negative reciprocal of the slope). Since the Scatchard transformation
amplified and distorted the scatter, the linear regression fit does not yield
the most accurate values for Bmax and Kd.
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Don’t use linear regression just to avoid using nonlinear regression. Fitting
curves with nonlinear regression is not difficult.

Although it is usually inappropriate to analyze transformed data, it is often
helpful to display data after a linear transform. Many people find it easier to
visually interpret transformed data. This makes sense because the human
eye and brain evolved to detect edges (lines) — not to detect rectangular
hyperbolas or exponential decay curves. Even if you analyze your data with
nonlinear regression, it may make sense to display the results of a linear
transform.

 Entering data for linear regression
The data table must be formatted with numbers for the X column. You can
choose one of several formats for Y columns.

If you enter Y values for several groups (into columns A, B, ...) Prism will
report the results of linear regression of X with each of the Y variables.
Prism, however, cannot calculate multiple regression.

If you format the Y columns for replicates (for example, triplicates)  Prism
can average these and perform all calculations with the means. Or it can
treat each replicate as a separate value to fit.

If you format the Y columns for entry of SD or SEM, Prism analyzes only
the means and ignores the SD or SEM values.

Choosing a linear regression analysis
Start from a data table or graph (see "Entering data for linear regression" on
page 143). Click on the Analyze button and choose built-in analyses. Then
select Linear regression from the list of curves and regressions.
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Force a regression line through the origin (or some
other point)?
 If you choose regression, you may force the line to go through a particular
point such as the origin. In this case, Prism will determine only the best-fit
slope, as the intercept will be fixed. Use this option when scientific theory
tells you that the line must go through a particular point (usually the origin,
X=0, Y=0) and you only want to know the slope. This situation arises
rarely.

Use common sense when making your decision. For example, consider a
protein assay. You measure optical density (Y) for several known
concentrations of protein in order to create a standard curve. You then
want to interpolate unknown protein concentrations from that standard
curve. When performing the assay, you adjusted the spectrophotometer so
that it reads zero with zero protein. Therefore you might be tempted to
force the regression line through the origin. But this constraint may result in
a line that doesn't fit the data so well. Since you really care that the line fits
the standards very well near the unknowns, you will probably get a better
fit by not constraining the line.

Most often, you should let Prism find the best-fit line without any
constraints.
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Fit linear regression to individual replicates or means?
If you collected replicate Y values at every value of X, there are two ways
Prism can calculate linear regression. It can treat each replicate as a
separate point, or average the replicate Y values, and treat the mean as a
single point.

You should consider each replicate a separate point when the sources of
experimental error are the same for each data point. If one value happens
to be a bit high, there is no reason to expect the other replicates to be high
as well. The errors are independent.

Average the replicates and treat the mean as a single value when the
replicates are not independent. For examples, the replicates would not be
independent if they represent triplicate measurements from the same
animal, with a different animal used at each value of X (dose).  If one
animal happens to respond more than the others, that will affect all the
replicates. The replicates are not independent.

For more examples, see “Replicates” on page 202.

Additional calculations with linear regression
Prism gives you several choices for performing additional calculations with
linear regression. Read more about these choices:

• Reading unknowns from standard curves on page 329.

• Runs test following linear regression on page 150.

• Comparing slopes and intercepts on page 150.

• Confidence or prediction interval of a regression line on page 148.

• Residuals from a linear regression line on page 149.

Output options for linear regression
By default Prism draws the regression line from the smallest X value in your
data to the largest. Uncheck "auto" to enter the starting or stopping X
values. This affects how the line is graphed, but does not affect any of the
numerical results.

Results of linear regression

How linear regression works
Minimizing sum-of-squares
The goal of linear regression is to adjust the values of slope and intercept to
find the line that best predicts Y from X. More precisely, the goal of
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regression is to minimize the sum of the squares of the vertical distances of
the points from the line. Why minimize the sum of the squares of the
distances?  Why not simply minimize the sum of the actual distances?

If the random scatter follows a Gaussian distribution, it is far more likely to
have two medium size deviations (say 5 units each) than to have one small
deviation (1 unit) and one large (9 units). A procedure that minimized the
sum of the absolute value of the distances would have no preference over a
line  that was 5 units away from two points and one that was 1 unit away
from one point and 9 units from another. The sum of the distances (more
precisely, the sum of the absolute value of the distances) is 10 units in each
case. A procedure that minimizes the sum of the squares of the distances
prefers to be 5 units away from two points (sum-of-squares = 25) rather
than 1 unit away from one point and 9 units away from another (sum-of-
squares = 82). If the scatter is Gaussian (or nearly so), the line determined
by minimizing the sum-of-squares is most likely to be correct.

The calculations are shown in every statistics book, and are entirely
standard.

Slope and intercept
Prism reports the best-fit values of the slope and intercept, along with their
standard errors and confidence intervals.

The slope quantifies the steepness of the line. It equals the change in Y for
each unit change in X. It is expressed in the units of the Y-axis divided by
the units of the X-axis. If the slope is positive, Y increases as X increases. If
the slope is negative, Y decreases as X increases.

The Y intercept is the Y value of the line when X equals zero. It defines the
elevation of the line.

0

Y intercept

ΔY
ΔX Slope=ΔΔY/ΔΔX

X

Y
The standard error values of the slope and intercept can be hard to
interpret, but their main purpose is to compute the 95% confidence
intervals. If you accept the assumptions of linear regression, there is a 95%
chance that the 95% confidence interval of the slope contains the true
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value of the slope,  and  that the 95% confidence interval for the intercept
contains the true value of the intercept.

r2, a measure of goodness-of-fit of linear regression
The value r2 is a fraction between 0.0 and 1.0, and has no units. An r2

value of  0.0 means that knowing X does not help you predict Y. There is
no linear relationship between X and Y, and the best-fit line is a horizontal
line going through the mean of all Y values.  When r2 equals 1.0, all points
lie exactly on a straight line with no scatter. Knowing X lets you predict Y
perfectly.

r2= 0.0 r2= 0.5 r2=1.0

This figure demonstrates how Prism computes r2.

SSreg = 0.86

0

SStot = 4.907

0
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The left panel shows the best-fit linear regression line This lines minimizes
the sum-of-squares of the vertical distances of the points from the line.
Those vertical distances are also shown on the left panel of the figure. In
this example, the sum of squares of those distances (SSreg) equals 0.86. Its
units are the units of the Y-axis squared. To use this value as a measure of
goodness-of-fit, you must compare it to something.

The right half of the figure shows the null hypothesis -- a horizontal line
through the mean of all the Y values. Goodness-of-fit of this model (SStot) is
also calculated as the sum of squares of the vertical distances of the points
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from the line, 4.907 in this example. The ratio of the two sum-of-squares
values compares the regression model with the null hypothesis model. The
equation to compute r2 is shown in the figure. In this example r2 is 0.8428.
The regression model fits the data much better than the null hypothesis, so
SSreg is much smaller than SStot, and r2 is near 1.0. If the regression model
were not much better than the null hypothesis, r2 would be near zero.

You can think of r2 as the fraction of the total variance of Y that is
“explained” by variation in X. The value of r2 (unlike the regression line
itself) would be the same if X and Y were swapped. So r2 is also the fraction
of the variance in X that is “explained” by variation in Y. In other words, r2

is the fraction of the variation that is shared between X and Y.

In this example, 84% of the total variance in Y is “explained” by the linear
regression model. The variance (SS) of the data from the linear regression
model equals only 16% of the total variance of the Y values (SStot)

Why Prism doesn't report r2 in constrained linear regression
Prism does not report r2 when you force the line through the origin (or any
other point), because the calculations would be ambiguous. There are two
ways to compute r2 when the regression line is constrained. As you saw in
the previous section, r2 is computed by comparing the sum-of-squares from
the regression line with the sum-of-squares from a model defined by the
null hypothesis. With constrained regression, there are two possible null
hypotheses. One is a horizontal line through the mean of all Y values. But
this line doesn't follow the constraint -- it does not go through the origin.
The other null hypothesis would be a horizontal line through the origin, far
from most of the data.

Because r2 is ambiguous in constrained linear regression, Prism doesn't
report it. If you really want to know a value for r2, use nonlinear regression
to fit your data to the equation Y=slope*X.  Prism will report r2 defined the
first way (comparing regression sum-of-squares to the sum-of-squares from a
horizontal line at the mean Y value).

The standard deviation of the residuals, sy.x

Prism doesn't actually report the sum-of-squares of the vertical distances of
the points from the line (SSreg). Instead Prism reports the standard deviation
of the residuals, sy.x

The variable sy.x quantifies the average size of the residuals, expressed in
the same units as Y.  Some books and programs refer to this value as se. It is
calculated from SSreg and N (number of points) using this equation:

s
SS
NY X

reg
⋅ =

− 2
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Is the slope significantly different than zero?
Prism reports the P value testing the null hypothesis that the overall slope is
zero. The P value answers this question: If there were no linear relationship
between X and Y overall, what is the probability that randomly selected
points would result in a regression line as far from horizontal (or further)
than you observed? The P value is calculated from an F test, and Prism also
reports the value of F and its degrees of freedom.

Additional calculations following linear regression
Confidence or prediction interval of a regression line
If you check the option box, Prism will calculate and graph either the 95%
confidence interval or 95% prediction interval of the regression line.  Two
curves surrounding the best-fit line define the confidence interval.

X

Y

The dashed lines that demarcate the confidence interval are curved. This
does not mean that the confidence interval includes the possibility of
curves as well as straight lines. Rather, the curved lines are the boundaries
of all possible straight lines. The figure below shows four possible linear
regression lines (solid) that lie within the confidence interval (dashed).

X

Y
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Given the assumptions of linear regression, you can be 95% confident that
the two curved confidence bands enclose the true best-fit linear regression
line, leaving a 5% chance that the true line is outside those boundaries.

Many data points will be outside the 95% confidence interval boundary.
The confidence interval is 95% sure to contain the best-fit regression line.
This is not the same as saying it will contain 95% of the data points.

Prism can also plot the 95% prediction interval. The prediction bands are
further from the best-fit line than the confidence bands, a lot further if you
have many data points. The 95% prediction interval is the area in which
you expect 95% of all data points to fall. In contrast, the 95% confidence
interval is the area that has a 95% chance of containing the true regression
line. This graph shows both prediction and confidence intervals (the curves
defining the prediction intervals are further from the regression line).

X

Y

Residuals from a linear regression line
Residuals are the vertical distances of each point from the regression line.
The X values in the residual table are identical to the X values you entered.
The Y values are the residuals. A residual with a positive value means that
the point is above the line; a residual with a negative value means the point
is below the line.

If you create a table of residuals, Prism automatically makes a new graph
containing the residuals and nothing else. It is easier to interpret the graph
than the table of numbers.

If the assumptions of linear regression have been met, the residuals will be
randomly scattered above and below the line at Y=0. The scatter should
not vary with X. You also should not see large clusters of adjacent points
that are all above or all below the Y=0 line. For an example, see
“Residuals” on page 214.
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Runs test following linear regression
The runs test determines whether your data differ significantly from a
straight line. Prism can only calculate the runs test if you entered the X
values in order.

A run is a series of consecutive points that are either all above or all below
the regression line. In other words, a run is a consecutive series of points
whose residuals are either all positive or all negative.

If the data points are randomly distributed above and below the regression
line, it is possible to calculate the expected number of runs. If there are Na

points above the curve and Nb points below the curve, the number of runs
you expect to see equals [(2NaNb)/(Na+Nb)]+1. If you observe fewer runs
than expected, it may be a coincidence of random sampling or it may mean
that your data deviate systematically from a straight line. The P value from
the runs test answers this question: If the data really follow a straight line,
what is the chance that you would obtain as few (or fewer) runs as
observed in this experiment?

The P values are always one-tail, asking about the probability of observing
as few runs (or fewer) than observed. If you observe more runs than
expected, the P value will be higher than 0.50.

If the runs test reports a low P value, conclude that the data don’t really
follow a straight line, and consider using nonlinear regression to fit a curve.

Comparing slopes and intercepts
Prism can test whether the slopes and intercepts of two or more data sets
are significantly different. It compares linear regression lines using the
method explained in Chapter 18 of J Zar, Biostatistical Analysis, 2nd
edition, Prentice-Hall, 1984.

Prism compares slopes first. It calculates a P value (two-tailed) testing the
null hypothesis that the slopes are all identical (the lines are parallel). The P
value answers this question: If the slopes really were identical, what is the
chance that randomly selected data points would have slopes as different
(or more different) than you observed. If the P value is less than 0.05, Prism
concludes that the lines are significantly different. In that case, there is no
point in comparing the intercepts. The intersection point of two lines is:

X Intercept Intercept
Slope Slope

Y Intercept Slope X Intercept Slope X

=
−

−

= + ⋅ = + ⋅

1 2

2 1

1 1 2 2

If the P value for comparing slopes is greater than 0.05, Prism concludes
that the slopes are not significantly different and  calculates a single slope
for all the lines. Now the question is whether the lines are parallel or
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identical. Prism calculates a second P value testing the null hypothesis that
the lines are identical. If this P value is low, conclude that the lines are not
identical (they are distinct but parallel). If this second P value is high, there
is no compelling evidence that the lines are different.

This method is equivalent to an Analysis of Covariance (ANCOVA),
although ANCOVA can be extended to more complicated situations.

Standard Curve
To read unknown values from a standard curve, you must enter unpaired X
or Y values below the X and Y values for the standard curve.

Depending on which option(s) you selected in the Parameters dialog, Prism
calculates Y values for all the unpaired X values and/or X values for all
unpaired Y values and places these on new output views.

See "Reading unknowns from standard curves" on page 329.

How to think about the results of linear regression
Your approach to linear regression will depend on your goals.

If your goal is to analyze a standard curve, you won’t be very interested in
most of the results. Just make sure that r2 is high and that the line goes near
the points. Then go straight to the standard curve results.

In many situations, you will be most interested in the best-fit values for
slope and intercept. Don’t just look at the best-fit values, also look at the
95% confidence interval of the slope and intercept. If the intervals are too
wide, repeat the experiment with more data.

If you forced the line through a particular point, look carefully at the graph
of the data and best-fit line to make sure you picked an appropriate point.

Consider whether a linear model is appropriate for your data. Do the data
seem linear? Is the P value for the runs test high? Are the residuals random?
If you answered no to any of those questions, consider whether it makes
sense to use nonlinear regression instead.

Checklist. Is linear regression the right analysis for
these data?
To check that linear regression is an appropriate analysis for these data, ask
yourself these questions. Prism cannot help answer them.



 Linear regression 151 www.graphpad.com

Question Discussion
Can the relationship between
X and Y be graphed as a
straight line?

In many experiments the relationship between X
and Y is curved, making linear regression
inappropriate. Either transform the data, or use a
program (such as GraphPad Prism) that can
perform nonlinear curve fitting.

Is the scatter of data around
the line Gaussian (at least
approximately)?

Linear regression analysis assumes that the scatter
is Gaussian.

Is the variability the same
everywhere?

Linear regression assumes that scatter of points
around the best-fit line has the same standard
deviation all along the curve. The assumption is
violated if the points with high or low X values
tend to be further from the best-fit line. The
assumption that the standard deviation is the same
everywhere is termed homoscedasticity.

Do you know the X values
precisely?

The linear regression model assumes that X values
are exactly correct, and that experimental error or
biological variability only affects the Y values.
This is rarely the case, but it is sufficient to assume
that any imprecision in measuring X is very small
compared to the variability in Y.

Are the data points
independent?

Whether one point is above or below the line is a
matter of chance, and does not influence whether
another point is above or below the line. See "Fit
linear regression to individual replicates or
means?" on page 145.

Are the X and Y values
intertwined?

If the value of X is used to calculate Y (or the
value of Y is used to calculate X) then linear
regression calculations are invalid. One example
is a Scatchard plot, where the Y value (bound/free)
is calculated from the X value. See “Avoid
Scatchard, Lineweaver-Burke and similar
transforms” on page 142. Another example would
be a graph of midterm exam scores (X) vs. total
course grades(Y). Since the midterm exam score is
a component of the total course grade, linear
regression is not valid for these data.
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Graphing linear regression
When you fit a linear regression line with Prism, it automatically adds the
best-fit line to a graph of the data. The best-fit line is simply a data set in the
results sheet, and you can add this data set to other graphs or remove it
from the graph where Prism placed it.

If you checked the option to create 95% confidence or prediction intervals,
Prism includes those as error bars on the results sheet.

To graph the 95% CI of the linear regression line:

1. On the Parameters dialog, check the option “Calculate 95% CI of
regression line”.

2. Go to the graph.

3. Click on Change and choose Symbols & Lines.

4. In the Symbols dialog, choose the data set containing the regression
line (not the original data).

5. Click the option box for error bars. Choose the - - - - - style.

X

Y

When you customize the graph using the Symbols dialog, note that the
regression lines are separate data sets from the original data. Graph the
regression lines using no symbols and with straight lines connecting the
“points”. Graph the data as symbols with no connecting straight lines.

Fitting linear data with nonlinear regression
Prism’s linear regression analysis does not have quite as much versatility as
the nonlinear regression analysis. Since Prism's nonlinear analysis can fit
data to any model, even a linear one, use the nonlinear regression analysis
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when needed to take advantage of the increased power. For example, you
could use the nonlinear regression analysis to compare an unconstrained
linear regression line with one forced through the origin (or some other
point). Or you could fit a linear regression line, but weight the points to
minimize the sum of the relative distance squared, rather than the distance
squared.

To fit linear data using Prism's nonlinear regression analysis:

1. From the data table or graph, click Analyze and choose nonlinear
regression.

2. Choose the First order polynomial equation, which defines a straight
line. Or choose one of the equations listed below from the equation
library (or enter them yourself).

3. Click the Methods button to adjust weighting method or other
options. Click the Output button to create a summary table.

Determining a point other than the Y intercept
The linear regression equation defines Y as a function of slope and Y
intercept:

Y ercept slope X= + ⋅int

This equation can be rewritten in a more general form, where we replace
the intercept (Y value at X=0) with YX' , the Y value at X', where X' is some
specified X value. Now the linear regression equation becomes:

Y Y slope X XX= + ⋅ −' 'b g
Y at any particular X value equals the Y value at X'  plus the slope times the
distance from X to X'. If you set X' to zero, this equation becomes identical
to the previous one.

This equation has three variables, YX' , X', and slope. If you set either X' or
YX' to a constant value, you can fit the other (and the slope).

When you fit these equations using nonlinear regression, Prism insists that
you enter rules for initial values (or directly enter initial values). Since the
equation is in fact linear, Prism will find the best-fit values no matter what
initial values you enter. Setting all initial values to zero should work fine.

Note. When you enter your equation, you must define either X'
or YX'. The two are related, so it is impossible to fit both.

Example 1. You want to find the X value (with SE and confidence interval)
where Y=50 for linear data. Fit the data using nonlinear regression using
this equation to determine the best–fit values of the slope and X50.
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Y = 50 + slope*(X-X50)

In this equation, X50 is the value of X where Y=50. Don't confuse this
with  an EC50, which is the value of X where Y is halfway between
minimum and maximum in a dose-response curve. A linear model does not
have a minimum and maximum, so the concept of EC50 does not apply.

Example 2. You want to fit data to a straight line to determine the slope and
the Y value at X=20. Fit the data using nonlinear regression to this
equation.
Y = Y20 + slope*(X-20)

Example 3.  You want to determine the slope and the X intercept, with SE
and confidence interval. Fit the data using nonlinear regression to this
equation:
Y = slope*(X-Xintercept)

Fitting two line segments
Prism can fit two line segments to different portions of the data, so that the
two meet at a defined X value. See  "Example 3. Two linear regression
segments that meet at the breakpoint" on page 192.

Fitting straight lines to semi-log graphs
You can start linear (or nonlinear) regression from a data table, results table
or graph. Prism then fits a model to the data. If you start from a graph,
Prism fits to the data plotted on that graph. Selecting a logarithmic axis
(from the Axis dialog) does not change the data, so does not change the
way Prism performs regression. If you plot a linear regression "line" on a
graph with a logarithmic axis, the best-fit "line" will be curved. To fit a
straight line on a semilog plot requires use of nonlinear regression.

If the Y-axis is logarithmic use this equation.

Y=10^(Slope*X + Yintercept)

Graphing on a log Y-axis is equivalent to taking the antilog. The antilog of
the right side of the equation is the equation for a straight line:  slope*X +
Yintercept. So this equation appears appear linear when graphed on a
logarithmic Y-axis. It is difficult to define rules for initial values that work
for all data sets, so you'll need to enter initial values individually for each
data set. Here is an example.
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If the X-axis is logarithmic, then use this equation:
Y = Slope*10^X + Yintercept

If both axes are logarithmic (rare) then use this equation:
Y = 10^(Slope*10^X + Yintercept)
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Introducing curve fitting and
nonlinear regression

Introduction to models
A mathematical model is a description of a physical, chemical or biological
state or process. Using a model can help you think about chemical and
physiological processes or mechanisms, so you can design better
experiments and comprehend the results. When you fit a model to your
data, you obtain best-fit values that you can interpret in the context of the
model.

"A mathematical model is neither an hypothesis nor a theory. Unlike
scientific hypotheses, a model is not verifiable directly by an
experiment. For all models are both true and false.... The validation of a
model is not that it is "true" but that it generates good testable
hypotheses relevant to important problems. " (R. Levins, Am. Scientist
54:421-31, 1966)

When you choose linear regression, you may not be thinking about a
model. But linear regression fits data to the following model, which
describes a linear relationship between X and Y.

Y Slope X Intercept= ⋅ +

That is a special model that can be fit to data using very simple math. Other
models require more difficult calculations, but the idea is the same.

In most circumstances, you'll be able to use standard models developed by
others. Three examples follow. You will only need to develop new models
if you work with new experimental systems, or need to extend
conventional models to new situations.
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How models are derived
Models are derived using simple logic and algebra, along (sometimes) with
some calculus. Here are three examples of commonly used models, with
derivations.

Example model 1. Optical density as a function of
concentration
Colorimetric chemical assays are based on a simple principle. Add
appropriate reactants to your samples to initiate a chemical reaction whose
product is colored. When you terminate the reaction, the concentration of
colored product is proportional to the initial concentration of the substance
you want to assay. Since optical density is proportional to the
concentration of colored substances, the optical density will also be
proportional to the concentration of the substance you are assaying.

Optical Density = = ⋅ = ⋅Y k subs ce K X[ tan ]
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Mathematically, the equation works for any value of X. However, the
results only make sense with certain values. Negative X values are
meaningless, as concentrations cannot be negative. The model may fail at
high concentrations of substance where the reaction is no longer limited by
the concentration of substance. The model may also fail at high
concentrations if the solution becomes so dark (the optical density is so
high) that little light reaches the detector. At that point, the noise of the
instrument may exceed the signal. It is not unusual that a model works only
for a certain range of values. You just have to be aware of the limitations,
and not try to use the model outside of its useful range.
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Example model 2. Exponential decay
Exponential equations are used to model many processes. They are used
whenever the rate at which something happens is proportional to the
amount which is left. Here are three examples:

• When ligands dissociate from receptors, the number of molecules
that dissociate in any short time interval is proportional to the number
that were bound at the beginning of that interval. Equivalently, each
individual molecule of ligand bound to a receptor has a certain
probability of dissociating from the receptor in any small time
interval. That probability does not get higher as the ligand stays on
the receptor longer.

• When radioactive isotopes decay, the number of atoms that decay in
any short interval is proportional to the number of undecayed atoms
that were present at the beginning of the interval. This means that
each individual atom has a certain probability of decaying in a small
time interval, and that probability is constant. The probability that any
particular atom will decay does not change over time. The total
decay of the sample decreases with time because there are fewer and
fewer undecayed atoms.

• When drugs are metabolized by the liver or excreted by the kidney,
the rate of metabolism or excretion is often proportional to the
concentration of drug in the blood plasma. Each drug molecule has a
certain probability of being metabolized or secreted in a small time
interval. As the drug concentration goes down, the rate of its
metabolism or excretion goes down as well.

Define Y to be the number of ligand-receptor complexes still present (or the
number of radioactive atoms that have not yet decayed, or the
concentration of drug in the plasma) at any given time X. The rate of
change of Y is proportional to Y. Expressed as a differential equation:

 Y
 X

dY
dX

k YΔ

Δ
= = − ⋅

Shown as a graph:
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Like most nonlinear regression programs, Prism doesn't let you enter a
model expressed as a differential equation. Instead, you must enter the
equation defining Y as a function of X. To do this, you need to remember a
bit of calculus. There is only one function whose derivative is proportional
to Y, the exponential function. Integrate both sides of the equation to
obtain a new exponential equation that defines Y as a function of X, the
rate constant k, and the value of Y at time zero, Y0.

Y Y e Y k Xk X= ⋅ = ⋅ − ⋅− ⋅
0 0 exp( )

The half-life is the time it takes for Y to drop by 50%. To find the half-life,
set Y equal to one-half of Y0 and solve the above equation for X.  It equals
the natural logarithm of 2 divided by the rate constant.

Half life T
k k

 = = =1
2

2 0 693ln( ) .

In the case of radioactive decay, this model describes exactly what is going
on physically. In the case of ligand binding, the model may be a
simplification. The model considers that all receptors are either free or
bound to ligand. In fact, binding is a complicated process with multiple
points of contact between ligand and receptor, so there must be some
states of partial binding. Even though the model is simplified, it predicts
experimental data very well. Even very simple models can adequately
predict the behavior of very complicated systems, and can yield constants
(dissociation rate constant in this example) that have a physical meaning.
Few models describe a physical process exactly. Models that simplify the
true molecular or physiological mechanisms can be very useful, so long as
they are not too simple.
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Example model 3. Equilibrium binding
This example derives a very common model that describes equilibrium
binding (or enzyme kinetics). Deriving this model does not require any
calculus!

When a ligand interacts with a receptor, or when a substrate interacts with
an enzyme, the binding follows the law of mass action.

R L    RL
k

k

on

off

+
⎯ →⎯⎯

← ⎯⎯⎯

In this equation R is the concentration of free receptor, L is the
concentration of free ligand, and RL is the concentration of receptor ligand
complex. In the case of enzyme kinetics, R is the enzyme and L is the
substrate.

The association rate constant kon is expressed in units of M-1min-1. The rate
of RL formation equals R.L.kon. The dissociation constant koff is expressed in
units of min-1. The rate of RL dissociation equals RL.koff. At equilibrium, the
backward (dissociation) reaction equals the forward (association) reaction
so,

RL k R L koff on⋅ = ⋅ ⋅

Binding studies measure specific binding, which is a measure of RL.
Enzyme kinetic assays assess enzyme velocity, which is proportional to RL,
the concentration of enzyme-substrate complexes. So you want to arrange
the equation to obtain RL on the left.

RL R L
k
k

on

off
= ⋅ ⋅

Define the equilibrium dissociation constant, Kd to equal koff/kon, which is in
molar units. In enzyme kinetics, this is called the Michaelis-Menten
constant, KM. Rearrange the previous equation to define the concentration
of receptor-ligand complexes at equilibrium:

RL R L
k
k

R L
K

on

off d
= ⋅ ⋅ =

⋅

Since you usually can't measure the free concentration of receptor, R, the
equation won't be useful until that variable is removed. Fortunately, that's
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easy to do. Since all receptors are either free or bound, we can express R as
the total number of receptors minus the number bound: R= Rtot – RL.

Substitute this definitions of R into the previous equation.

RL R L
K

R RL L
K

R L RL L
Kd

tot

d

tot

d
=

⋅
=

− ⋅
=

⋅ − ⋅( )

RL now appears on both sides of the equation. Rearrange to keep RL on the
left.

RL K R L RL L
RL(K L) Rtot L

RL R L
K L

d tot

d

tot

d

⋅ = ⋅ − ⋅

+ = ⋅

=
⋅

+

Since we vary L and measure RL, define Y to be RL (amount of specific
binding, or enzyme activity) and X to be L (concentration of ligand or
substrate). Finally call the total amount of binding Bmax (instead of Rtot). The
equation for equilibrium binding now becomes:

Specific binding = =
⋅

+
Y

B X
K Xd

max

The graph of this equation (left panel below) is sometimes called a
rectangular hyperbola or a binding isotherm. If you plot the same data on a
semilog plot (the X-axis is log of ligand concentration) it becomes
sigmoidal. The only difference between the left and right panel of the graph
is whether the X-axis is linear or logarithmic.
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The equation of enzyme velocity as a function of substrate concentration is
identical except for the names of the variables.
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Enzyme Activity = =
⋅

+
Y

V X
K XM

max

Why Prism can’t pick a model for you
The goal of nonlinear regression is to fit a model to your data. The program
finds the best-fit values of the variables in the model (perhaps rate
constants, affinities, receptor number, etc.) which you can interpret
scientifically. Choosing a model is a scientific decision. You should base
your choice on your understanding of chemistry or physiology (or genetics,
etc.). The choice should not be based solely on the shape of the graph.

Some programs (not available from GraphPad Software) automatically fit
data to hundreds or thousands of equations and then present you with the
equation(s) that fit the data best. Using such a program is appealing
because it frees you from the need to choose an equation. The problem is
that the program has no understanding of the scientific context of your
experiment. The equations that fit the data best are unlikely to correspond
to scientifically meaningful models. You will not be able to interpret the
best-fit values of the variables, and the results are unlikely to be useful for
data analysis.

This approach can be useful in some situations (when you want a smooth
curve, but don't care about models). Don't use this approach when the goal
of curve fitting is to fit the data to a model based on chemical, physical, or
biological principles. Don't use a computer program as a way to avoid
understanding your experimental system, or to avoid making scientific
decisions.

Introduction to nonlinear regression

The difference between linear and nonlinear regression
Linear regression is described in every statistics book, and is performed by
every statistics program. Nonlinear regression is mentioned in only a few
books, and is not performed by all statistics programs. From a
mathematician’s point of view, the two procedures are vastly different.
From a scientist’s point of view, however, the two procedures are very
similar. In many fields of science, nonlinear regression is used far more
often than linear regression.

A line is described by a simple equation that calculates Y from X, slope and
intercept. The purpose of linear regression is to find values for the slope
and intercept that define the line that comes closest to the data. More
precisely, it finds the line that minimizes the sum of the square of the
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vertical distances of the points from the line. The equations used to do this
can be derived with no more than high-school algebra (shown in many
statistics books). Put the data in, and the answers come out. There is no
chance for ambiguity. You could even do the calculations by hand, if you
wanted to.

Nonlinear regression is more general than linear regression. It fits data to
any equation that defines Y as a function of X and one or more parameters.
It finds the values of those parameters that generate the curve that comes
closest to the data. More precisely, nonlinear regression finds the values of
the parameters that generates a curve that minimizes the sum of the squares
of the vertical distances of the data points from the curve.

Except for a few special cases, it is not possible to directly derive an
equation to compute the best-fit values from the data. Instead nonlinear
regression requires a computationally intensive, iterative approach. You
can't really follow the mathematics of nonlinear regression unless you are
familiar with matrix algebra. But these complexities only pertain to
performing the calculations, something Prism does for you. Using nonlinear
regression to analyze data is only slightly more difficult than using linear
regression. Your choice of linear or nonlinear regression should be based
on the model you are fitting. Don’t use linear regression just to avoid using
nonlinear regression.

Sum-of-squares as a measure of goodness-of-fit in
nonlinear regression
The goal of nonlinear regression is to adjust the values of the variables in
the model to find the curve that best predicts Y from X. More precisely, the
goal of regression is to minimize the sum of the squares of the vertical
distances of the points from the curve. Why minimize the sum of the
squares of the distances?  Why not simply minimize the sum of the actual
distances?

If the random scatter follows a Gaussian distribution, it is far more likely to
have two medium size deviations (say 5 units each) than to have one small
deviation (1 unit) and one large (9 units). A procedure that minimized the
sum of the absolute value of the distances would have no preference over a
curve that was 5 units away from two points and one that was 1 unit away
from one point and 9 units from another. The sum of the distances (more
precisely, the sum of the absolute value of the distances) is 10 units in each
case. A procedure that minimizes the sum of the squares of the distances
prefers to be 5 units away from two points (sum-of-squares = 25) rather
than 1 unit away from one point and 9 units away from another (sum-of-
squares = 82). If the scatter is Gaussian (or nearly so), the curve
determined by minimizing the sum-of-squares is most likely to be correct.
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How nonlinear regression works
You won't be able to understand the mathematical details of nonlinear
regression unless you first master matrix algebra. But the basic idea is pretty
easy to understand. Every nonlinear regression method follows these steps:

1. Start with an initial estimated value for each variable in the equation.

2. Generate the curve defined by the initial values. Calculate the sum-
of-squares (the sum of the squares of the vertical distances of the
points from the curve). See “Sum-of-squares as a measure of
goodness-of-fit in nonlinear regression” on page 163.

3. Adjust the variables to make the curve come closer to the data points.
There are several algorithms for adjusting the variables, as explained
below.

4. Adjust the variables again so that the curve comes even closer to the
points. Repeat.

5. Stop the calculations when the adjustments make virtually no
difference in the sum-of-squares. See "Convergence criteria" on page
203.

6. Report the best-fit results. The precise values you obtain will depend
in part on the initial values chosen in step 1 and the stopping criteria
of step 5. This means that repeat analyses of the same data will not
always give exactly the same results.

Step 3 is the only difficult one. Prism (and most other nonlinear regression
programs) uses the method of Marquardt and Levenberg, which blends two
other methods, the method of linear descent and the method of Gauss-
Newton. The best way to understand these methods is to follow an
example. Here are some data to be fit to a typical binding curve
(rectangular hyperbola).
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You want to fit a binding curve to determine Bmax and Kd using the equation
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Y
B X
K Xd

=
⋅

+
max

How can you find the values of Bmax and Kd that fit the data best? You can
generate an infinite number of curves by varying Bmax and Kd. For each of
the generated curves, you can compute the sum-of-squares to assess how
well that curve fits the data. The following graph illustrates the situation.
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The X- and Y-axes correspond to two variables to be fit by nonlinear
regression (Bmax and Kd in this example). The Z-axis is the sum-of-squares.
Each point on the surface corresponds to one possible curve. The goal of
nonlinear regression is to find the values of Bmax and Kd that make the sum-
of-squares as small as possible (to find the bottom of the valley).

The method of linear descent follows a very simple strategy. Starting from
the initial values try increasing each parameter a small amount. If the sum-
of-squares goes down, continue. If the sum-of-squares goes up, go back and
decrease the value of the parameter instead. You've taken a step down the
surface. Repeat many times. Each step will usually reduce the sum-of-
squares. If the sum-of-squares goes up instead, the step must have been so
large that you went past the bottom and back up the other side. If this
happens, go back and take a smaller step. After repeating these steps many
time, you'll reach the bottom.

The Gauss-Newton method is a bit harder to understand. As with the
method of linear descent, start by computing how much the sum-of-squares
changes when you make a small change in the value of each parameter.
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This tells you the slope of the sum-of-squares surface at the point defined
by the initial values. If the equation really were linear, this is enough
information to determine the shape of the entire sum-of-squares surface,
and thus calculate the best-fit values of Bmax and Kd in one step. With a
linear equation, knowing the slope at one point tells you everything you
need to know about the surface, and you can find the minimum in one
step. With nonlinear equations, the Gauss-Newton method won't find the
best-fit values in one step, but that step usually improves the fit. After
repeating many iterations, you reach the bottom.

This method of linear descent tends to work well for early iterations, but
works slowly when it gets close to the best-fit values (and the surface is
nearly flat). In contrast, the Gauss-Newton method tends to work badly in
early iterations, but works very well in later iterations. The two methods are
blended in the method of Marquardt (also called the Levenberg-Marquardt
method). It uses the method of linear descent in early iterations and then
gradually switches to the Gauss-Newton approach. Prism, like most
programs, uses the Marquardt method for performing nonlinear regression.

To learn more about how nonlinear regression works, read Chapter 15 of
Numerical Recipes in C, Second Edition, WH Press, et. Al. , Cambridge
Press, 1992 or Chapter 10 of Primer of Applied Regression and Analysis of
Variance by SA Glantz and BK Slinker, McGraw-Hill, 1990.

Other kinds of regression

The difference between correlation and regression
Correlation quantifies how consistently the two variables vary together.
When the two variables vary together, statisticians say that there is a lot of
covariation or correlation. The direction and magnitude of correlation is
quantified by the correlation coefficient, r. Correlation calculations do not
find a best-fit line. See "Correlation" on page 135

Polynomial regression
Polynomial regression fits data to this equation:

Y A  B X  C X   D X   2 3= + ⋅ + ⋅ + ⋅ + ⋅ …E X4

You can include any number of terms. If you stop at the second (B) term, it
is called a first-order polynomial equation, which is identical to the
equation for a straight line. If you stop after the third (C) term, it is called a
second-order, or quadratic, equation. If you stop after the fourth term, it is
called a third-order, or cubic, equation.
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If you choose a second, or higher, order equation, the graph of Y vs. X will
be curved (depending on your choice of A, B, C…). Nonetheless, the
polynomial equation is not strictly a nonlinear equation. Holding X and the
other parameters constant, a graph of any parameter (A, B, C… ) vs. Y
would be linear. From a mathematical point of view, the polynomial
equation is linear. This means little to scientists, but it means a lot to a
mathematician, because it quite easy to write a program to fit data to linear
equations. Because polynomial regression is related to linear regression,
you don’t have to enter any initial values.

But there is a fundamental problem with polynomial regression: Few
biological or chemical models are described by polynomial equations. This
means that the best-fit results can rarely be interpreted in terms of biology
or chemistry.

Polynomial regression can be useful to create a standard curve for
interpolation, or to create a smooth curve for graphing. But polynomial
regression is rarely useful for fitting a model to biological data.

To perform polynomial regression with Prism, choose the
nonlinear regression analysis but pick a polynomial equation.
See "Polynomial equations" on page 177.

Multiple regression
Multiple regression fits data to a model that defines Y as a function of two
or more independent (X) variables. For example, a model might define a
biological response as a function of both time and concentration. The term
multiple regression is usually used to mean fitting data to a linear equation
with two or more X variables (X1, X2, …).

Y A  B X   C X   D X   1 2 3= + ⋅ + ⋅ + ⋅ + ⋅ …E X 4

Nonlinear multiple regression models define Y as a function of several X
variables using a more complicated equation. Prism cannot perform any
kind of multiple regression. The companion program, GraphPad InStat, can
perform basic multiple regression using the above equation. For details
contact GraphPad software, or go to www.graphpad.com. No GraphPad
programs can perform multiple nonlinear regression.

Logistic and proportional hazards regression
Linear, nonlinear and polynomial regression all fit data to models where Y
is a continuous measured variable such as weight, concentration, receptor
number, or enzyme activity.
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If Y is a binomial outcome (for example male vs. female, pass vs. fail,
viable vs. not viable) you need to use a different kind of regression, called
logistic regression. Prism does not perform logistic regression. The only
analysis it can do with binomial outcomes is to analyze contingency tables.
See "Contingency tables" on page 121. By analyzing a contingency table,
you can compare a binomial outcome in two or more groups. With logistic
regression, you can compare outcomes after correcting for other differences
between groups.

If Y is a survival time, you need to use yet another kind of regression, called
proportional hazards regression. Prism can compare survival curves using
the logrank test, but cannot perform proportional hazards regression. See
"Survival curves" on page 109. Proportional hazards regression lets you
compare survival curves after correcting for other differences.

Fitting a curve without choosing a model
The term curve fitting is more general than regression. Your approach to
curve fitting depends on your goal. In some circumstances, your goal is
simple. You don't care about models, and don't expect best-fit values that
you can interpret. Instead, you just want to draw a smooth curve to make a
graph look attractive, or to use as a standard curve.

Prism provides two approaches for fitting a curve without selecting a
model. A cubic spline curve goes through every data point, bending and
twisting as needed. A lowess curve follows the trend of the data. Lowess
curves can be helpful when the data progresses monotonically, but are less
helpful when there are peaks or valleys. Prism lets you choose between
fine, medium and course lowess curves. The fine curve reveals the fine
structure of the data, but tends to wiggle a lot. The coarse curve shows only
the general trend, but obscures the detail.

Course Lowess Fine Lowess Cubic Spline

To create a lowess or spline curve, click the Analyze button and choose Fit
spline/lowess from the list of curves and regressions to bring up the dialog.
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Prism generates lowess curves using an algorithm adapted from Graphical
Methods for Data Analysis, John Chambers et. al., Wadsworth and Brooks,
1983. Don’t select a lowess curve unless you have well over twenty data
points. Prism generates the curve as a series of line segments. Enter the
number of segments you want, and check the option box if you need to see
the XY coordinates of each point. To use the lowess, point-to-point, or
spline curve as a standard curve, read "Reading unknowns from standard
curves" on page 329.

Prism can also create a point-to-point “curve” -- a series of line segments
connecting all your data. Don't create a point-to-point curve just so you can
connect points with a line on the graph. You can do that by checking an
option on the Symbols & Lines dialog from the Graphs section of your
project. Only select the point-to-point analysis if you want to use the point-
to-point line as a standard curve or to calculate area under the curve

Spline curves can wiggle too much. Lowess curves can be too jagged. To
get a smoother curve, consider using nonlinear regression and pick a
model empirically. You don’t have to pick a sensible model, and don’t
have to interpret the best-fit values. Use nonlinear regression to create a
smooth curve, not as a method to analyze data. Polynomial models are
often used for this purpose. See "Polynomial regression" on page 166.
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Choosing or entering an
equation (model)

Classic equations built-in to Prism

One site binding (hyperbola)
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 This curve is known as a rectangular hyperbola, binding isotherm, or
saturation binding curve. Y is zero initially, and increases to a maximum
plateau value Bmax.

This equation describes the equilibrium binding of a ligand to a receptor as
a function of increasing ligand concentration. X is the concentration of the
ligand, and Y is the specific binding. Bmax is the maximum number of
binding sites, expressed in the same units as the Y-axis (usually radioactive
counts per minute, sites per cell, or fmol of receptor per mg of tissue). Kd is
the equilibrium dissociation constant, expressed in the same units as the X-
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axis (concentration). When the drug concentration equals Kd, half the
binding sites are occupied at equilibrium.

Note: Y should be the specific binding, not the total binding. To
learn how Prism analyzes saturation binding curves, see
“Analyzing saturation radioligand binding data” on page 249.

This equation also describes the activity of an enzyme as a function of
substrate concentration. In this case, the variable labeled Bmax is really

Vmax, the maximum enzyme activity, and the variable labeled Kd is really

Km, the Michaelis-Menten constant.

See also "Analyzing saturation radioligand binding data" on page 249, and
"How to determine Vmax and KM" on page 321.

Two site binding
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This equation is an extension of the one site binding curve. It shows the
binding of a ligand to two receptors with different affinities (different Kd

values). It also describes the enzyme activity as a function of substrate
concentration when two isozymes are present. The curve in the example
has Kd values that differ by a factor of ten, with equal Bmax values. Even with
such a large difference between Kd values, the curve is not obviously
biphasic.

See "Determining Kd and Bmax for two classes of binding sites" on page 251.
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Sigmoidal dose-response
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 This is a general equation for a dose-response curve. It shows response as
a function of the logarithm of concentration. X is the logarithm of agonist
concentration and Y is the response. This equation is also called a three-
parameter logistic equation..

The variable Bottom is the Y value at the bottom plateau; Top is the Y value
at the top plateau, and LogEC50 is the X value when the response is
halfway between Bottom and Top. LogEC50 is the logarithm of the EC50
(effective concentration, 50%). With different kinds of variables, this
variable is sometimes called ED50 (effective dose, 50%), or IC50 (inhibitory
concentration, 50%, used when the curve goes downhill).

This equation assumes a standard slope, where the response goes from
10% to 90% of maximal as X increases over about two log units. The next
equation allows for a variable slope.

See "Analyzing dose-response curves" on page 297.

Sigmoidal dose-response (variable slope)

Y Bottom
Top Bottom

LogEC X HillSlope
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b g1 10 50
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This equation extends the previous equation, but allows for a variable
slope. This equation is also called a four-parameter logistic equation..

The variable Bottom is the Y value at the bottom plateau; Top is the Y value
at the top plateau, and LogEC50 is the X value when the response is
halfway between Bottom and Top. With different kinds of variables, this
variable is sometimes called ED50 (effective dose, 50%), or IC50 (inhibitory
concentration, 50%, used when the curve goes downhill).

The variable HillSlope describes the steepness of the curve. This variable is
called the Hill slope, the slope factor, or the Hill coefficient. If it is positive,
the curve increases as X increases. If it is negative, the curve decreases as X
increases. A standard sigmoid dose-response curve (previous equation) has
a Hill Slope of 1.0. When HillSlope is less than 1.0, the curve is more
shallow. When HillSlope is greater than 1.0, the curve is steeper. The Hill
slope has no units.

See "Analyzing dose-response curves" on page 297, and "The steepness of
a dose-response curve" on page 299.

One site competition

Y Bottom
Top Bottom

X LogEC= +
−

+ −

b g
1 10 50

This equation describes the competition of a ligand for receptor binding. It
is identical to the sigmoid dose-response curve with HILLSLOPE = -1.0.

The variable LogEC50 is the concentration of the competitor required to
compete for half the specific binding. We use the term EC50 to be con-
sistent with the equations for the other sigmoid curves. The term IC50 is
used more frequently (“E” stands for effective; “I” stands for inhibitory).
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Usually the Y values are total binding. If you enter specific binding instead,
fix BOTTOM to have a constant value of zero. If you enter percent specific
binding, also set TOP to be a constant equal to 100.
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See "Competitive binding data with one class of receptors" on page 266.

Two site competition
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This equation describes the competition of a ligand for two types of re-
ceptors. The radioligand has identical affinities for both receptors, but the
competitor has a different affinity for each.

Y is binding (total or specific) and X is the logarithm of the concentration of
the unlabeled ligand. FRACTION_1 is the fraction of the receptors that
have an affinity described by LogEC50_1. The remainder of the receptors
have an affinity described by LogEC50_2. If LogEC50_1 is smaller than
LogEC50_2, then Fraction_1 is the fraction of high affinity sites. If
LogEC50_1 is larger than LogEC50_2, then Fraction_1 is the fraction of low
affinity sites.

See "Competitive binding with two sites" on page 270.

  Analyzing Data with GraphPad Prism 176 Copyright (c) 1999 GraphPad Software Inc.

Boltzmann sigmoid
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This equation describes voltage dependent activation of ion channels. It
describes conductance (Y) as a function of the membrane potential (X).
Conductance varies from BOTTOM to TOP. V50 is the potential at which
conductance is halfway between BOTTOM and TOP. SLOPE describes the
steepness of the curve, with a larger value denoting a shallow curve. Slope
is expressed in units of potential, usually mV, and is positive for channels
that activate upon depolarization.

Under appropriate experimental conditions, you can use SLOPE to
calculate the valence (charge) of the ion moving across the channel. SLOPE
equals RT/zF where R is the universal gas constant, T is temperature in °K,
F is the Faraday constant, and z is the valence. Since RT/F ≈ -26 mV at
25°C, z = -26/SLOPE.

BOTTOM is commonly made a constant equal to 0.0. If you also make
TOP a constant equal to 1.0, then Y can be viewed as the fraction of
channels that are activated.
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One phase exponential decay
Y Span e PlateauK X= ⋅ +− ⋅

Plateau

t1/2

Plateau
+ Span

Time

Y

This equation describes the kinetics such as the decay of radioactive
isotopes, the elimination of drugs, and the dissociation of a ligand from a
receptor.

X is time, and Y may be concentration, binding, or response. Y starts out
equal to SPAN+PLATEAU and decreases to PLATEAU with a rate constant
K. The half-life of the decay is 0.6932/K. SPAN and PLATEAU are
expressed in the same units as the Y axis. K is expressed in the inverse of
the units used by the X axis. In many circumstances, the plateau equals
zero. When fitting data to this equation, consider fixing the plateau to a
constant value of zero.

See "Example model 2. Exponential decay" on page 158, and "Dissociation
("off rate") experiments" on page 287.

Two phase exponential decay
Y Span e Span2 e PlateauK X K X= ⋅ + ⋅ +− ⋅ − ⋅1 1 2

Plateau

Half-lives
Time

   Span1
+ Span2
+ Plateau
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This equation describes a two phase exponential decay. Y starts out equal
to Span1+Span2+PLATEAU and decays to PLATEAU with fast and slow
components. The two half-lives are 0.6932/K1 and 0.6932/K2. In the
figure, the two rate constants differ tenfold, but the spans were equal. The
curve is not obviously biphasic, and it takes a very practiced eye to see that
the curve does not follow a single phase model.

One phase exponential association

Y Ymax e K X= ⋅ − − ⋅1e j

Ymax

Time

  Y

This equation describes the pseudo-first order association kinetics of the
interaction between a ligand and its receptor, or a substrate and an
enzyme. Y is either binding or enzyme activity. X is time.

Y starts out equal to zero and increases to a maximum plateau (at
equilibrium) equal to YMAX. When X equals 0.6932/K, Y equals
0.5*YMAX.

See "Association binding experiments" on page 288.

Two phase exponential association

Y Ymax e Ymax eK X K X= ⋅ − + ⋅ −− ⋅ − ⋅
1 21 11 2e j e j

This is an extension of the exponential association to two phases,
corresponding to a radioligand binding to two independent sites.
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Exponential growth

Y Start eK X= ⋅ ⋅

Start
Time

 Y

This describes an exponential growth curve. Y is population size (perhaps
cell number) and X is time. At X=0, Y equals START. Y increases
geometrically with a doubling time equal to 0.6932/K.

Note: It is difficult to fit data to this equation with nonlinear re-
gression, because a tiny change in the initial values will drasti-
cally alter the sum-of-squares. You may need to override the
initial values provided by Prism.

Power series
This versatile equation has many uses.

Y A X C XB D= ⋅ + ⋅

Fitting data to a power series model can be difficult. The initial values
generated automatically by Prism are not very helpful (all four parameters
are set to 1.0). You'll probably need to enter better initial values in order to
fit this equation to data. The initial values of B and D are important,
because small changes in those values can make a huge change in Y.

The equation is not defined, and leads to a floating point error, if X equals
zero and B or D are negative numbers or if X is negative and B or D are
between 0.0 and 1.0.
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Polynomial equations
Prism offers first, second, third and fourth order polynomial equations.
Although few chemical or pharmacological models are described by
polynomial equations, these equations are often used to fit standard curves.
The higher order equations have more inflection points.

Unlike all other equations, you don’t have to worry a bit about initial
values when fitting data to polynomial equations. You will get exactly the
same answer no matter what the initial values are.

The "order" of a polynomial equation tells you how many terms are in the
equation.

Order Equation
First Y A B X= + ⋅

Second Y A B X C X= + ⋅ + ⋅ 2

Third Y A B X C X D X= + ⋅ + ⋅ + ⋅2 3

Fourth Y A B X C X D X E X= + ⋅ + ⋅ + ⋅ + ⋅2 3 4

You can enter a higher-order equation (up to 14th order) as a user-defined
equation (or select one from the equation library).

Sine wave
Y Baseline Amplitude sin Frequency X Offset= + ⋅ ⋅ +b g

Baseline

Amplitude

2ππ
frequency

X is in radians. In most cases, you'll want to fix BASELINE to a constant
value of zero. AMPLITUDE is the maximum height of the curve away from
the baseline. FREQUENCY is the number of complete oscillations per 1 X
unit.
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Cumulative probability distribution of a Gaussian bell-shaped distribution
with specified mean and SD. The area under the entire curve is AREA. A
standard probability distribution is scaled so that AREA equals 1.0. The
units of the Y-axis are arbitrary, determined by your choice of AREA.

Importing equations and the equation library

Selecting from the Prism equation library
You are not limited to the classic equations built-in to Prism. You can also
enter your own equation (see "User-defined equations" on page 181) or
choose an equation from an equation library. To choose an equation from
a library, click “more equations” (from the parameters dialog for nonlinear
regression), then choose to select from the equation library.

On the Equation Selection dialog,  first choose a library file (left panel) then
choose an equation (right panel). Confirm your choice with the preview on
the bottom of the dialog.
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When you select an equation from the library, you transfer it from the
library file to your own list of equations. You can then edit that copy of the
equation without affecting the library. Prism stores the equation with every
file that uses it, and also places the equation in your list of user-defined
equations (the list you see when you choose "more equations"). Prism does
not remember that the equation came from a library.

GraphPad may extend the equation library over time. Check
www.graphpad.com for new equations.

You can add to the equation library. See "Creating equation library files" on
page 187.

Importing an equation from another Prism project
You can import any equation from any project. Click "more equations"
(from the parameters dialog for nonlinear regression). Choose to import an
equation and select a file and an equation.

When you import an equation, you transfer to your own list of equations
(the list you see when you choose "more equations"). Prism does not store
any sort of link back to the file the equation was imported from.

Managing your list of equations
When you choose "more equations", Prism shows you a list of equations
you have entered or imported. If you don't plan to use an equation again,
select it and click Delete to erase it from the list. That won't affect any files
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that use the equation you erased. If you open one of these files, and change
the parameters of the nonlinear regression, Prism will automatically add the
equation back to your list.

You can change the order of equations in your list by selecting an equation
and then clicking Move up or Move down.

Modifying equations
You can edit any equation you entered yourself or imported (or chose from
the equation library). From the nonlinear regression parameters dialog,
select the equation from the list of "more equations" and then click Edit
Eqn.

Classic equations cannot be modified. But you can create a new user-
defined equation based on a classic equation.

To copy and paste a built-in equation:

1. Start from the Nonlinear Regression or Simulate Equation Parameters
dialog.

2. Select a built-in classic equation, and click on the button labeled
“Equation”.

3. Press the button labeled “Copy All”.

4. Cancel from that dialog.

5. Select “More equations”, then “enter a new equation”.

6. Enter an equation name. Then move the insertion point to the Equa-
tion block.

7. Press the button labeled “Paste”.

8. Edit the equation.

User-defined equations

What kind of equations can you enter?
You can enter your own equations into Prism, subject to these limitations:
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Limitation Explanation
No implicit equations. Y must be defined as a function of X and one or

more parameters. The variable Y can only appear
once, on the left side of the last line of the equation.
If Y also appears on the right side of the equation,
you have an implicit equation, which Prism cannot
handle. In many cases, you'll be able to
algebraically rearrange the equation.

No differential equations. You must define Y as a function of X and one or
more variables. It is not sufficient to define the de-
rivatives.

No equations with more
than one X variable.

Prism does not calculate multiple regression, so
cannot fit models with two or more independent (X)
variables. For example, Prism cannot fit a model
that defines response as a function of both dose and
time.

No equations with more
than 14 variables.

Prism fits at most 14 variables, although you may
use other intermediate variables when writing the
equation.

No discontinuous
equations.

If you enter a discontinuous equation (where an
infinitesimal change in X can create a huge change
in Y) the results of nonlinear regression may not be
reliable. .

Entering a user-defined equation
At the top of the parameters dialog for nonlinear regression (or simulate
curve) select “More equations”. Then select “Enter your own equation” to
bring up the Equation dialog.
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You must enter a name for the equation, which will  then appear on the list
of "more equations" in the nonlinear regression dialog.

In entering the equation itself, follow these guidelines (similar to those of
the Basic computer language).

• Variable names must not be longer than 13 characters. If you want to
use two words to describe a variable, separate with the underscore
character, for example Half_Life. Don’t use a space, hyphen or
period.

• Prism does not distinguish between upper and lower case letters in
variable names.

• Use an asterisk (*) to indicate multiplication and a caret (^) to indi-
cate power.  For example, "A*B" is the product of A times B and
"A^B" is A to the B power.

• Use parentheses as necessary to show the order of operations. To
increase readability, substitute brackets [like this] or braces {like this}.
Prism interprets parentheses, brackets, and braces identically.

• Use a single equals sign to assign a value to a variable.

• You don't need any special punctuation at the end of a statement.

• To enter a long line, type a backslash (\) at the end of the first line,
then press Return and continue. Prism treats the two lines as one.

• To enter a comment, type a semicolon (;) and type text. Comments
can begin anywhere on a line.

You don't have to write your equation on one line. Use intermediate
variables to simplify longer equations. Prism automatically distinguishes
between intermediate variables and equation parameters that you can fit. If
a variable is used first on the left side of an equals sign, then it is an
intermediate variable. If a variable is used first on the right side of an equals
sign, then it is an equation parameter.
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Here are three examples of one-line equations:

 Y=Bmax*X/(Kd + X)

 Y=A*(X+1)

 Y=Start*exp[(-0.693/Half_Life)*K]

Below is an example of a longer equation. Because K is on the left of the
equals sign, Prism recognizes that it is an intermediate variable rather than
a variable to be fit by nonlinear regression. Note two comments, one on a
line by itself and the other on the same line with equation code.

; One-phase exponential decay

K=0.693/HalfLife ;rate constant

Y=Start*exp(-K*X)

Available functions
When you enter your equations, you can use any of the functions listed
below. Don't use any of those names for your variables. (The variables j
and k in the descriptions below can be any variable or expression.)

Function Explanation
abs(k) Absolute value. If k is negative, multiply by -1.

arccos(k) Arccosine. Result is in radians.

arcsin(k) Arcsine. Result is in radians.

arctan(k) Arctangent. Result is in radians.

cos(k) Cosine. K is in radians.

deg(k) Converts k radians to degrees.

exp(k) e to the kth power.

if(condition, j, k) If the condition is true, then the result is J. Otherwise
the result is k. The condition is in the form A<B or
A=B.

int(k) Truncate fraction. INT(3.5)=3  INT(-2.3) = -2

ln(k) Natural logarithm.

log(k) Log base 10.
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max(j,k) Maximum of two values.

min(j,k) Minimum of two values.

j mod k The remainder (modulus) after dividing j by k.

rad(k) Converts k degrees to radians.

sgn(k) Sign of k. If k>0, sgn(k)=1. If k<0, sgn(k)= -1. If
k=0, sgn(k)=0.

sin(k) Sine. K is in radians.

sqrt(k) Square root.

tan(k) Tangent. K is in radians.

Using the IF function
Prism allows you to introduce some branching logic through use of the If
function. The syntax is:

IF (conditional expression, value if true, value if false)

You can precede a conditional expression with NOT, and can connect two
conditional expressions with AND or OR. Examples of conditional
expressions:

MAX>100
Ymax=Constraint
(A<B or A<C)
NOT(A<B AND A<C)
FRACTION<>1.0     )
X<=A and X>=B

Note: "<>" means not equal to. "<=" means less than or equal
to. ">=" means greater than or equal to.

Here is an example.
 Y= If (X<X0, Plateau, Plateau*exp(-K*X))

If X is less than X0, then Y is set equal to the variable Plateau. Otherwise Y
is computed as Plateau*exp(-K*X).

You may also insert a conditional expression anywhere in an equation,
apart from an If function. A conditional expression evaluates as 1.0 if true
and 0.0 if false. Example:
 Y=(X<4)*1 + (X>=4)*10

When X is less than 4, this evaluates to 1*1 + 0*10=1. When X is greater
than 4, this evaluates to 0*1+1*10=10.

  Analyzing Data with GraphPad Prism 188 Copyright (c) 1999 GraphPad Software Inc.

Defining rules for initial values in nonlinear regression
Before it can perform nonlinear regression, Prism must have initial values
for each variable in the equation. You can enter initial values at the time
you fit curves, but it is helpful to define rules for generating the initial
values at the time you enter a new equation. Then Prism will calculate the
initial values automatically. If you don't enter rules for initial values, you
will need to enter the initial values for every variable, for every data set,
every time you fit data.

To define rules for initial values for user-defined equations:

1. While entering or editing a user-defined equation, click on the button
labeled “Rules for initial values”.

2. On the Default Values dialog, enter the rule for finding the initial
value of each variable. For each variable in the equation, enter a
number in the first column and select a multiplier from the drop-
down list in the second column.

All but two choices on the drop-down list are used to multiply or divide the
number you entered by a value determined from the range of the data:
YMIN, YMAX, YMID, XMIN, XMAX, XMID, XMID/YMID, XMAX-XMIN, or
YMAX-YMIN. The abbreviation YMIN is the minimum value of Y; YMAX is
the maximum value, and YMID is the average of YMIN and YMAX. For
example, if you enter “0.5” in the first column and select “YMAX” in the
second column, Prism sets the initial value to half of YMAX (which differs
for each data set).

The first choice on the drop-down list is "(Initial value, to be fit)". This
means that the value you entered will be the initial value for all data sets.
The initial value will not depend on the range of the data.

The last choice is "(Hold constant)". This sets the parameter to a constant
value, that won't be fit by nonlinear regression.

You can choose "(Hold constant)" even for parameters such as specific
activity or protein concentration that have different values in each
experiment. In the Rules for initial value dialog, choose "(Hold constant)"
but leave the value blank. Each time the equation is used, Prism will
prompt for a constant value before using the equation in nonlinear
regression.
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Creating equation library files
When you choose an equation for nonlinear regression (or simulations),
Prism lets you import from the equation library. You can add to the library
by following these steps:

1. Create a new Prism project. Use the Simulate Curve analysis and enter
a new equation. Pick reasonable values for the minimum and
maximum X values of the curve.

2. Customize the graph so it will be clear when seen as a preview (test
this by looking at the graph gallery).

3. Repeat with any number of related equations that you want to store in
one file.

4. Save the file into the Equations folder within the program folder.

5. If you are creating an equation file that will be used by others, consider
creating a help file that explains the equations. Using any help
compiler, create a help file with the same name as the file containing
the equations but with the extension hlp. Place the help file in the
same folder with the Equation file.

When you choose to select an equation from a library file, Prism displays a
list of all files (and templates) in the Equations folder. When you pick one
of those files, it shows a list of all user-defined equations used in the file,
along with a thumbnail preview of the first graph linked to each equation.
If a help file exists for the selected file, click "Help with this equation file"
to open it.

Constraining variables in user-defined equations

Why constrain?
Prism has no common sense. When it finds the best-fit of an equation to
your data, it doesn't know which values are reasonable. For example, if
your data are quite scattered (or the initial values are way off) Prism might
report that the best-fit value of a rate constant or a plateau is a negative
number. Prism doesn't know that that negative numbers are impossible. All
it knows is that setting that variable to a negative number reduces the sum-
of-squares as much as possible. But your goal is not just to reduce the sum-
of-squares, but to do so in a way that results in best-fit values that are
scientifically sensible. If Prism reports results that are not sensible, consider
adding constraints to your model (also consider using a different model).
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Setting a parameter to a constant value
The most severe constraint is to set a parameter to a constant value. For
example, you can set a plateau variable to zero if you have already
subtracted out any baseline or nonspecific data. You can do this in two
ways.

The direct approach is to edit the equation to set a parameter to a constant
value. In the example below, the variable Plateau is fixed to a constant
value, so its value is not altered by nonlinear regression.

Plateau=13.45

Y = Plateau + Span*exp(-K*X)

A simple approach is to use the Constants dialog. After selecting the
equation in the nonlinear regression parameters dialog, click the Constants
button to bring up a second dialog. In that dialog, you may set any of the
parameters in the equation to a constant value.

Constraining to a positive value
A common constraint is to tell Prism that a variable must be positive. For
example, you may wish to constrain the bottom plateau of an exponential
dissociation curve to be positive. Here is an equation that does that using
the IF function (see "Using the IF function" on page "185").

Bottom = IF(BASELINE<0, 0.0, Baseline)

Y = (TOP – BOTTOM)*exp(-K*X) + BOTTOM

The first line defines the intermediate variable Bottom to be zero if the
variable Baseline is negative. Otherwise it sets Bottom equal to Baseline.

You can achieve the same effect using the MAX function. The following
equation is equivalent to the previous one.
BOTTOM = MAX(BASELINE,0.0)

Y =(TOP – BOTTOM)*exp(-K*X) + BOTTOM

The first line of the equation defines the intermediate variable BOTTOM to
be the maximum of the variable BASELINE and zero. This means that the
variable BOTTOM can never be negative (because 0.0 is larger than any
negative number).

There is no particular reason to favor using either the IF function or MAX
functions. Use whichever you find easier to remember.
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Constraining a variable to a range of values
You can constrain a variable to fall within a range of values. For example,
the equation below fits a dose-response curve, constraining the bottom
plateau to be between -10 to 10, and the top plateau to be between 90 to
110.

Top=IF(TopP<90,90, IF(TopP>110, 110, TopP))

Bottom=If(BottomP<-10, -10, If(BottomP>10,10, BottomP)

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

The logic of the nested If statements can be hard to follow. Here is the logic
of the first line above, written in the Basic computer language (you cannot
use this Basic syntax when entering models into Prism):

If TopP<90 then

  Top=90

ElseIf TopP>110 then

  Top=110

Else

  Top=TopP

EndIf

If you find the IF statements hard to follow, you might prefer to establish
constraints using the Max and Min functions. The following equation is
equivalent to the previous one. To understand the logic, try evaluating the
first line setting the variable TopP to 85, 95, 105 and 115. The variable Top
will equal 90, 95, 105 and 110 respectively.
Top=MAX(90, MIN(TopP, 110))

Bottom=MAX(-10, MIN(BottomP, 10))

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

An alternative approach to constraining a variable to a
range of values
Hilborn and Mangel suggested an alternative approach to constraining a
variable to a range of values (The Ecological Detective, Princeton
University Press, 1997).

Say you want to constrain the variable F to be between 0 and 1. Before
using F in your user-defined equation, define it as a function of the variable
FF. But rather than use an IF statement, or Min and Max functions, to
constrain the variables, use this equation:
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F=((Pi/2) + arctan(FF))/pi

Why does this work? No matter what value FF has, the arctangent is
between –pi/2 to pi/2. Therefore, F will be between 0.0 and 1.0. Prism fits
the value FF, which has no constraint. To make sense of the results,
transform the best-fit value of FF into F, which will always be between 0.0
and 1.0. Do the same thing for both ends of the confidence interval for FF.

You can generalize this equation for use with any range of values.
F =((ULimit – LLimit)*((Pi/2) + arctan(FF))/pi ) + LLimit

ULimit and LLimit are the upper and lower limits of your constraint.
Substitute values or constraint those parameters to be constant. Prism
cannot fit ULimit and LLimit.

How to fit different portions of the data to different
equations

In some situations you may wish to fit different models to different portions
of your data. This often occurs in kinetic experiments where you add a
drug or perform some sort of intervention while recording data. The values
collected before the intervention follow a different model than those
collected afterwards.

Although Prism has no built-in way to fit different equations to different
portions of the data, you can achieve that effect using a user-defined
equation containing the IF function.

Example 1. Plateau followed by exponential association
In this example, you collected data that established a baseline early in the
experiment, up to "Start". You then added a drug, and followed the
outcome (Y) as it increased towards a plateau. Prior to the injection the data
followed a horizontal line; after the injection the data formed an
exponential association curve.

START

BASELINE

Time

Y

SPAN
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Y1=BASELINE

Y2=BASELINE + SPAN*(1-exp(-K*(X-START)))

Y=IF[(X<START),Y1,Y2)

It is easiest to understand this equation by reading the bottom line first. For
X values less than START, Y equals Y1, which is the baseline. Otherwise, Y
equals Y2, which is defined by the exponential association equation.

This equation has two intermediate variables (Y1 and Y2). Prism can fit the
four true variables: START, SPAN, K, and BASELINE.

In many cases, you’ll make START a constant equal to the time of the
experimental intervention. If you want Prism to fit START, choose an initial
value carefully.

Example 2. Two linear regression segments
This example fits one linear regression line to points where X is less than
some value X0 and another linear regression line to points where X is
greater than X0. You can make X0 a constant (the time of an experimental
intervention). Or you can ask Prism to find the best fit value of X0. The two
lines will not necessarily meet at X0, and may intersect far from it.

Use this user-defined equation in Prism’s nonlinear regression:

Y1=slope1*X + intercept1

Y2=slope2*X + intercept2

Y=IF(X<X0, Y1, Y2)

Y1 and Y2 define the two linear regression lines, each with their own slope
and intercept. If X is less than X0, Y is computed using the Y1 formula,
otherwise the Y2 formula is used.

If you want Prism to fit X0, give Prism a reasonable initial value. The rule
that the initial value of X0 equals 1 times XMID works well for many data
sets. The initial values of the two slopes and intercepts don’t really matter
(since this is a linear, rather than a nonlinear, equation). Prism will fit them
accurately even if all initial values are set to zero.

This method fits two linear regression lines, but does not ensure that the
lines meet at X0. The curve may be discontinuous, as shown below. In this
example the best-fit value of X0 is 6.5. The two regression lines do not
intersect at X=6.5, so the curve is discontinuous. The next example fits two
linear regression lines that intersect at X0.
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Example 3. Two linear regression segments that meet at
the breakpoint

This equation fits two linear regression lines, ensuring that they intersect at
X=X0.

Y1 = intercept1 + slope1*X

YatX0 = slope1*X0 + intercept1

Y2 = YatX0 + slope2*(X – X0)

Y = IF(X<X0, Y1, Y2)

The first line of the equation defines the first line segment from its intercept
and slope.

The second line of the equation computes the Y value of the first regression
at the right end of that segment, when X=X0.

The third line of the equation computes the second regression segment.
Since we want a continuous line, the Y value at the left end of the second
segment must equal the Y value at the right end of the first segment
(YatX0). The Y value at any other position along the second segment equals
YatX0 plus the increase due to the second regression line. That increase
equals the slope of the second segment (slope2) times the distance from X
to X0.

The final line defines Y for all values of X. If X is less than X0 then Y is set
equal to Y1. Otherwise Y is set equal to Y2.

Here are the results with sample data. The program found that the best-fit
value of X0 was 5.00, and the two lines meet at that X value.
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Example 4. Linear regression with three segments
This equation fits three linear regression lines, ensuring that they intersect
at X=X0 and X=X1.

Y1 = intercept1 + slope1*X

YatX0 = intercept1 + slope1*X0

Y2 = YatX0 + slope2*(X – X0)

YatX1 = YatX0 + slope2*(X1-X0)

Y3 = YatX1 + slope3*(X – X1)

Y = IF(X<X0, Y1, IF(X<X1, Y2, Y3))

The logic is identical to that of the two segment regression line.

Use segmental linear regression cautiously
Segmental linear regression is appropriate when something happens at X0
to change the slope of the line. For example, segmental linear regression
might be appropriate if X is time, and you added a drug or changed a
voltage at time X0.

If you didn’t perform an intervention at X0, consider carefully whether
segmental linear regression is the analysis of choice. Without an
experimental intervention, segmental linear regression is rarely an
appropriate method, as there usually is not a sharp break point. Instead,
you probably want to fit some sort of curve.
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Warning. Segmental linear regression is definitely NOT an
appropriate method to analyze a biphasic Scatchard plot. A
biphasic Scatchard plot follows a curve, not two intersecting
lines. There is no abrupt break point. You should fit the original
data to a two-site binding curve instead.

How to simulate a theoretical curve
You'll find nonlinear regression most useful if you understand the models
you have chosen. The best way to do this is to simulate a curve and then
see what happens when you alter a parameter. Viewing graphs of simulated
curves is a great way to learn about equations.

Prism can add Gaussian random error to each point in the simulated curve.
This can help you test analysis methods. Create a curve with random error,
and then analyze the simulated data.

To simulate a curve, start from a data table or graph. Click the Analyze
button, select built-in analyses, and then  select Simulate Theoretical Curve
from the list of curve analyses. Select an equation (see “Choosing or
entering an equation (model)” on page 171), enter a value for each
parameter, and a range of X values. Check the option box to add random
error to each simulated point. Prism generates random errors that follow a
Gaussian (bell-shaped) distribution with a SD you enter.
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How Prism generates random numbers
Prism can add random values to each of the calculated Y values to simulate
experimental error. Prism generates random numbers using routines
adapted from Numerical Recipes in C, (W. H. Press et al, second edition,
Cambridge Press, 1992; available online at www.nr.com). The function
RAN3 (defined in Numerical Recipes) generates uniformly distributed
random numbers and the function GASDEV transforms them to a Gaussian
distribution with a mean of zero and a standard deviation you enter. Prism
uses the time of day when calculating the first random number, so you will
get a different series of random numbers every time you run the program.

The only way to generate truly random numbers is through a random
physical process such as tossing dice or measuring intervals between ra-
dioactive decays. Prism, like all computer programs, generates “random”
numbers from defined calculations. Since the sequence of numbers is re-
producible, mathematicians say that the numbers are “pseudo-random”.
The difference between truly random and pseudo-random numbers rarely
creates a problem. For most purposes, computer generated random
numbers are random enough to simulate data and test analytical methods.
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Fitting curves with nonlinear
regression

Fitting curves with nonlinear regression

To perform nonlinear regression

1. You may start either from a table of data or from a graph. Press the
Analyze button and select built-in analyses. Then select Nonlinear
regression from the list of curves and regressions.

2. Pick an equation. See “Classic equations built-in to Prism” on page
171, “Selecting from the Prism equation library” on page 178, and
"User-defined equations" on page 181. For general information on
creating models, see "Introduction to models" on page 157.
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3. To compare two equations, select “Fit to two equations and compare
with an F test.” Check the option button for equation 1, and pick that
equation. Then check the option button for equation 2 and pick the
second equation. See “Comparing the fits of two models” on page
221.

4. Select the additional calculations you wish to perform.

Calculation Description
Calculate
unknowns from
a standard curve

After fitting a curve, Prism will interpolate unknown
values from that curve. See "Reading unknowns from
standard curves" on page 329.

Runs test Tests whether the curve deviates systematically from
your data. See “Runs test” on page 215.

Residuals Helps you test the assumptions of nonlinear regression.
See “Residuals” on page 214.

Dose-ratios for
Schild plot

Computes the log of dose-ratios from a series of dose-
response curves. See "Schild plot" on page 312

Ki from IC50 After fitting competitive binding curves, calculate the Ki

from the IC50. See "Ki from EC50" on page 267.

t test to compare
best-fit variables

If you fit two data sets, compare the best-fit values of
each parameter using a t test. See "Compare two best-fit
values from one experiment" on page 225. The results
will be in the "Overview and comparison" view (page).

5. Set other options by clicking one of the four buttons at the bottom left
of the nonlinear regression parameters dialog.
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Option Description
Initial values Prism automatically supplies initial values for all vari-

ables, so you rarely have to think about them. Press
this button to inspect and alter the initial values. See
"For guidance interpreting the results, see "Approach
to interpreting nonlinear regression results" on page
207.

Initial values for nonlinear regression" on page 197.

Constants Fix the value of one or more parameters in the equa-
tion to a constant value. See "Constants for nonlinear
regression" on page 199.

Method Choose how Prism weights data, handles replicates,
and other options. See "Method options for nonlinear
regression" on page 200.

Output Configure the output by choosing the beginning and
end of the curve, the number of significant digits, and
more. See "Output options for nonlinear regression"
on page 204.

For guidance interpreting the results, see "Approach to interpreting
nonlinear regression results" on page 207.

Initial values for nonlinear regression

Nonlinear regression is an iterative procedure. The program must start with
estimated values for each variable that are in the right “ball park” — say
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within a factor of five of the actual value. It then adjusts these initial values
to improve the fit.

Prism automatically provides initial values for each variable, calculated
from the range of your data. If you select a built-in equation, the rules for
calculating the initial values are built-in to the program. If you enter a user-
defined equation, you define the rules. See "Defining rules for initial values
in nonlinear regression" on page 186.

You'll find it easy to estimate initial values if you have looked at a graph of
the data, understand the model, and understand the meaning of all the
parameters in the equation. Remember that you just need an estimate. It
doesn't have to be very accurate. If you are having problems estimating
initial values, set aside your data and simulate curves using the model.
Change the variables one at a time, and see how they influence the shape
of the curve. Once you have a better feel for how the parameters influence
the curve, you might find it easier to estimate initial values.

To view and change the initial values:

1. Press the Initial values button on the Nonlinear Regression Pa-
rameters dialog.

2. Select a data set from the drop down list.

3. To change the initial value of a variable, deselect the Auto check box
next to a variable and enter the new initial value.

After you fit data, Prism will use the best-fit values from that fit as the initial
values for the next fit. If the changes you make to the data are minor, the fit
will usually go much faster this way. But if you replace the data with values
that are very different, the previous best-fit values may make very bad
initial values, so bad that the nonlinear regression process may not
converge on best-fit values. In this case, uncheck the option box “Use the
results of the previous fit as initial values”.

How much difference do initial values make?
When fitting a simple model to clean data, it won't matter much if the
initial values are fairly far from the correct values. You'll get the same best-
fit curve no matter what initial values you use, unless the initial values are
very far from correct. Initial values matter more when your data have a lot
of scatter or your model has many variables.

Viewing the curve generated by the initial values
If you aren't sure whether the initial values are reasonable, check "Don't fit,
fix all variables to their initial values"  on the initial values dialog. When
you ok from the nonlinear regression dialog, Prism will not fit a curve but
will instead generate a curve based on your initial values. If this curve is
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not generally in the vicinity of the data points, change the initial values
before running nonlinear regression.

Constants for nonlinear regression
When performing nonlinear regression, you don't have to fit each
parameter in the equation. Instead, you may fix one or more of the
parameters to constant values.

It is often helpful to define constants when you have only a few data points.
For example, you might fix the bottom plateau of a sigmoid curve or
exponential decay to zero.

Remember that Prism has no "common sense". Prism does not
know how you did the experiment. Unless you tell it, Prism
doesn't know that a curve has to plateau at zero

To set constants, click on the Constants button in the Nonlinear Regression
Parameters dialog to bring up the Constants dialog. Check the “constant” box
in front of the parameters you want to hold constant and enter their values.
As a shortcut, you can enter the value first and Prism will automatically select
the check box. You cannot enter different constant values for each data set.
When you set a parameter to a constant value, you fix it to that value for
every data set analyzed.
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Method options for nonlinear regression

Weighting method
Most often nonlinear regression is done without weighting. The program
minimizes the sum-of-squares of the vertical distances of the data from the
curve. This method gives equal weight to all points, as is appropriate when
you expect experimental scatter to be the same in all parts of the curve.

If you expect experimental scatter to vary along the curve, Prism offers five
ways to weight the points differently.

Relative weighting (weighting by 1/Y2)
The weighting method used most often is called weighting by 1/Y2. It is
easier to think of this method as minimizing the sum-of-squares of the
relative distances of the data from the curve. This method is appropriate
when you expect the average distance of the points from the curve to be
higher when Y is higher, but the relative distance (distance divided by Y) to
be a constant. In this common situation, minimizing the sum-of-squares is
inappropriate because points with high Y values will have a large influence
on the sum-of-squares value while points with smaller Y values will have
little influence. Minimizing the sum of the square of the relative distances
restores equal weighting to all points.

There are two ways to express the equation describing the quantity that
nonlinear regression minimizes, shown below. The form on the left is, I
think, easier to understand. You divide the distance of the data from the
curve by the Y values of the data to obtain the relative distance, and then
square that result. Most books on nonlinear regression use the equivalent
form shown on the right – you first square the distance of the data from the
curve, and then multiply that value times a weighting constant equal to
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1/Y2. That explains why relative weighting is often called weighting by
1/Y2.
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Weighting by 1/Y
Weighting by 1/Y is a compromise between minimizing the actual distance
squared and minimizing the relative distance squared. One situation where
1/Y weighting is appropriate is when the Y values follow a Poisson
distribution. This would be the case when Y values are radioactive counts
and most of the scatter is due to counting error. With the Poisson
distribution, the standard error of a value equals the square root of that
value. Therefore you divide the distance between the data and the curve by
the square root of the value, and then square that result. The equation
below shows the quantity that Prism minimizes, and shows why it is called
weightng by 1/Y.
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Weighting by 1/X or 1/X2

The choices to weight by 1/X or 1/X2 are used rarely. These choices are
useful when you want to weight the points at the left part of the graph more
than points to the right.

Weighting by 1/SD2

Prism also offers the choice to weight by the reciprocal of the standard
deviation squared. This means that data with little scatter (smaller standard
deviation) get more weight that data with lots of scatter. This option will be
useful if you understand how the scatter (or errors) arise in your
experimental system, and can calculate appropriate weighting factors based
on theory. Format a data table for entry of mean and SD, and enter (or
paste) the weighting factors into the SD column. Don't use 1/SD2 weighting
if the SD values are computed from a few replicates. Random scatter can
cause some SD values to be high and some low, and these differences may
not reflect consistent differences in variability. You want to choose a
weighting scheme to account for systematic differences in the predicted
amount of variability if you were to repeat the experiment many times. You
should not choose weighting based on variability you happened to observe
in one small experiment. If you choose to weight by 1/SD2, Prism
minimizes this quantity:
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General comments on weighting
If the weighting scheme you chose would result in a division by zero for
any value, Prism will not fit the dataset and reports "Weighting impossible"
at the top of the results page.

Prism also considers sample size when weighting. If you entered individual
replicates, and chose to treat the replicates separately, then no special
calculations are needed. If you entered replicate values, but chose to fit to
the mean of the replicates, then Prism always multiplies the weighting
factor by N. The means computed from a large number of replicates get
more weight than means computed from a few replicates. Similarly, if you
enter mean, SD (or SEM) and N, Prism multiplies the weighting factor by N.

Replicates
If you collected replicate Y values at every value of X, there are two ways
Prism can fit a model to the data. It can treat each replicate as a separate
point, or average the replicate Y values, and treat the mean as a single
point.

You should consider each replicate a separate point when the replicates are
independent. Two examples:

• You are doing a radioligand binding experiment. All the data were
obtained from one tissue preparation and each replicate was
determined from a separate incubation (separate test tube). The
sources of experimental error are the same for each tube. If one value
happens to be a bit high, there is no reason to expect the other
replicates to be high as well. The errors are independent.

• You are doing an electrophysiology study. You apply a voltage across
a cell membrane and measure conductance. Each data point was
obtained from a separate cell. The possible sources of experimental
error are independent for each cell. If one cell happens to have a
high conductance, there is no reason to expect the replicate cells
(those that you apply the same voltage to) to also have high
conductance.

Average the replicates and treat the mean as a single value when the
replicates are not independent. Two examples:

• You performed a binding experiment with a single tube at each
concentration, but assessed the radioactivity in each tube three times.
Those three values are not independent.  Any experimental error
while conducting the experiment would affect all the replicates.
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• You performed a dose-response experiment, using a different animal
at each dose with triplicate measurements. The three measurements
are not independent. If one animal happens to respond more than the
others, that will affect all the replicates. The replicates are not
independent.

Calculation options
Threshold P value
Prism can compare the fits of two equations using an F test and choose the
equation to graph based on the resulting P value. The simpler equation
(fewer variables) is chosen unless the P value is less than the threshold P
value you enter here. Most investigators leave this set to 0.05.

Derivatives
While performing nonlinear regression, Prism repeatedly evaluates the
partial derivative of your equation with respect to each variable. This is the
most time consuming part of nonlinear regression.

If you choose a built-in equation, Prism uses analytical derivatives built-in
to the program. There is no choice for you to make. If you enter your own
equation (or use a library equation), Prism evaluates the derivatives numeri-
cally, and you can choose the method Prism uses.

Ordinarily, Prism uses Richardson's method to evaluate the derivatives.
This method calculates the derivative by determining Y after both
increasing and decreasing the value of the variable a bit.

Check the option box to use a faster, but potentially less accurate, method
(which only evaluates the equation after increasing the value).

In most cases, the results will be identical with both methods. We
recommend that you use the slow but accurate method to validate results
with a new equation. You can then switch to the quick method for routine
analyses if the speed of nonlinear regression matters to you. With small
data sets and fast computers, nonlinear regression will seem instantaneous
even if you pick the slower method.

Convergence criteria
Prism stops iterating and declares the results to have converged when two
iterations in a row change the sum-of-squares by less than 0.01%. If you
check the box for strict convergence criteria, Prism will continue the
iterations until five consecutive iterations each reduce the sum-of-squares
by less than 0.000001%.

We recommend that you use the slow method only when you are having
difficulty fitting an equation, or to validate your results. Use the standard
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method for routine analyses. If you select the standard method, Prism will
automatically switch to the stricter criteria if the R2 is less than 0.3

Selecting the stricter criteria rarely affects the results but slows the calcu-
lations a bit (only noticeable with huge data sets or slow computers).

Stop calculating after 25 iterations
If this option is checked, Prism will stop nonlinear regression after 25
iterations. In most cases, nonlinear regression converges in fewer than 25
iterations. If the iterations continue beyond 25, it may be because you've
picked an inappropriate equation, picked unhelpful initial values, or have
very scattered data. This option insures that Prism won't spend a long time
on calculations that won't be helpful. It is especially useful when you use a
Prism script to fit many data sets.

Output options for nonlinear regression

Include in tabular output
Choose which parts of the output you wish to see. We recommend that
you leave all the boxes checked to get the most complete output.

Number of significant digits
Choose the number of significant digits used to report results. This is
especially useful if you embed the results table on a graph or layout.



 Fitting curves with nonlinear regression 209 www.graphpad.com

Range of X values and number of line segments
After determining the best-fit values of the variables in the equation, Prism
calculates and plots the best-fit curve. It automatically plots the curve
starting at the X position of the first (lowest X) data point and ends at the
last data point. You may enter different limits.

Curves are defined by many short line segments. You decide how many
segments Prism will create. Prism initially creates all curves with 150 line
segments. Increasing the number may improve the accuracy of standard
curve calculations and make the curve appear smoother (especially if it has
many inflection points).

Summary table and graph
When analyzing several data sets, the results table is rather lengthy. To
display key results on a summary table, check the option box to create a
summary table and select the variable you wish to summarize. Prism
creates a summary table (as an additional results view) that shows the best-
fit value of that variable for each data set, and graphs this table.

Depending on your choices in the dialog, this may be a bar graph or an XY
graph. It shows the best-fit value of a selected variable for each data set on
the table. In some cases, you may analyze the summary table with linear or
nonlinear regression. For example, the summary graph may show the best-
fit value of a rate constant as a function of concentration (obtained from the
column titles of the original data). You can fit a line or curve to that graph.

Warning. When Prism compares the fits of two equations, it
shows only the results for the second equation. Since this may
not be helpful, we suggest that you only make summary tables
when fitting a single equation.

Default options for nonlinear regression
The nonlinear regression parameters dialog affects one particular nonlinear
regression analysis. Change settings on the Analysis Options dialog to
change default settings for future nonlinear regression analyses. To open
this dialog, pull down the Edit menu and choose Options, then Analysis
options. You can change these settings:

• Minimize sum-of-square of absolute distances or relative distances?

• Report results of runs test of goodness-of-fit?

• Use stricter (slower) criteria for convergence?

• Make table and graph of residuals?
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• Number of line segments to generate curves.

Note: Changing the analysis options changes the default
settings for future nonlinear regression analyses. It will not
change analyses you have already performed.
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Interpreting the results of
nonlinear regression

Approach to interpreting nonlinear regression results
When evaluating the results of nonlinear regression, ask yourself:

Question See page
Do the nonlinear regression results make sense? 208

How certain are the best-fit values? 209

How good is the fit? 212

Does the curve systematically deviate from the data? 214

Could the fit be a local minimum? 216

Have you violated an assumption of nonlinear regression? 217

Have you made a common error when using nonlinear regression? 218

The following sections provide additional help:

Topic See page
Comparing the fits of two models 221

Comparing fits to two sets of data (same equation) 224

Analyzing radioligand binding data 237
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Do the nonlinear regression results make sense?
First check whether Prism actually fit a curve. Sometimes Prism cannot fit
the data and reports an error instead, such as “floating point error” or “did
not converge”. This does not mean there is a bug in Prism, just that Prism
was not able to fit your data using the model and options you selected. The
exact wording of the message is rarely helpful in diagnosing the problem.
Consider the possibilities listed in "Have you made a common error" on
page 218.

Next, look at a graph of the best-fit curve. In rare cases, the curve may be
far from the data points. This may happen, for example, if you picked the
wrong equation. Look at the graph to make sure this didn’t happen.

If the curve goes near the points, look at the best-fit values of the
parameters to see if they make sense. Prism has no common sense and
doesn’t know the context of your experiment. The curve fitting procedure
can sometimes yield results that make no scientific sense. For example with
noisy or incomplete data, Prism can report a best-fit rate constant that is
negative, a best-fit fraction that is greater than 1.0, or a best-fit Kd value that
is negative. All these results are scientifically meaningless, but Prism
doesn't know that. Also check whether the best-fit values of the variables
make sense in light of the range of the data. The results make no sense if
the the top plateau of a sigmoid curve is far larger than the highest data
point, or an EC50 is not within the range of your X values.

If the results make no scientific sense, they are unacceptable, even if the
curve comes close to the points and R2 is close to 1.0.

How certain are the best-fit values?
Along with the best-fit value of each variable in the equation, Prism reports
its standard error and 95% confidence interval.

Standard errors of best-fit values
Prism reports a standard error of each best-fit value. If the SE is low, the
best-fit value is "tight" – if you changed the variable a little bit, the curve
would fit much worse. If the SE is high, the best-fit value is not so certain.
You could change the value of the variable a lot without noticeably
changing the goodness-of-fit.

The standard errors reported by Prism (and virtually all other nonlinear
regression programs) are based on some mathematical simplifications. They
are called "asymptotic" or "approximate" standard errors. They are
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calculated assuming that the equation is linear, but are applied to nonlinear
equations. This simplification means that the intervals can be too
optimistic.

To understand how the standard errors are calculated requires mastering
the matrix algebra of nonlinear regression (way beyond the scope of this
manual). There is no simple formula. The standard errors are a function of
the number of data points, the distance of the points from the curve, and
the overall shape of the curve.

Some programs call these values standard deviations rather than standard
errors. There really is no distinction between the standard error and
standard deviation of a best-fit value. The term standard error refers to the
standard deviation of a computed value. So the standard error of the mean
is the same as the standard deviation of the mean (which is very different
than the standard deviation of the data), and the standard error of a Kd or
slope is the same as the standard deviation of a Kd or slope. Prism uses the
term standard deviation to refer only to a measure of variability among
values, and uses the term standard error to refer to the accuracy of a
calculated value such as a mean or best-fit value.

By themselves, the SE values are difficult to interpret. They are used to
calculate  95% confidence intervals, which are easier to interpret.

Confidence intervals of best-fit values
For each parameter that Prism fits, it reports a 95% confidence interval.

If all the assumptions of nonlinear regression are true, there is a 95%
chance that the true value of the variable lies within the interval. More
precisely, if you perform nonlinear regression many times (on different data
sets) you expect the confidence interval to include the true value 95% of
the time, but to exclude the true value the other 5% of the time (but you
won't know when this happens).

The confidence intervals are computed from the best-fit values and the SE
of those best-fit values using this equation:

BestFit t SE BestFit t SE− ⋅ + ⋅* *  to  

The confidence interval is always centered at the best fit value and extends
the same distance above and below it. That distance equals the SE of the
best-fit value (also reported by Prism) times the critical value from the t
distribution, abbreviated above as t*. This value depends on the degree of
confidence you want (usually 95%) and the number of degrees of freedom,
which equals the number of data points minus the number of parameters fit
by nonlinear regression.
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Confidence intervals of constrained variables
If you constrained any variables with IF or MAX or MIN functions, Prism
won't report standard errors or confidence for variables that have active
constraints.

For example, the following statement constrains the variable top to be
between 90 and 100. See "Constraining variables in user-defined
equations" on page 187.
Top=IF(TopP<90,90, IF(TopP>110, 110, TopP))

Prism doesn't report the best-fit value of Top, which is an intermediate
variable. Instead it reports the best-fit value of TopP. If the best-fit value of
TopP is between 90 and 110, then the constraint is not active and you can
interpret the results as usual. If the best-fit value of TopP is over 110, then
Top was constrained, so you can ignore the reported best fit value of TopP.
Top equals 110. Similarly, if TopP is less than 90, ignore its value and
report that Top equals 90. Prism doesn't report a standard error or
confidence interval for variables with active constraints.

Explanations for high SE and wide confidence intervals
If the SE values are very high and the confidence intervals are very wide,
the results of nonlinear regression won't be useful. The following four
situations can cause confidence intervals to be wide:

Data collected over a too narrow range of X values
The confidence intervals of best-fit values provided by nonlinear regression
will be wide if you have not collected data over a wide enough range of X
values to fully define the curve. One example is a sigmoid dose-response
curve with no data defining the top and bottom plateau.
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When these data were fit to a sigmoid dose-response curve, the 95%
confidence interval for the EC50 extended over fifteen orders of magnitude!
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The explanation is simple. The data were fit to a sigmoid equation with
four variables: the top plateau, the bottom plateau, the slope, and the EC50

(the log[Dose] when response=50%). But the data do not form plateaus at
either the top or the bottom, so the program is unable to fit unique values
for the plateaus. The information is simply not in the data. Since the data
do not define zero and one hundred, many curves (defined by different sets
of parameters) would fit these data with similar sum of squares values.

In this example, it might make scientific sense to set the bottom plateau to
0% and the top plateau to 100% (assuming that 0% and 100% are well
defined by control experiments). But Prism doesn’t know this. It just finds
values for Top and Bottom that make the curve fit well. In the example
above, the best-fit value of the bottom plateau is -23 and the best-fit value
of the top plateau is 137. Prism doesn't know that a negative value of Y
makes no sense. If you defined the Y values to be percent of control, you
could set the bottom plateau to a constant of zero and the top plateau to a
constant of 100. If you do this, Prism fits only the EC50 and the slope factor,
and the confidence intervals will be narrower.

Note that the problem with the fit is not obvious by inspecting a graph,
because the curve goes very close to the points. The value of R2 (0.99) is
also not helpful. That value just tells you that the curve comes close to the
points, but does not tell you whether the fit is unique.

Data missing in an important part of the curve
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In fitting this dose-response curve, we set three parameters to constant
values. We set the bottom plateau to equal zero, the top plateau to equal
100, and the slope to equal 1.0. There is only one variable to fit: the
logEC50. But the 95% CI for the EC50 is quite wide, extending over almost
an order of magnitude. The problem is simple. The EC50 is the
concentration at which the response is half-maximal, and there are few data
points near that point.
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Scattered data
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Because of the scattered data, the confidence interval for the EC50 in this
experiment is wide, extending over a fiftyfold range.

The equation contains redundant variables
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95% Confidence Intervals
     FRACTION1
     LOGEC50_1
     LOGEC50_2

-23.21 to 21.33
-9.498 to -3.333
-7.643 to -4.692

These data were fit to a competitive binding curve with two sites,
constraining the bottom plateau to equal zero and the top plateau to equal
100. The curve comes very close to the points, so the R2 is very high
(0.997). But the confidence intervals for the two logEC50 values all
extremely wide, extending over several orders of magnitude. The
confidence interval for the fraction of high-affinity sites extends to values
that are nonsense (fractions must be between 0 and 1).The problem is that
these data fit a one-site model just fine. There is no information in the data
to support a two-site fit. When you choose a two-site model, the nonlinear
regression procedure finds extremely wide confidence intervals.

How good is the fit?

Sum-of-squares from nonlinear regression
The sum-of-squares (SS) is the sum of the square of the vertical distances of
the points from the curve. Nonlinear regression works by varying the
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values of the variables to minimize the sum-of-squares. It is expressed in
the square of the units used for the Y values.

If you chose to weight the values and minimize the relative distance
squared, Prism reports both the absolute sum-of-squares (defined above)
and the relative sum-of-squares, which is minimized.

Sy.x

The value sy.x is the standard deviation of the vertical distances of the points
from the line. Since the distances of the points from the line are called
residuals, sy.x is the standard deviation of the residuals. Its value is
expressed in the same units as Y.

Prism calculates sy.x from the sum-of-squares (SS) and degrees of freedom
(df, equal to number of data points minus the number of parameters fit) as:

s SS
dfy x⋅ =

R2 from nonlinear regression
The value R2 quantifies goodness of fit. It is a fraction between 0.0 and 1.0,
and has no units. Higher values indicate that the model fits the data better.
You can interpret R2 from nonlinear regression very much like you interpret
r2 from linear regression.  By tradition, statisticians use uppercase (R2) for
the results of nonlinear and multiple regression and lowercase (r2) for the
results of linear regression, but this is a distinction without a difference.

Tip: Don't make the mistake of using R2 as your main criteria
for whether a fit is reasonable. A high R2 tells you that the curve
came very close to the points. That doesn't mean the fit is
"good" in other ways. The best-fit values of the parameters may
have values that make no sense (for example, negative rate
constants) or the confidence intervals may be very wide.

When R2 equals 0.0, the best-fit curve fits the data no better than a
horizontal line going through the mean of all Y values. In this case,
knowing X does not help you predict Y. When R2=1.0, all points lie
exactly on the curve with no scatter. If you know X you can calculate Y
exactly. You can think of R2 as the fraction of the total variance of Y that is
explained by the model (equation).

R2 is computed from the sum of the squares of the distances of the points
from the best-fit curve determined by nonlinear regression. This sum-of-
squares value is called SSreg, which is in the units of the Y-axis squared. To
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turn R2 into a fraction, the results are normalized to the sum of the square
of the distances of the points from a horizontal line through the mean of all
Y values. This value is called SStot. If the curve fits the data well, SSreg will
be much smaller than SStot.

The figure below illustrates the calculation of R2. Both panels show the
same data and best-fit curve. The left panel also shows a horizontal line at
the mean of all Y values, and vertical lines showing how far each point is
from the mean of all Y values. The sum of the square of these distances
(SStot) equals 62735. The right panel shows the vertical distance of each
point from the best-fit curve. The sum of squares of these distances (SSreg)
equals 4165.

R2 is calculated using this equation.

R
SS
SS

reg

tot

2 10 10 4165
62735

10 0 0664 0 9336= − = − = − =. . . . .

Note that R2 is not really the square of anything. If SSreg is larger than SStot,
R2 will be negative. While it is surprising to see something called "squared"
have a negative value, it is not impossible (since R2 is not actually the
square of R). R2 will be negative when the best-fit curve fits the data worse
than a horizontal line at the mean Y value. This could happen if you pick
an inappropriate model, or fix a parameter to an inappropriate constant
value (for example, if you fix the Hill slope of a dose-response curve to 1.0
when the curve goes downhill).

Even if you choose weighted nonlinear regression, Prism still computes R2

using the formula above. In other words, it computes R2 from the
unweighted sum-of-squares.

If you want to compare the fit of two equations, don't just compare R2

values. See "Comparing the fits of two models" on page 221.
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Does the curve systematically deviate from the data?
If you've picked an appropriate model, and your data follow the
assumptions of nonlinear regression, the data will be randomly distributed
around the best-fit curve. You can assess this in three ways:

• The distribution of points around the curve should be Gaussian.

• The average distance of points from curve should be the same for all
parts of the curve (unless you used weighting).

• Points should not be clustered. Whether each point is above or
below the curve should be random.

Residuals and runs help you evaluate whether the curve deviates
systematically from your data.

Residuals from nonlinear regression
A residual is the distance of a point from the curve. A residual is positive
when the point is above the curve, and is negative when the point is below
the curve. The residual table has the same X values as the original data, but
the Y values are the vertical distances of the point from the curve.

If you selected the residuals output option, Prism creates a graph of the
residuals. An example is shown below. If you look carefully at the curve on
the left, you’ll see that the data points are not randomly distributed above
and below the curve. There are clusters of points at early and late times that
are below the curve, and a cluster of points at middle time points that are
above the curve. This is much easier to see on the graph of the residuals in
the inset. The data are not randomly scattered above and below the X-axis.
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Runs test from nonlinear regression
The runs test determines whether the curve deviates systematically from
your data. A run is a series of consecutive points that are either all above or
all below the regression curve. Another way of saying this is that a run is a
consecutive series of points whose residuals are either all positive or all
negative.

If the data points are randomly distributed above and below the regression
curve, it is possible to calculate the expected number of runs. If there are
Na points above the curve and Nb points below the curve, the number of
runs you expect to see equals [(2NaNb)/(Na+Nb)]+1. If you observe fewer
runs than expected, it may be a coincidence or it may mean that you
picked an inappropriate regression model and the curve systematically
deviates from your data. The P value from the runs test answers this
question: If the data really follow the model you selected, what is the
chance that you would obtain as few (or fewer) runs as observed in this
experiment?

The P values are always one-tail, asking about the probability of observing
as few runs (or fewer) than observed. If you observe more runs than
expected, the P value will be higher than 0.50.

If the runs test reports a low P value, conclude that the data don’t really
follow the equation you have selected.

In the example above, you expect 21 runs. There are 13 runs, and the P
value for the runs test is 0.0077. If the data were randomly scattered above
and below the curve, there is less than a 1% chance of observing so few
runs. The data systematically deviate from the curve. Most likely, the data
were fit to the wrong equation.

Testing whether the residuals are Gaussian
Nonlinear regression (as well as linear regression) assumes that the
distribution of residuals follows a Gaussian distribution. You can test this
assumption with Prism.

1. From the nonlinear regression parameters dialog, check the option
box to show a table of residuals. If you have already fit your data, you
can go back to this dialog by pressing Change Parameters from your
results.

2. Go to the nonlinear regression results. Drop the list of results views
(middle of third row of toolbar) and choose Residuals.

3. Press Analyze. Choose Column statistics from the list of statistical
analyses.

4. On the column statistics parameters dialog, check the option box to
test whether the distribution is Gaussian.
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5. Look at the results of the normality test on the column statistics
results page. If the P value is small, the data fail the normality test.

Could the fit be a local minimum?
The nonlinear regression procedure adjusts the variables in small steps in
order to improve the goodness-of-fit. If Prism converges on an answer, you
can be sure that altering any of the variables a little bit will make the fit
worse. But it is theoretically possible that large changes in the variables
might lead to a much better goodness-of-fit. Thus the curve that Prism
decides is the “best” may really not be the best.

Best Fit
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Start here and result
will be the best fit.

Start here and result
will be a false minimum.
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Think of latitude and longitude as representing two variables Prism is trying
to fit. Now think of altitude as the sum-of-squares. Nonlinear regression
works iteratively to reduce the sum-of-squares. This is like walking
downhill to find the bottom of the valley. See “How nonlinear regression
works” on page 163.  When nonlinear regression has converged, changing
any variable increases the sum-of-squares. When you are at the bottom of
the valley, every direction leads uphill. But there may be a much deeper
valley over the ridge that you are unaware of. In nonlinear regression, large
changes in variables might decrease the sum-of-squares.

This problem (called finding a local minimum) is intrinsic to nonlinear
regression, no matter what program you use. You will rarely encounter a
local minimum if your data have little scatter, you collected data over an
appropriate range of X values, and you have chosen an appropriate
equation.

To test for the presence of a false minimum:

1. Note the values of the variables and the sum-of-squares from the first
fit.

2. Make a large change to the initial values of one or more variables and
run the fit again.

3. Repeat step 2 several times.
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Ideally, Prism will report nearly the same sum-of-squares and same
variables regardless of the initial values. If the values are different, accept
the ones with the lowest sum-of-squares.

Have you violated an assumption of nonlinear
regression?

Question Discussion
Did you pick a sensible
model?

Nonlinear regression adjusts the variables in the
equation (model) for which you chose to minimize
the sum-of-squares. It does not attempt to find a
better equation.

Have you set appropriate
parameters to constant values?

Prism doesn’t have to fit all the parameters in a
model. In many cases, it is appropriate to set one or
more parameters to constant values.  See "Constants
for nonlinear regression" on page 199.

Is the scatter Gaussian? Nonlinear regression assumes that the scatter is
Gaussian. To test this assumption, see “Testing
whether the residuals are Gaussian” on page 216.

Is the scatter consistent? Nonlinear regression assumes that the scatter of
points around the best-fit curve has the same
standard deviation all along the curve. The
assumption is violated if the points with higher (or
lower) Y values also tend to be further from the
best-fit curve. The assumption that the standard
deviation is the same everywhere is termed
homoscedasticity.

Is variability only in the Y
direction?

The nonlinear regression model assumes that X
values are exactly correct, and that experimental
error or biological variability only affects the Y
values. This is rarely the case, but it is sufficient to
assume that any imprecision in measuring X is very
small compared to the variability in Y.

Does each data point
contributes independent
information

The deviation of each value from the curve should
be random, and should not be correlated with the
deviation of the previous or next point. If there is
any carryover from one sample to the next, this
assumption will be violated. You will also violate
this assumption if you tell Prism to treat each
replicate as a separate point, when they are not
independent. See “Replicates” on page 202.
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Have you made a common error when using
nonlinear regression?

Consider these possibilities if you obtained an error message rather than
results, or if the nonlinear regression results made no sense.

Potential problem Solution
The equation simply does not
describe the data.

Try a different equation.

The initial values are too far from
their correct values.

Enter different initial values. If you entered
your own equation, check the rules for initial
values. See "Defining rules for initial values
in nonlinear regression" on page 186.

The range of X values is too narrow
to define the curve completely.

If possible, collect more data. Otherwise,
hold one of the variables to a constant value.

You have not collected enough data
in a critical range of X values.

Collect more data in the important regions.

Your data are very scattered and
don't really define a curve.

Try to collect less scattered data. If you are
combining several experiments, normalize
the data for each experiment to an internal
control.

The equation includes more than
one component, but your data don't
follow a multicomponent model.

Use a simpler equation.

Your numbers are too large. If your X or Y values are huge, change the
units. Don't use values greater than about
104.

Your numbers are too small. If your X or Y values are tiny, change the
units. Don’t use values less than about 10-4.

You’ve set a parameter to an
inappropriate constant value.

Either don’t set the parameter to a constant
value, or change that value. Perhaps you
made a simple mistake like setting a
maximum plateau to 1.0 when it should be
100, or a Hill slope to +1.0 when it should
be –1.0.
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Comparing two curves

Comparing the fits of two models

Approach to comparing two models
When comparing the fits of two models, the first step is to examine the
best-fit values of each model to make sure they are scientifically
reasonable. Also make sure that the confidence intervals are not extremely
wide. If the best-fit values of one model make no sense (for example, if a
rate constant is negative) or if the confidence intervals are very wide, then
reject that model and disregard the results of the F test.

If both models fit the data with sensible values, compare goodness-of-fit as
quantified by sum-of-squares. If the more complicated equation fits worse
(has higher sum-of-squares) than the simpler equation, then you should
clearly reject the more complicated equation and conclude that the simpler
equation fits better. This will happen rarely, as the curve generated by the
more complicated equation (the one with more variables) will nearly al-
ways have a lower sum-of-squares, simply because it has more inflection
points (it wiggles more).

If both models fit the data with sensible values, and the more complicated
model fits better, then you need to use statistical calculations to decide
which model to accept. Do this with an F test to compare fits.

Comparing the fits of two equations using an F test
If you don’t know which of two equations is more appropriate for your
data, fit both and compare the results. For example, compare models with
one and two classes of binding sites. Or compare a one-phase exponential
dissociation curve with a two-phase curve.

Prism can compute the F test automatically. To compare fits, simply, check
the option box on top of the nonlinear regression parameters dialog. Check
the option button for equation 1, and choose that equation along with its
initial values. Also set any variables to constants, if necessary. Then check
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the option button for equation 2, and choose an equation and adjust
settings for initial values and constants.

Tip: It is not possible to automatically compare the fit of data to
a built-in equation with a fit to a user-defined equation. Instead
copy a built-in equation to the user-defined list. Then compare
two user-defined equations.

The F test compares the fit of two equations, where the more complicated
equation (the one with more parameters) fits better (has a smaller sum-of-
squares) than the simple equation. The question is whether this decrease in
sum-of-squares is worth the “cost” of the additional variables (loss of
degrees of freedom). The F test (detailed below) calculates a P value that
answers this question: If the simpler model is really correct, what is the
chance that you’d randomly obtain data that fits the more complicated
model so much better? If the P value is low, conclude that the more
complicated model is significantly better than the simpler model. Most
investigators accept the more complicated model if the P value is less than
0.05.
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This graph shows the results of fitting both a one-site and two-site
competitive binding curve to some data. Both fits are scientifically
plausible, so it makes sense to perform compare the sum-of-squares with
the F test.. Here is how Prism reports the comparison:

Comparison of Fits
     DFn, DFd
     F
     P value
     Best Fit Equation

2, 7
11.29
0.006452
Eq. 2
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The F ratio, as well as the two degrees of freedom values, are explained in
the next section. The P value is 0.0065. If the one-site model is correct,
there is only a 0.07% chance that you'd randomly obtain data that fits the
two-site model so much better. Since this is below the traditional threshold
of 5%, conclude that the fit of the two-site model is significantly better,
statistically, than the one-site model.

The F test is only strictly valid the simpler equation is a special
case of the more complicated equation.

How the F test works
To understand the F test, you need to compare the sum-of-squares and
degrees of freedom for each fit. Here are the results for the example of the
previous section.

Two-site One-site % Increase
Degrees of freedom 7 9 28.57%

Sum-of-squares 52330 221100 322.51%

In going from the two-site to the one-site model, we gained two degrees of
freedom because the one-site model has two fewer variables. Since the
two-site model has 7 degrees of freedom (12 data points minus 5 variables),
the degrees of freedom increased 28.6%. If the one-site model were
correct, you'd expect the sum-of-squares to also increase about 28.6% just
by chance. In fact, the one-site had a sum-of-squares 322%higher than the
two-site model. The percent increase in sum-of-squares was 11.29 times
higher than the increase in degrees of freedom (322.51/28.57). The F ratio
is 11.29.

More generally, if the simpler model is correct you expect the relative
increase in the sum of squares to equal the relative increase in degrees of
freedom. In other words, if the simpler model is correct you expect that:

(SS1 SS2) / SS2 (DF1 DF2) / DF2      − ≈ −

If the more complicated model is correct, then you expect the relative
increase in sum-of-squares (going from complicated to simple model) to be
greater than the relative increase in degrees of freedom:

(SS1 SS2) / SS2  (DF1 DF2) / DF2      − > −

The F ratio quantifies the relationship between the relative increase in sum-
of-squares and the relative increase in degrees of freedom.
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F (SS SS )/SS
(DF DF )/DF

=
−
−

1 2 2
1 2 2

        

That equation is more commonly shown in an equivalent form:

F (SS SS )/(DF DF )
SS /DF

=
− −1 2 1 2

2 2
      

F ratios are always associated with a certain number of degrees of freedom
for the numerator and a certain number of degrees of freedom for the
denominator. This F ratio has DF1-DF2 degrees of freedom for the
numerator, and DF2 degrees of freedom for the denominator.

If the simpler model is correct you expect to get an F ratio near 1.0. If the
ratio is much greater than 1.0, there are two possibilities:

• The more complicated model is correct.

• The simpler model is correct, but random scatter led the more
complicated model to fit better. The P value tells you how rare this
coincidence would be.

The P value answers this question: If model 1 is really correct, what is the
chance that you’d randomly obtain data that fits model 2 so much better? If
the P value is low, you conclude that model 2 is significantly better than
model 1. Otherwise, conclude that there is no compelling evidence
supporting model 2, so accept the simpler model (model 1).

Comparing fits to two sets of data (same equation)
You'll use a different approach to compare nonlinear regression curve fits
depending on whether you are comparing curves from one experiment or
pool the results of several experiments.

Compare best-fit values pooled from several
experiments
The best way to compare best-fit values is to repeat the experiment several
times, and then analyze the pooled data. The first step is to focus on what
you really want to know. For dose-response curves, you may want to test
whether the two EC50 values differ significantly, whether the maximum
responses differ, or both.  With kinetic curves, you’ll want to ask about
differences in rate constants or maximum response. With other kinds of
experiments, you may summarize the experiment in other ways, perhaps as
the maximum response, the minimum response, the time to maximum, the
slope of a linear regression line, etc. Or perhaps you want to integrate the
entire curve and use area-under-the-curve as an overall measure of
cumulative response.
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Once you’ve summarized each curve as a single value, compare those
values using a paired t test.

For example, below are the results of a binding study to determine receptor
number (Bmax). The experiment was performed three times with control and
treated cells side-by-side. Each value is a Bmax determined by nonlinear
regression.

Experiment Control Treated
1 1234 987

2 1654 1324

3 1543 1160

Treat the Bmax values determined from nonlinear regression just as you'd
treat any measurement, and compare the two groups with a t test. Because
control and treated cells were treated side-by-side to control for
experiment-to-experiment variability, analyze the data using a paired t test.

Enter the data into a new data table formatted for single Y values and no X
values. Prism determines the Bmax for each curve, but you have to compile
all the Bmax values into one table. Press Analyze, choose t tests from the list
of statistical comparisons, and choose a paired t test.

Prism reports that the two-tailed P value is 0.0150, so the effect of the
treatment on reducing receptor number is statistically significant. The 95%
confidence interval of the decrease in receptor number ranges from 149.70
to 490.30 sites/cell.

These calculations were based only on the best-fit Bmax values, ignoring all
the other results calculated by the curve-fitting program. You may be
concerned that you are not making best use of the data, since the number
of points and replicates do not appear to affect the calculations. But they do
contribute indirectly. You’ll get more accurate results if you use more
concentrations of ligand in each experiment, so the results of the
experiments will be more consistent. If there really are differences between
control and treated curves, you’ll get a higher t ratio and a lower P value if
you use more concentrations.

If you have three or more treatment groups, use repeated measures one-
way ANOVA rather than a paired t test.

Compare two best-fit values from one experiment
There are several approaches to comparing two curves obtained in one
experiment. If your data are linear, see "Comparing slopes and intercepts"
on page 150. to learn about comparing linear regression lines. If you want
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to compare Y values at each X, without fitting a curve, see "Two-way
analysis of variance" on page 93 to learn about post tests following two-
way ANOVA.

Prism can compare the best-fit values of two curves with a t test. A t test
compares a difference with the standard error of that difference. That
standard error can come by pooling several experiments (as in the previous
approach) or you can use the standard error reported by nonlinear
regression. For example, in the first experiment in Approach 1, Prism
reported these results for Bmax:

Best-fit Bmax SE df
Control 1234 98 14

Treated 987 79 14

Prism can compare these curves automatically. On the nonlinear regression
dialog, check the option to use a t test to compare fits. In the results view
(page) called Overview and comparison, Prism reports the comparison of
Bmax values. The P value is 0.06. If there really were no difference
between Bmax values, you'd see a difference this large or larger in 6% of
experiments of this size. Using the conventional threshold of P=0.05, the
difference between Bmax values in this example is not statistically
significant.

Prism performs the unpaired t test using this equation:

t B B

SE SE
=
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+
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12588
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.
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The numerator is the difference between best-fit values. The denominator is
an estimate of the standard error of that difference, computed as the square
root of the sum of the squares of the two standard error values. This is a
reasonable estimate if the number of data points in the two curves is equal,
or nearly so. If the sample sizes are very different, don't rely on this
calculation.

Prism determines the two-tailed P value from t. Each fit in this example has
14 degrees of freedom (equal to the number of data points minus the
number of variables fit). The t test in this example has 28 degrees of
freedom, the sum of the degrees of freedom in each fit.

The validity of this comparison depends on the assumptions of the t test
(see "Checklist. Is an unpaired t test the right test for these data?" on page
49). A key assumption is that the distribution of best-fit values (if you were
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to repeat the experiment many times) follows a Gaussian distribution. The
next section discusses this assumption.

The Gaussian assumption and comparison of curves
The use of a t test to compare best-fit values (pooling several experiments
or within one experiment) depends on the assumption that the distribution
of best-fit values follows a Gaussian distribution. If you were to repeat the
experiment many times, the distribution of the best-fit values must follow a
Gaussian distribution. With linear regression, this assumption is sure to be
valid if your data obey all the assumptions of the analysis. With nonlinear
regression, the best-fit values may not be Gaussian, even if the data follow
all the assumptions. The next chapter discusses this point in detail. See
"The distributions of best-fit values" on page 229.

Compare entire curves using a F test
The method described in the previous section requires that you focus on
one variable that you consider most relevant. If you don't wish to focus on
one variable, compare entire curves using the following approach. You'll
have to do some calculations manually, as this approach is not built-in to
Prism.

First, use Prism to fit each data set to a model. Total the sum-of-squares and
degrees of freedom from the two fits. If you are comparing a curve under
control conditions with a curve after some treatment, then add the sum-of-
squares from the best-fit of control data with the sum-of-squares of the best-
fit for treated data. Do the same with the df. Since these values are obtained
by fitting the control and treated data separately, label these values, SSseparate

and DFseparate.  For our example, the sums-of-squares equal 1261 and 1496
so SSseparate equals 2757. Each experiment had 14 degrees of freedom, so
DFseparate equals 28.

Now do some copying and pasting to combine the control and treated data
set into one big data set on a new table. Simply append one data set under
the other, and analyze the data as if all the values came from one
experiment. Its ok that X values are repeated. Fit the same equation to this
combined data set  Label the sum-of-squares from this fit SScombined and the
number of degrees of freedom DFcombmined. For the example, SScombined is
3164 and DFcombmined is 30 (32 data points minus two variables fit by
nonlinear regression).

You expect SSseparate to be smaller than SScombined even if the treatment had no
effect simply because the separate curves have more degrees of freedom.
The question is whether the difference between SS values is greater than
you’d expect to see by chance. To find out, compute the F ratio using the
equation below, and then determine the corresponding P value (there are
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DFcombined-DFseparate degrees of freedom in the numerator and DFseparate

degrees of freedom in the denominator.

F

SS SS

DF DF

SS
DF

combined separate

combined separate

separate

separate

=

−

−
d i

d i

For the above example, F=2.067 with 2 df in the numerator and 28 in the
denominator. To find the P value, use GraphPad StatMate or type this
formula into an empty cell in Excel =FDIST(2.06,2,28) . The P value is
0.1463.

The P value tests the null hypothesis that there is no difference between the
control and treated curves overall, and any difference you observed is due
to chance. If the P value were small, you would conclude that the two
curves are different – that the experimental treatment altered the curve.
Since this method compares the entire curve, it doesn’t help you focus on
which parameter(s) differ between control and treated (unless, of course,
you only fit one variable).  It just tells you that the curves differ overall. In
this example, the P value was fairly large, so we conclude that the
treatment did not affect the curves in a statistically significant manner.
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The distributions of best-fit
values

Why care about the distribution of best-fit values
With linear regression, the distribution of slopes and intercepts will always
be Gaussian, so long as you haven't violated any assumption of the
analysis. If you repeated the experiment many times, you'd get different
slopes and intercepts in each experiment, and these would follow a
Gaussian distribution. This means that the 95% confidence intervals of
best-fit values can be interpreted at face value, and that you can compare
slopes (or Y-intercepts) with a t test.

With nonlinear regression, a parameter may not be Gaussian, even if you
meet all the assumptions of nonlinear regression. It depends on the
equation you select. There is no general way to know whether a parameter
follows a Gaussian distribution or not. But it matters. If a parameter does
approximate a Gaussian distribution, then you can:

• Accept the 95% confidence intervals at face value. There is a 95%
chance that the interval contains the true value. If a parameter does
not follow a Gaussian distribution, there may be less than a 95%
chance that the interval contains the true value.

• Perform a t test to compare two treatments, either pooling several
experiments or using the result of one pair of experiments (see
"Comparing fits to two sets of data (same equation)" on page 224).

Using simulations to determine the distribution of a
parameters

The only way to determine the distribution of best-fit parameters is to
simulate many sets of data and then look at the distribution of best-fit
values following this general procedure:
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1. Generate a simulated data set by adding random Gaussian error to
the ideal value at each value of X.  You'll need to choose a model
(equation) to simulate, the range of X values, the number of points,
and the amount of scatter.

2. Use nonlinear regression to fit a curve to the simulated data, using
the same model. Record the best-fit values of the parameters.

3. Repeat steps 2-5 many (thousands) of times.

4. Construct a frequency histogram of the parameter values.

5. Repeat using a different form of the equation.

The procedure employed for generating large numbers of simulated data
sets with random error is referred to as Monte Carlo analysis. Arthur
Christopoulos has done this with equations commonly used in analyzing
pharmacological data (Trends Pharmacol. Sci. 19:351-357, 1998), and he is
a co-author of this chapter.

This procedure is explained in detail below (see "Detailed instructions for
comparing parameter distributions" on page 234).

Example simulation 1. Dose-response curves.

Dose-response curves. Which is more Gaussian, EC50 or
log(EC50)?
Scientists in many fields fit data to sigmoid dose-response curves. Is it better
to find the best-fit value of EC50 or log(EC50)?  We used simulations to find
out.

The simulated curves each had ten data points, equally spaced on a log
scale from 1 nM to 10 µM. The true curve had a bottom plateau at 0.0, a
top plateau at 100, and an EC50 of 1 µM.  Random noise was added to each
point, using a Gaussian distribution with a SD of 15, which simulates data
in a system with lots of scatter. Three typical data sets are superimposed in
the graph below.
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Five thousand data sets were simulated and fit to the two alternative
expressions of the dose-response equation. The distribution of the EC50 and
log(EC50) values are shown below.
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Clearly, the distribution of log(EC50) values is much closer to Gaussian. The
normality test confirms this impression. The distribution of log(EC50) passes
the normality test. The distribution of EC50 values fails the normality test
with P<0.0001.

How accurate are the confidence intervals of EC50 and
logEC50?
If you express the equation in terms of EC50, which is less Gaussian, only
91.20% of the 5000 "95%" confidence intervals contained the true value.
In contrast, 94.20% of the "95%" confidence intervals of log(EC50)
contained the true value. This is one reason to prefer an equation written in
terms of logEC50.

The confidence intervals reported by Prism (and most other nonlinear
regression programs) are always symmetrical around the best-fit value.
When computing the confidence interval, Prism just applies the equation
(see "Confidence intervals of best-fit values" on page 210) and doesn't have
any common sense about whether the results make sense. If you express
the results of these simulations as an EC50 value, in fact most of the results
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do not make sense. In 78% of the simulations, the lower confidence limit
was negative! Of course negative concentrations are impossible, so you
would call the lower limit zero in these cases. This means that in most of
our simulations, the 95% confidence interval gives you no information at
all about the lower limit of the EC50 and only gives an estimate of the upper
limit. In contrast, if you express the dose-response equation in terms of the
log(EC50), it is impossible for the confidence interval to include negative
values of the EC50. The 95% CI of logEC50 gives you information about both
the lower and upper limit of the value.

These simulations show a clear advantage to expressing the dose-response
equation in terms of log(EC50).  This makes sense. Since the concentrations
of drug are equally spaced on a log scale, it makes sense that the
uncertainty of the log(EC50) will be symmetrical, but the uncertainty of the
EC50 will not be. Prism always reports symmetrical confidence intervals of
best-fit values. If the true uncertainty is not symmetrical, then the 95%
confidence interval reported by Prism will not be very useful.

Example simulation 2. Exponential decay.
Many biological and chemical events follow an exponential decay model.
For more information on this model, see "Example model 2. Exponential
decay" on page 158. We'll compare three ways to express this model. In all
cases, one of the parameters is the starting point, which we will call Start .

The second parameter quantifies how rapidly the curve decays. We will
compare three ways to express this value, as a rate constant in units of
inverse time, as a time constant in units of time, or as a log(rate constant).
The three equations are:

Y e k trate= ⋅

= ⋅

= ⋅

− ⋅

− ⋅

− ⋅

Start

Y Start e

Y Start e

k t

t

time

krate
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Which distribution is closer to Gaussian, rate constants
or time constants?
Is it better to express the exponential decay equation in terms of rate
constant, time constant, or log(rate constant)? We'll answer the question by
simulating data.

First, we need to choose some parameters. We chose a curve that starts at
Y=100 and decays exponentially towards 0 with a rate constant (koff) of 0.3
min-1 and a half-life of a bit more than 2 minutes (ln(2)/koff). Our simulations
generated 10 data points equally spaced between 0 and 20 minutes, adding
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Gaussian random error with a standard deviation of 10.The graph below
shows three sample simulations.
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We simulated 5000 sets of data, and fit each data set to the exponential
decay model expressed in three ways. The distribution of the rate constant,
time constant, and log(rate constant) are shown in the following figures,
which also superimpose ideal Gaussian distributions.
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At first glance, all three distributions look roughly Gaussian. Looking more
carefully, you can see that the distribution of time constants is skewed to
the right. Careful scrutiny reveals that the rate constant distribution is also a
bit skewed. These impressions can be confirmed by a normality test. The
results are shown in the following table.

Model Rate constant Time constant Log(Rate constant)

KS 0.06359 0.07169 0.01339

P value P<0.0001 P<0.0001 P > 0.10

The KS value is the largest discrepancy between the actual cumulative
distribution and an ideal cumulative Gaussian distribution (expressed as
fractions). See "The results of normality tests" on page 29. None of the
distributions are far from Gaussian. The distribution of time constants is the
furthest from Gaussian; the distribution of log(rate constant) is closest. The
P value answers the following question: If the true distribution is Gaussian,
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what is the chance of obtaining a KS value as large as, or larger than, we
observed. The distribution of both rate constants and time constants
deviated significantly from the Gaussian ideal, while the distribution of
log(rate constants) is indistinguishable from Gaussian.

Because we simulated so many data sets, the KS test has the power to
detect even modest deviations from a Gaussian distribution.

How accurate are the confidence intervals of time
constants and rate constants?
Before understanding the complexities of the confidence intervals reported
by nonlinear regression, first review the meaning of confidence intervals
reported by linear regression.

For example, assume that a linear regression presented the CI of the slope
as 8.2 to 11.3. If you can accept all the assumptions of the analysis, this
means that you can be 95% certain this range includes the true slope. More
precisely, if you analyze many data sets, you'd expect that 95% of the
confidence intervals will contain the true value, and 5% will not. When
analyzing a particular experiment, the true value is unknown so you can't
know whether or not the confidence interval includes the true value. All
you can know is that there is a 95% chance that the interval contains the
true value.

With nonlinear regression, the situation is not so simple. The confidence
intervals reported by Prism (and virtually all other nonlinear regression
programs) are based on some mathematical simplifications. They are called
"asymptotic" or "approximate" confidence intervals. They are calculated
assuming that the equation is linear, but are applied to nonlinear equations.
This simplification means that the intervals can be too optimistic. While
labeled 95% confidence intervals, they may contain the true value less than
95% of the time.

Using simulated data, we can ask how often the reported 95% confidence
interval contains the true value. To do this, we changed the script to also
save the SE of the best-fit value. We then imported the best-fit values and
standard errors into Microsoft Excel, computed the high and low limit of
the confidence interval (see "Confidence intervals of best-fit values" on
page 210) and asked whether or not each interval contained the true value.
When analyzing data, you don't know the true value so can't know
whether the confidence interval contains the true value or not. With
simulated data, you know the true value, so can answer that question. The
results are:
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Model Fraction of "95% confidence intervals"
that contain the true value.

Rate constant 93.72%

Time constant 94.44%

Log(rate constant) 94.94%

No matter how we expressed the model, the confidence intervals
contained the true value almost 95% of the time. The difference between
95% confidence and 93% confidence is unlikely to alter your interpretation
of experimental results.

Detailed instructions for comparing parameter
distributions

The two examples above showed the general approach to comparing
distributions. Here are step-by-step instructions for comparing parameter
distributions using Prism, using the exponential decay example.

1. Generate simulated data with random error
1. Create a new file. From an empty data table, click Analyze, choose

built-in analyses, and then choose to simulate a theoretical curve.

2. Click More equations, and enter the first equation, for example.
     Y=Start*exp(-Krate*X)

3. Enter the ideal values. Choose values that are similar to those you
would expect to see with real data. For this example, we enter Start
= 100 and Krate = 0.3. These values will simulate a dissociation
curve that starts at 100 units and decays exponentially towards 0 with
a rate constant (koff) of 0.3 min-1 and a half-life of a bit more than 2
minutes (ln(2)/koff).

4. Choose to generate 10 data points (line segments) starting at 0 and
ending at 20 (minutes).

5. Check the option box to add Gaussian “noise” with a standard
deviation (SD) of 10. Choose a value that is similar to the scatter you
expect to see with real data.

Click ok and Prism will generate a simulated data set. Click on the Graphs
folder tab to see a graph of these data (plotted as line segments). Change to
data points by clicking Change... Symbols and lines. Now click Change..
analysis parameters to bring up the dialog for simulating curves. Don’t
change any of the parameters, but simply click ok. Prism will generate new
random values, and you'll see that the graph has changed.
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2. Analyze the simulated data
The next step is to analyze the simulated data to determine the best-fit
values. Follow these steps.

1. While still on the Results page with the simulated data, click Analyze,
and select nonlinear regression.

2. Select the same built-in equation used to generate the theoretical
points. Click Initial values and enter the ideal values. Start=100,
Krate=0.3. Click ok twice to fit the curve.

3. Note the best-fit values.

3. Simulate thousands of data sets using a Prism script
Create a script to instruct Prism to generate and analyze 5000 sets of data,
and record the best-fit values. To learn details about scripting, read the
chapter on scripts in the Prism User's Guide.

Using Notepad or some other text editor, create a file with the following
script. Enter the lines shown in the left column. The right column explains
what each command does, and should not be typed. Give the file a name
with the extension pzc.

Script line Explanation

Shortlog Don't add a line to the log for each
iteration.

Setpath c:\sims Use this folder. You'll want to change the
folder name from "sims" to something else.

Open disskin.pzm Open a Prism file. You'll want to change
the file name.

OpenOutput kinfit.txt Create a text file to hold the best-fit values.

ForEach 5000 Loop 5000 times.

Goto R 1 Go to the first results page.

Regenerate Create new random numbers.

Goto R 2 Go to the second results page.

WCell 4,1 Write the value in the fourth row of the first
column into the output file. This is the best-
fit value of the rate constant.

Next Loop again.

Run this script from Prism, by choosing the Run Automation File command
from the Tools menu. Selecting the script you just created, and click Run to



 The distributions of best-fit values 241 www.graphpad.com

execute it. Depending on the speed of your computer, this task should take
a few minutes to execute.

4. Create a frequency distribution of the best-fit values
Now lets look at the distribution of best-fit values.

1. Create a new data table, formatted with no X column and a single
column of values for Y.

2. Click in the first cell of the first data column on the table.

3. From the File menu, choose to Import. Choose the file with the best-
fit values (the example script created kinfit.txt).

4. Click ok to accept all the defaults in the Import dialog.

5. You'll see the 5000 best-fit values in the data table.

6. To construct a frequency distribution of the data, click Analyze and
select the Frequency distribution option in the Statistical Analyses
section. You may need to adjust the bin width.

7. Inspect the graph. To show the graph with histogram "spikes", choose
one of the bottom four choices of symbol shape.

8. To assess whether the best-fit values follow a Gaussian distribution,
choose Analyze and then select Column Statistics from the Statistical
Analyses option. From the Column Statistics dialog, choose to test
whether the distribution is Gaussian.

9. To superimpose a Gaussian distribution, press Analyze and choose
nonlinear regression. Choose the equation for a Gaussian
distribution, the last choice in the list of classic equations.

5. Repeat with other forms of the equation
You can now repeat all the steps, but enter the equation in a different form.
For this example, we switched from a rate constant to a time constant or
log(rate constant).
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Analyzing radioligand binding
data

Introduction to radioligand binding
A radioligand is a radioactively labeled drug that can associate with a
receptor, transporter, enzyme, or any site of interest. Measuring the rate
and extent of binding provides information on the number of binding sites,
and their affinity and accessibility for various drugs.

There are three kinds of experimental protocols, discussed in the next three
chapters.

Saturation binding experiments measure equilibrium binding of various
concentrations of the radioligand. Analyze the relationship between
binding and ligand concentration to determine the number of sites, Bmax,
and the ligand affinity, Kd. See "Analyzing saturation radioligand binding
data" on page 249.

Competitive binding experiments measure equilibrium binding of a single
concentration of radioligand at various concentrations of an unlabeled
competitor. Analyze these data to learn the affinity of the receptor for the
competitor. See "Analyzing competitive binding data" on page 263.

Kinetics experiments measure binding at various times to determine the
rate constants for radioligand association and dissociation. See "Analyzing
kinetic binding data" on page 287.

Prism makes it easy to analyze and display data from all three kinds of
experiments.

For more information on analysis of radioligand binding data, see:

LE Limbird, Cell surface receptors: A short course on theory and methods,
Martinus Nijhoff Publishers, second edition, 1996.

HI Yamamura, et al, Methods in Neurotransmitter receptor analysis,
Raven Press, 1990.
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Law of mass action
Analysis of radioligand binding experiments is based on a simple model,
called the law of mass action. This model assumes that binding is
reversible.

Receptor Ligand    Receptor Ligand
Kon

Koff

+
⎯ →⎯⎯

← ⎯⎯⎯
•

Binding occurs when ligand and receptor collide due to diffusion, and
when the collision has the correct orientation and enough energy. The rate
of association is:

Number of binding events per unit of time =[Ligand]⋅[Receptor]⋅kon.

Once binding has occurred, the ligand and receptor remain bound together
for a random amount of time. The probability of dissociation is the same at
every instant of time. The receptor doesn't “know” how long it has been
bound to the ligand. The rate of dissociation is:

Number of dissociation events per unit time = [ligand⋅receptor]⋅koff.

After dissociation, the ligand and receptor are the same as at they were
before binding. If either the ligand or receptor is chemically modified, then
the binding does not follow the law of mass action.

Equilibrium is reached when the rate at which new ligand⋅receptor
complexes are formed equals the rate at which the ligand⋅receptor
complexes dissociate. At equilibrium:

[Ligand] [ ceptor] k [Ligand ceptor] kon off⋅ ⋅ = ⋅ ⋅Re Re

Rearrange that equation to define the equilibrium dissociation constant Kd.

[Ligand] [ ceptor]
[Ligand ceptor]

koff
kon

Kd
⋅

⋅
= =

Re
Re

The Kd has a meaning that is easy to understand. Set [Ligand] equal to Kd in
the equation above. The Kd terms cancel out, and you'll see that [Receptor]/
[Ligand⋅Receptor]=1, so [Receptor] equals [Ligand⋅Receptor]. Since all the
receptors are either free or bound to ligand, this means that half the
receptors are free and half are bound to ligand. In other words, when the
concentration of ligand equals the Kd, half the receptors will be occupied at
equilibrium. If the receptors have a high affinity for the ligand, the Kd will
be low, as it will take a low concentration of ligand to bind half the
receptors.
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Don’t mix up Kd, the equilibrium dissociation constant, with koff, the
dissociation rate constant. They are not the same, and aren't even
expressed in the same units.

Variable Name Units
kon Association rate constant or on-rate

constant
M-1min-1

koff Dissociation rate constant or off-rate
constant

min-1

Kd Equilibrium dissociation constant M

The law of mass action predicts the fractional receptor occupancy at
equilibrium as a function of ligand concentration. Fractional occupancy is
the fraction of all receptors that are bound to ligand.

Fractional occupancy [Ligand ceptor]
[Total ceptor]

[Ligand ceptor]
[ ceptor] [Ligand ceptor]

=
⋅

=
⋅

+ ⋅

Re
Re

Re
Re Re

This equation is not useful, because you don’t know the concentration of
unoccupied receptor, [Receptor]. A bit of algebra creates a useful equation.
See “Example model 3. Equilibrium binding” on page 160.

Fractional occupancy [Ligand]
[Ligand] Kd

=
+

This equation assumes equilibrium. To make sense of it, think about a few
different values for [Ligand].

[Ligand] Fractional Occupancy
0 0%

1.Kd 50%

4.Kd 80%

9.Kd 90%

99.Kd 99%

  Analyzing Data with GraphPad Prism 246 Copyright (c) 1999 GraphPad Software Inc.

0 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

0

25

50

75

100

[Radioligand]/Kd

Pe
rc

en
t O

cc
up

an
cy

 a
t

Eq
ui

lib
riu

m

Note that when [Ligand]=Kd, fractional occupancy is 50%.

Although termed a “law”, the law of mass action is simply a model that can
be used to explain some experimental data. Because it is so simple, the
model is not useful in all situations. The model assumes:

• All receptors are equally accessible to ligands.

• Receptors are either free or bound to ligand. It doesn’t allow for more
than one affinity state, or states of partial binding.

• Binding does not alter the ligand or receptor.

• Binding is reversible.

Despite its simplicity, the law of mass action has proven to be very useful
in describing many aspects of receptor pharmacology and physiology.

Nonspecific binding
In addition to binding to receptors of interest, radioligands may also bind to
other sites. Binding to the receptor of interest is called specific binding,
while binding to the other sites is called nonspecific binding. This means
that nonspecific binding can represent several phenomena:

• In most cases, the bulk of nonspecific binding represents some sort of
interaction of the ligand with membranes. The molecular details are
unclear, but nonspecific binding depends on the charge and
hydrophobicity of a ligand – but not its exact structure.

• Nonspecific binding can also be binding to receptors and transporters
not of interest to the investigator, for example binding of epinephrine
to serotonin receptors or metabolic enzymes.

• Nonspecific binding can also be binding to the filters used to separate
bound from free ligand.

Nonspecific binding is usually (but not necessarily) proportional to the
concentration of radioligand (within the range it is used). Add twice as
much radioligand, and you'll see twice as much nonspecific binding.
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Nonspecific binding is detected by measuring radioligand binding in the
presence of a saturating concentration of an unlabeled drug that binds to
the receptors. Under those conditions, virtually all the receptors are
occupied by the unlabeled drug so the radioligand can only bind to
nonspecific sites. Subtract the nonspecific binding at a particular
concentration of radioligand from the total binding at that concentration to
calculate the specific radioligand binding to receptors.

Which unlabeled drug should you use? The obvious answer is to use the
same compound as the radioligand, but unlabeled. In many cases, this is
necessary, as no other drug is known to bind to the receptors. But most
investigators avoid using the same compound as the hot and cold ligand
and prefer to define nonspecific binding with a drug chemically distinct
from the radioligand.

What concentration of unlabeled drug should you use? You want to use
enough to block virtually all the specific radioligand binding, but not so
much that you cause more general physical changes to the membrane that
might alter binding. If you are studying a well-characterized receptor, a
useful rule-of-thumb is to use the unlabeled compound at a concentration
equal to 100 times its Kd for the receptors, or 100 times the highest
concentration of radioligand, whichever is higher.

Ideally, you should get the same results defining nonspecific binding with a
range of concentrations of several drugs, and you should test this when
possible. In many assay systems, nonspecific binding is only 10-20% of the
total radioligand binding. If the nonspecific binding makes up more than
half of the total binding, you'll find it hard to get quality data. If your
system has a lot of nonspecific binding, try different kinds of filters, a larger
volume of washing buffer, warmer washing buffer, or a different
radioligand.

Ligand depletion
In many experimental situations, you can assume that a very small fraction
of the ligand binds to receptors (or to nonspecific sites). In these situations,
you can assume that the free concentration of ligand is approximately equal
to the concentration you added. This assumption vastly simplifies the
analysis of binding experiments, and the standard analysis methods depend
on this assumption.

In other situations, a large fraction of the ligand binds to the receptors (or
binds nonspecifically). This means that the concentration of ligand free in
the solution does not equal the concentration you added. The discrepancy
is not the same in all tubes or at all times. The free ligand concentration is
depleted by binding.
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Many investigators use this rule of thumb: If less than 10% of the ligand
binds, don't worry about ligand depletion; if more than 10% of the ligand
binds, you have three choices:

• Change the experimental conditions. Increase the reaction volume
without changing the amount of tissue. The problem with this
approach is that it requires more radioligand, which is usually very
expensive.

• Measure the free concentration of ligand in every tube. This is
possible if you use centrifugation or equilibrium dialysis, but is quite
difficult if you use vacuum filtration to remove free radioligand.

• Use analysis techniques that adjust for the difference between the
concentration of added ligand and the concentration of free ligand.
The next few chapters explain several such methods.

Calculations with radioactivity

Efficiency of detecting radioactivity
It is not possible to detect every radioactive disintegration. The fraction of
radioactive disintegrations detected by your counter is called efficiency.
Determine efficiency by counting a standard sample under conditions
identical to those used in your experiment.

It is relatively easy to detect gamma rays emitted from isotopes such as 125I,
so efficiencies are usually over 90%, depending on the geometry of the
counter. The detector doesn’t entirely surround the tube, so a small fraction
of gamma rays (photons) miss the detector.

With 3H, the efficiency of counting is much lower, often about 40%.
When a tritium atom decays, a neutron converts to a proton and the
reaction shoots off an electron and neutrino. The energy released is always
the same, but it is randomly partitioned between the neutrino (not
detected) and an electron (that we try to detect). When the electron has
sufficient energy, it can travel far enough to encounter a fluor molecule in
the scintillation fluid. This fluid amplifies the signal and gives of a flash of
light detected by the scintillation counter. If the electron has insufficient
energy, it is not captured by the fluor and is not detected.

Since the decay of a large fraction of tritium atoms does not lead to a
detectable number of photons, the efficiency of counting is much less than
100%. This low efficiency is a consequence of the physics of decay, and
you can't increase the efficiency much using a better scintillation counter
or a better scintillation fluid. However, poor technique can reduce the
efficiency. Electrons emitted by tritium decay have very little energy, so can
only be detected when they immediately encounter a fluor molecule.
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Radioactivity trapped in tissue chunks won't be detected. Nor will
radioactivity trapped in an aqueous phase not well mixed into the
scintillation fluid.

Specific radioactivity
When you buy radioligands, the packaging usually states the specific
radioactivity as Curies per millimole (Ci/mmol). Since you measure counts
per minute (cpm), the specific radioactivity is more useful if you change the
units to be in terms of cpm rather than Curie. Often the specific
radioactivity is expressed as cpm/fmol (1 fmol = 10-15 mole).

To convert from Ci/mmol to cpm/fmol, you need to know that 1 Ci equals
2.22 x 1012 disintegrations per minute. The following equation converts Z
Ci/mmol to Y cpm/fmol when the counter has an efficiency (expressed as a
fraction) equal to E.

Y cpm
fmol

=Z Ci
mmole

. x dpm
Ci

mmole
fmole

E cpm
dpm

=Z . E

Y cpm
fmol

 =Z Ci
mmole

. E

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

−2 22 10 10 2 22

2 22

12 12

In some countries, radioligand packaging states the specific radioactivity in
Gbq/mmol. A Becquerel, abbreviated bq, equals one radioactive
disintegration per second. A Gbq is 109 disintegration per second. To
convert from Gbq/mmol to cpm/fmol, use this equation:

Y cpm
fmol

=Z Gbq
mmole

bq
Gbq

dpm
bq

mmole
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Y cpm
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 =Z Ci
mmole
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Calculating the concentration of the radioligand
Rather than trust your dilutions, you can accurately calculate the
concentration of radioligand in a stock solution. Measure the number of
counts per minute in a small volume of solution and use the equation
below. C is cpm counted, V is volume of the solution you counted in ml,
and Y is the specific activity of the radioligand in cpm/fmol (calculated in
the previous section).

Concentration in pM=
C cpm

Y cpm/fmol
V ml

.  pmol/fmol
.  liter/ml

C/Y
V

⋅ =
0 001

0 001
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Radioactive decay
Radioactive decay is entirely random. A particular atom has no idea how
old it is, and can decay at any time. The probability of decay at any
particular interval is the same as the probability of decay during any other
interval. Therefore decay follows an exponential decay as explained in
“Example model 2. Exponential ” on page 158.  If you start with N0

radioactive atoms, the number remaining at time t is:

N N et
K tdecay= ⋅ − ⋅

0

Kdecay is the rate constant of decay expressed in units of inverse time. Each
radioactive isotope has a different value of Kdecay.

The half-life (t½) is the time it takes for half the isotope to decay. Half-life
and decay rate constant are related by this equation:

t ( )
K

.
K/

decay decay
1 2

2 0 693
= =

ln

This table below shows the half-lives and rate constants for commonly used
radioisotopes. The table also shows the specific activity assuming that each
molecule is labeled with one isotope. (This is often the case with 125I and
32P. Tritiated molecules often incorporate two or three tritium atoms, which
increases the specific radioactivity.)

Isotope Half life Kdecay Specific Radioactivity
3H 12.43 years 0.056/year 28.7 Ci/mmol

125I 59.6 days 0.0116/day 2190 Ci/mmol

32P 14.3 days 0.0485/day 9128 Ci/mmol

35S 87.4 days 0.0079/day 1493 CI/mmol

You can calculate radioactive decay from a date where you (or the
manufacturer) knew the concentration and specific radioactivity using this
equation.

Fraction maining = e-K TimedecayRe ⋅

For example, after 125I decays for 20 days, the fraction remaining equals
79.5%. Although data appear to be scanty, most scientists assume that the
energy released during decay destroys the ligand so it no longer binds to
receptors. Therefore the specific radioactivity does not change over time.
What changes is the concentration of ligand. After 20 days, therefore, the
concentration of the iodinated ligand is 79.5% of what it was originally, but
the specific radioactivity remains 2190 Ci/mmol. This approach assumes
that the unlabeled decay product is not able to bind to receptors and has
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no effect on the binding. Rather than trust this assumption, you should
always try to use newly synthesized or repurified radioligand for key
experiments.

Counting errors and the Poisson distribution
The decay of a population of radioactive atoms is random, and therefore
subject to a sampling error. For example, the radioactive atoms in a tube
containing 1000 cpm of radioactivity won’t give off exactly 1000 counts in
every minute. There will be more counts in some minutes and fewer in
others, with the distribution of counts following a Poisson distribution. This
variability is intrinsic to radioactive decay and cannot be reduced by more
careful experimental controls.

After counting a certain number of counts in your tube, you want to know
what the “real” number of counts is. Obviously, there is no way to know
that. But you can calculate a range of counts that is 95% certain to contain
the true average value. So long as the number of counts, C, is greater than
about 50 you can calculate the confidence interval using this approximate
equation:

95% Confidence Interval:  C -  1.96 C   to  C + 1.96 Ce j e j

GraphPad StatMate does this calculation for you using a more exact
equation that can be used for any value of C.  For example, if you measure
100 radioactive counts in an interval, you can be 95% sure that the true
average number of counts ranges approximately between 80 and 120
(using the equation here) or between 81.37 and 121.61 (using the exact
equation programmed into StatMate).

When calculating the confidence interval, you must set C equal to the total
number of counts you measured experimentally, not the number of counts
per minute.

Example: You placed a radioactive sample into a scintillation counter and
counted for 10 minutes. The counter tells you that there were 225 counts
per minute. What is the 95% confidence interval? Since you counted for 10
minutes, the instrument must have detected 2250 radioactive
disintegrations. The 95% confidence interval of this number extends from
2157 to 2343. This is the confidence interval for the number of counts in
10 minutes, so the 95% confidence interval for the average number of
counts per minute extends from 216 to 234. If you had attempted to
calculate the confidence interval using the number 225 (counts per minute)
rather than 2250 (counts detected), you would have calculated a wider
(incorrect) interval.
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The Poisson distribution explains the advantages of counting your samples
for a longer time. For example, the table below shows the confidence
interval for 100 cpm counted for various times. When you count for longer
times, the confidence interval will be narrower.

1 minute 10 minutes 100 minutes
Counts per minute (cpm) 100 100 100

Total counts 100 1000 10000

95% CI of counts 81.4 TO 121.6 938 TO 1062 9804 to 10196

95% CI of cpm 81.4 to 121.6 93.8 to 106.2 98.0 to 102.0

The table below shows percent error as a function of the number of counts.
Percent error is defined as the width of the confidence interval divided by
the number of counts.

Counts Percent Error
50 27.72%
100 19.60%
200 13.86%
500 8.77%
1000 6.20%
2000 4.38%
5000 2.77%
10000 1.96%
25000 1.24%
50000 0.88%
100000 0.62%

   C
100

1.96 C
C

⋅
⋅

The GraphPad radioactivity web calculator
GraphPad Software provides a free radioactivity calculator on our web site
at   http://www.graphpad.com/www/radcalc.htm

Use it to perform seven common calculations.
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Calculation Description
Isotope decay Calculates radioactive decay during a specified number

of days. Select one of the common isotopes, or enter the
half-life of another isotope.

Conc. of stock Enter mCi/ml and Ci/mmole, which should be on the
label. If you are using a molecule labeled with 125I, the
specific activity equals 2200 Ci/mmole if each molecule
is labeled with one iodine.

Also enter the percent of the original isotope remaining
(calculated above). The calculations assume that the
decay product is not biologically active, so the
concentration of stock that is biologically active
decreases over time.

Dilution of stock Enter the concentration in your stock solution, after
accounting for decay. Also enter the concentration and
volume you want.  The result is the volume of stock you
need to use.

Specific activity
(cpm/fmol)

Enter the specific radioactivity as Ci/mmol which should
be on the label. If you are using a molecule labeled
with 125I, the specific activity equals 2200 Ci/mmol if
each molecule is labeled with one iodine.

Also enter the counter efficiency - the fraction of
radioactive disintegrations that are detected. The
efficiency depends on the isotope and instrumentation.
With low energy isotopes such as tritium, the efficiency
also depends on the experimental details such as the
choice of scintillation fluid, the amount of water in the
sample, and the presence of any colored substances in
the sample.

Cpm to fmol/mg Enter the specific radioactivity as cpm/fmol, the number
of cpm counted, and the protein content of the sample
in mg. The result is the number of binding sites in
fmol/mg protein.

Cpm to sites/cell Enter the specific radioactivity as cpm/fmol, the number
of cpm counted, and the cell count. The result is the
number of binding sites per cell.

Cpm to nM Enter the specific radioactivity as cpm/fmol, the number
of cpm counted, and the volume counted. The result is
the concentration of radioligand in nM.
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Analyzing saturation
radioligand binding data

Introduction to saturation binding experiments
Total
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Saturation radioligand binding experiments measure specific radioligand
binding at equilibrium at various concentrations of the radioligand.
Analyze these data to determine receptor number and affinity. Because this
kind of experiment used to be analyzed with Scatchard plots (more
accurately attributed to Rosenthal), they are sometimes called "Scatchard
experiments".

The analyses depend on the assumption that you have allowed the
incubation to proceed to equilibrium. This can take anywhere from a few
minutes to many hours, depending on the ligand, receptor, temperature,
and other experimental conditions. The lowest concentration of radioligand
will take the longest to equilibrate. When testing equilibration time,
therefore, use a low concentration of radioligand (perhaps 10-20% of the
KD).

Nonspecific binding
Prism can subtract nonspecific from total binding to determine specific
binding at each concentration.

To subtract nonspecific binding:
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1. Enter concentrations in the X column. Enter total binding for the first
condition in column A and the corresponding nonspecific binding in
column B. For the second condition, enter total binding in column C,
and nonspecific in D. You can enter up to 26 pairs of data sets on
one sheet. Enter all values as cpm.

2. Click the Analyze button. From the Data manipulation panel, choose
Remove baseline.

3. The baseline values are in columns B, D, etc. You want to subtract,
not divide, the baseline. Prism will calculate a table with A-B, C-D, E-
F, etc.

4. Since nonspecific binding is almost always a linear function of ligand
concentration, check “Assume the baseline is linear”. In this case,
Prism first uses linear regression to find the line that best fits the
nonspecific values, and then subtracts the nonspecific values
predicted from this line. This option works even if you have not
measured nonspecific binding at every concentration. If you leave the
option box unchecked, Prism subtracts each nonspecific value from
the corresponding total value.

5. Check “Make new graph”.

6. Click ok. The specific binding of the first data set will appear in
column A of the results table. The specific binding of the second data
set (originally columns C and D) will be in column B.

7. This method is only valid when a small fraction of the ligand binds to
the receptor. If this assumption is true, then the free concentration of
ligand equals the added concentration in both the tubes used to
measure total binding and the tubes used to measure nonspecific
binding. If the assumption is not valid, then the free concentration of
ligand will differ in the two sets of tubes. In this case subtracting the
two values makes no sense, and determining specific binding is
difficult. Instead, you should fit total binding only as explained in
“Analyzing total binding data” on page 251.

Fitting a curve to determine Bmax and Kd

Analyzing specific binding data
To fit a binding curve:

1. Start from a table where X is the concentration of ligand in nM or pM
and Y is specific binding. This can either be the original data table or
a results table.

2. Click Analyze.
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3. From the curves and regression choices, choose Nonlinear
regression.

4. On the nonlinear regression dialog, choose One site binding. Leave
everything else at the default settings. The one-site equation is

Y
B X
K Xd

=
⋅

+
max

5. Press ok. You’ll see the table of results. Bmax is expressed in the same
units as the Y values (commonly cpm, sites/cell or fmol/mg). Kd is
expressed in the same units as the X values, usually nM or pM. If the
Kd is low, the affinity is high.

Analyzing total binding data
In many systems, nonspecific binding is proportional to radioligand
concentration over the concentration range used in binding studies. If this
is true for your system, you can determine Kd and Bmax by fitting total
binding only. Nonspecific binding is determined via curve fitting of total
binding, and is not determined experimentally.

To fit total binding, use this user-defined equation:
Specific = X*Bmax  /(Kd  + X)

Nonspecific = NS*X

Y = Specific + Nonspecific

Variable Comment
X Radioligand concentration. Usually expressed in nM or pM.

Y Total binding in cpm, sites/cell, fmol/mg or some other units

Bmax The maximum specific binding to be fit. A reasonable initial
value might be that Bmax  equals 0.5 times YMAX .

Kd The equilibrium dissociation constant. A reasonable initial
value might be 0.2*XMAX

NS Multiply NS times X to calculate nonspecific binding at that
concentration of radioligand. A reasonable rule for initial
value is to set NS equal to 0.2 * (YMAX-YMIN)/(XMAX-
XMIN).

To get useful results with this approach, you will need high quality data
and at least ten data points including some well above the ligand Kd.
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Determining Kd and Bmax for two classes of binding sites
If the radioligand binds to two classes of binding sites, fit the specific
binding data to the two-site binding equation (found in Prism's list of built-
in equations). This equation simply sums the binding to two sites, each
with its own Bmax and Kd .

Y B X
K X

B X
K Xd d

=
⋅

+
+

⋅

+
max max1

1

2

2

This equation assumes that the radioligand binds to two independent
noninteracting binding sites, and that the binding to each site follows the
law of mass action. To compare the one-site and two-site fits, see
"Comparing the fits of two models " on page 221.

You will only get meaningful results from a two-site fit if you have ten or
more (preferably a lot more) data points spaced over a wide range of
radioligand concentrations. Be sure that you measure binding at
radioligand concentrations below the high-affinity Kd and above the low
affinity Kd.

Checklist for saturation binding
When evaluating results of saturation binding analyses, ask yourself these
questions:

Question Comment
Did only a small fraction
of the radioligand bind?

The analysis assumes that the free concentration is
almost identical to the concentration you added.
You can test this by comparing the total cpm that
bound to the total cpm added to the tube. If more
than 10% of the ligand bound (at any ligand
concentration) then the standard analysis won't
work. Either change the experimental protocol
(increase the volume) or use a method that
accounts for depletion of radioligand -- see
"Analyzing saturation binding with ligand
depletion" on page 257.

Did the binding
equilibrate?

The tubes with the lowest concentration of
radioligand take the longest to equilibrate. So test
equilibration time with a low concentration of
radioligand.
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Did you use high enough
concentrations of
radioligand?

Calculate the ratio of the highest radioligand
concentration you used divided by the Kd reported
by the program (both in nM or pM). The highest
concentration should be at least 10 times the Kd, so
that occupancy exceeds 90%.

Is the Bmax reasonable? Typical values for Bmax are 10-1000 fmol binding
sites per milligram of membrane protein, 100-
10000 sites per cell or 1 receptor per square micron
of membrane. If you use cells transfected with
receptor genes, then the Bmax may be many times
larger than these values.

Is the Kd reasonable? Typical values for Kd of useful radioligands range
between 10 pM and 10 nM. If the Kd is much lower
than 10 pM, the dissociation rate is probably very
slow and it will be difficult to achieve equilibrium.
If the Kd is much higher than 10 nM, the
dissociation rate will probably be fast, and you may
be losing binding sites during separation of bound
ligand from free radioligand.

Are the standard errors too
large? Are the confidence
intervals too wide?

Divide the SE of the Bmax by the Bmax, and divide the
SE of the Kd by the Kd. If either ratio is much larger
than about 20%, look further to try to find out why.

Is the nonspecific binding
too high?

Divide the nonspecific binding at the highest
concentration of radioligand by the total binding at
the highest concentration. Nonspecific binding
should usually be less than 50% of the total
binding.

Scatchard plots

What is a Scatchard plot?
In the days before nonlinear regression programs were widely available,
scientists transformed data into a linear form, and then analyzed the data by
linear regression. There are several ways to linearize binding data,
including the methods of Lineweaver-Burke and Eadie-Hofstee. However,
the most popular method to linearize binding data is to create a Scatchard
plot (more accurately attributed to Rosenthal), shown in the right panel
below.
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In this plot, the X-axis is specific binding and the Y-axis is specific binding
divided by free radioligand concentration. It is possible to estimate the
Bmax and Kd from a Scatchard plot (Bmax is the X intercept; Kd is the
negative reciprocal of the slope). However, the Scatchard transformation
distorts the experimental error, and thus violates several assumptions of
linear regression (see "Avoid Scatchard, Lineweaver-Burke and similar
transforms" on page 142). The Bmax and Kd values you determine by
linear regression of Scatchard transformed data may be far from their true
values.

Tip. You should analyze saturation binding data with nonlinear
regression not with Scatchard plots. Use Scatchard plots to
display data, not to analyze data.

After analyzing your data with nonlinear regression, however, it is often
useful to display data as a Scatchard plot. The human retina and visual
cortex are wired to detect edges (straight lines), not rectangular hyperbolas.
Scatchard plots are often shown as insets to the saturation binding curves.
They are especially useful when you want to show a change in Bmax or Kd.

When making a Scatchard plot, you have to choose what units you want to
use for the Y-axis. Some investigators express both free ligand and specific
binding in cpm so the ratio bound/free is a unitless fraction. While this is
easy to interpret (it is the fraction of radioligand bound to receptors), a
more rigorous alternative is to express specific binding in sites/cell or
fmol/mg protein, and to express the free radioligand concentration in nM.
While this makes the Y-axis hard to interpret visually, it provides correct
units for the slope (which equals -1/KD).

Transforming data to create a Scatchard plot
Prism cannot plot a Scatchard plot automatically, but it is very easy to
transform the data to create a Scatchard plot. Use the same instructions for
one- and two-site binding.

To transform specific binding data to a Scatchard plot:
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1. Start from a table where X is concentration of ligand in nM or pM and
Y is specific binding. This can either be the original data table or a
results table.

2. Press Analyze and choose built-in analyses.

3. From the data manipulation section, choose Transforms.

4. If your table has more than one data set, choose to analyze selected
data sets only and choose one data set. The Scatchard transform can
only be used with one data set at a time.

5. Check the box to interchange X and Y.

6. Check the box to transform Y and choose the Y transform: Y=X/Y.

7. Check the box to make a new graph.

If you do Scatchard transforms frequently, save these steps
into a method or template. See "Analyzing repeated
experiments" on page 353.

Plotting the line that corresponds to nonlinear
regression analyses
If there is one class of receptors, the Scatchard plot will be linear. Some
people use linear regression to draw a line through the points. To do this,
start from either the graph or a table of the Scatchard transformed data.
Click the analyze button and choose linear regression. You may need to
change the limits of the regression line to create an attractive graph.

The linear regression line should NOT be used to analyze the data. The X-
intercept of the regression line will be near the Bmax and the negative
inverse of the slope will be near the Kd. However, the Bmax  and Kd  values
determined directly with nonlinear regression will be more accurate.

It isn’t hard to draw the Scatchard line that corresponds to the nonlinear
regression determination of Bmax  and Kd. The discussion below assumes
that the "bound" units for the Y axis are the same units used for the X-axis
and in which you want to express Bmax (sites/cell or fmol/mg,), and the
"free" units are the same as the units you want to use for the Kd  (nM or
pM). Since the X intercept of the Scatchard line is the Bmax, the Scatchard
line ends at X=Bmax, Y=0. Since the slope of the Scatchard line equals –
1/Kd , the Y-intercept equals the Bmax   divided by the Kd. So the Scatchard
line begins at X=0, Y=Bmax/Kd.

To create a Scatchard line corresponding to the nonlinear regression fit:
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1. Create a new data table, with numerical X values and single Y values.

2. Into row 1 enter X=0, Y=Bmax   (previously determined by nonlinear
regression).

3. Into row 2 enter X=Bmax/Kd  (both previously determined by
nonlinear regression) and Y=0.

4. Note the name of this data table. Perhaps rename to something
appropriate.

5. Go to the Scatchard graph.

6. Press Change, then Data on graph.

7. Add the new data table to the graph.

8. Press Change, then Symbols and lines.

9. Drop down the list of data sets, and select the one you noted in step
4.

10. Choose to plot no symbols, but to connect with a line.

Scatchard plots of binding to two sites
The appearance of a two-site Scatchard plot
The left panel below shows binding of a radioligand to two independent
binding sites present in equal concentrations, but with a tenfold difference
in Kd . The two individual curves are shown as dotted and dashed curves.
When you do the experiment, you can't observe the individual
components, but observe the sum, which is shown as a solid curve. Note
that this curve is not obviously biphasic.

The right panel shows the same data plotted on a Scatchard plot. The
binding to each receptor is shows as a straight line (dotted, or dashed). The
total binding, plotted on a Scatchard plot, is curved. Note that the two lines
that represent binding to each type of receptor are NOT the asymptotes of
the curve.

0 25 50 75 100
0

100

200

[Radioligand]

Sp
ec

ifi
c 

B
in

di
ng

0 50 100 150 200
0

25

50

75

Specific Binding

B
ou

nd
/F

re
e



 Analyzing saturation radioligand binding data 263 www.graphpad.com

Graphing data on a two-site Scatchard plot
See "Transforming data to create a Scatchard plot" on page 254. You don't
need to do anything differently when there are two kinds of receptors.

Graphing the two lines of a two-site Scatchard plot
To plot the two straight lines that correspond to the nonlinear regression fit,
adapt the instructions for plotting a Scatchard plot for one-site binding. See
"Plotting the line that corresponds to nonlinear regression analyses" on
page 255. Create a new data table that defines the two lines as shown
below, using Bmax  and Kd values determined by nonlinear regression.

X A B

0 Bmax1/Kd1

Bmax1 0

0 Bmax2/Kd2

Bmax2 0

Go to the graph of the Scatchard transformed data and add the new table to
that graph. Use the Symbols dialog to plot the two data sets from the table
using connecting lines but no symbols.

Graphing the curve on a two-site Scatchard plot
If the radioligand binds to two binding sites, the Scatchard plot will be
curved but you cannot create the curve using nonlinear regression. This
approach is not appropriate, because the specific binding data appear on
the X-axis and as part of the Y-axis, and this violates a major assumption of
nonlinear regression.

You should determine Kd  and Bmax   of both receptor types using nonlinear
regression to fit the specific binding data. See "Determining Kd and Bmax for
two classes of binding sites" on page 251. Then transform the resulting
curve to Scatchard axes. Follow these steps:

1. Use nonlinear regression to fit the specific binding data to a two-site
binding curve. While on the nonlinear regression parameters dialog,
click the Output options button and check the option box to view the
table of XY coordinates defining the curve.

2. Go to the nonlinear regression results. Drop the view list and select
Curve.

3. Click Analyze, and choose Transform from the list of data
manipulations.
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4. To do a Scatchard transformation, check the option box to
interchange X and Y values. Also check the box to transform Y and
choose the Y transform: Y=X/Y. Do not check the box to make a new
graph. The results will be the best-fit curve transformed to fit
Scatchard axes.

5. Make a note of the name of the sheet with the Scatchard transformed
curve data. Consider renaming the sheet.

6. Go to the graph of the Scatchard transformed data.

7. Click Change and choose Data on graph.

8. Add the data set that contains the Scatchard transformation of the
best-fit curve (created in step 4).

9. Click Change and choose Symbols and lines.

10. Drop the list of data sets, and choose the Scatchard transformation of
the best-fit curve.

11. Choose to plot no symbols, but to connect with a line.

Analyzing saturation binding with ligand depletion
The standard methods of analyzing saturation binding assume that a tiny
fraction of the radioligand binds to receptors. This means that the
concentration of radioligand added is very similar to the concentration of
radioligand free in solution.

In some experimental situations, where the receptors are present in high
concentration and have a high affinity for the ligand, that assumption is not
true. A large fraction of the radioligand binds to receptors, so the free
concentration added is quite a bit lower than the concentration you added.
The free ligand concentration is depleted by binding to receptors.

If possible you should avoid experimental situations where the free ligand
concentration is far from the total concentration. You can do this by
increasing the volume of the assay without changing the amount of tissue.
The drawback is that you'll need more radioligand, which is usually
expensive or difficult to synthesize.

If you can't avoid radioligand depletion, you need to account for the
depletion in your analyses. The obvious way to do this is to subtract the
number of cpm (counts per minute) of total binding from the cpm of added
ligand to calculate the number of cpm free in solution. This can then be
converted to the free concentration in molar. There are four problems with
this approach:

• If you used this method, experimental error in determining specific
binding would affect the free ligand concentration you calculate.



 Analyzing saturation radioligand binding data 265 www.graphpad.com

Error in Y would affect X, which violates an assumption of nonlinear
regression.

• Since the free concentration in the nonspecific tubes is not the same
as the free concentration in the total tubes, it is difficult to deal with
nonspecific binding using this approach. You can not calculate
specific binding as the difference between the total binding and
nonspecific binding.

• This method works only for saturation binding experiments, and
cannot be extended to analysis of competition curves.

• You cannot implement this method with Prism, which does not let
you subtract Y from X. (Since Prism allows for many Y data sets per
table, but only one X column, subtracting Y from X would be
ambiguous).

S. Swillens (Molecular Pharmacology, 47: 1197-1203, 1995) developed an
equation that defines total binding as a function of added ligand,
accounting  for nonspecific binding and ligand depletion. By analyzing
simulated experiments, that paper shows that fitting total binding gives
more reliable results than you would get by calculating free ligand by
subtraction. The equations shown below are not exactly the same as in
Swillens' paper, but the ideas are the same.

From the law of mass action, total binding follows this equation.

Total Binding = Specific + Nonspecific

Total Binding =
B [Free Ligand]

Kd [Free Ligand]
+ [Free Ligand] NSmax ⋅

+
⋅

The first term is the specific binding, which equals fractional occupancy
times Bmax, the total number of binding sites. The second term is
nonspecific binding, which is assumed to be proportional to free ligand
concentration. The variable NS is the fraction of the free ligand that binds
to nonspecific sites.

This equation is not useful, because you don’t know the concentration of
free ligand. What you know is that the free concentration of ligand equals
the concentration you added minus the concentration that bound (specific
and nonspecific). Defining X to be the amount of ligand added and Y to be
total binding, the system is defined by two equations:

Y =
B [Free Ligand]

Kd [Free Ligand]
+ [Free Ligand] NS

[Free Ligand]= X-Y

max ⋅

+
⋅
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Combining the two equations:

Y =
B

+(X - Y) NSmax ⋅ −

+ −
⋅

( )
( )
X Y

K X Yd

X, Y and Bmax are expressed in units of cpm. To keep the equation
consistent, therefore, Kd must also be converted to cpm units (the number
of cpm added to each tube when the total concentration equals the Kd).

You cannot enter that equation into Prism for nonlinear regression because
Y appears on both sides of the equal sign. But simple algebra rearranges it
into a quadratic equation. The solution is shown below as a user defined
Prism equation.

;X is total ligand added in cpm. Y is total binding in cpm

;SpecAct is specific radioactivity in cpm/fmol

;Vol is reaction volume in ml

;Both must be set to be CONSTANTS

;Calc KD in cpm from nM

KdCPM=KdnM * Vol * 1000 * SpecAct

; (nm/L * mL * 0.001 L/ml * 1000000 fmol/nmol * cpm/fmol)

a = -1-NS

b = KdCPM + NS*KdCPM + X + 2*X*NS + Bmax

c= -1*X*(NS*KdCPM + X*NS+Bmax)

Y= -b + SQRT(b*b – 4*a*c))/(2*a)

Determining nonspecific binding experimentally in
saturation binding experiments with ligand depletion
The method described above fits total binding data to an equation that
includes both specific and nonspecific components. It does not require that
you experimentally determine nonspecific binding. While this is
convenient, many investigators would feel uneasy trusting those results
without determining nonspecific binding experimentally.

You can experimentally determine nonspecific binding by including a large
concentration of an unlabeled ligand in your incubations. This will bind to
virtually all the receptors, leaving only nonspecific sites free to bind
radioligand. The conventional approach is to measure total and nonspecific
binding at each ligand concentration, and to define specific binding as the
difference. This approach cannot be used when a high fraction of ligand
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binds, because the free concentration of ligand in the total tubes is not the
same as the free concentration of ligand in the nonspecific tubes.

We assume that nonspecific binding is a constant fraction of the
concentration of free ligand.

Nonspecific binding = Y =NS [Ligand]⋅

We also assume that the free concentration of ligand equals the added
concentration (X) minus the amount that bound (Y).

[Ligand]=X - Y

Combining the two equations:

Y (X Y) NS

Y X
NS

NS 1

= − ⋅

= ⋅
+

To experimentally determine nonspecific binding:

1. Enter the data with X equal to the added concentration in cpm and Y
equal to the nonspecific binding in cpm.

2. Fit by nonlinear regression to this user-defined equation:
Y=X*NS/(NS+1)

3. Since this is really a linear equation, you’ll get the same fit no matter
what initial value you enter. Set the initial value of NS equal to 0.01.

4. Compare the value of NS determined here with the NS determined
from analysis of the total binding. The two values should be similar.

If you think the value of NS determined here is more accurate than the NS
determined from analysis of the total binding, refit the total binding data
holding NS constant (equal to the value determined from the nonspecific
binding analysis).
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Analyzing competitive binding
data

What is a competitive binding curve?
Competitive binding experiments measure the binding of a single
concentration of labeled ligand in the presence of various concentrations of
unlabeled ligand. Ideally, the concentration of unlabeled ligand varies over
at least six orders of magnitude.
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The top of the curve is a plateau at a value equal to radioligand binding in
the absence of the competing unlabeled drug. The bottom of the curve is a
plateau equal to nonspecific binding. The concentration of unlabeled drug
that produces radioligand binding half way between the upper and lower
plateaus is called the IC50 (inhibitory concentration 50%) or EC50 (effective
concentration 50%).

If the radioligand and competitor both bind reversibly to the same binding
site, binding at equilibrium follows this equation (where Top and Bottom
are the Y values at the top and bottom plateau of the curve).
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Y Bottom
Top Bottom

X LogEC= +
−

+ −

b g
1 10 50

Entering data for competitive binding curves
Most investigators enter Y values as cpm. If you performed the experiment
in triplicate, enter all three values and let Prism automatically plot the error
bars.

Some investigators transform their data to percent specific binding. The
problem with this approach is that you need to define how many cpm
equal 100% binding and how many equal 0% specific binding. Deciding
on these values is usually somewhat arbitrary. It is usually better to enter
the data as cpm.

Enter the logarithm of the concentration of competitor into the X column.
For example, if the competitor concentration varied from 1 nM to 1 mM,
enter X values from -9 to -3. A log axis cannot accommodate a
concentration of zero (log(0) is undefined). Instead, enter a very low
competitor concentration (in this example, -10).

If you prefer to enter concentrations in the data table, rather than the
logarithm of concentration, transform the data before performing nonlinear
regression. Follow these steps:

1. Enter the data with X as concentration of ligand and Y as binding.

2. Press Analyze.

3. From the data manipulation section, choose Transforms.

4. Check Transform X values.

5. Choose X=log(X).

6. If you want to transform Y from cpm to more useful units, check
Transform Y values, choose Y=K*Y, and enter an appropriate value
for K.

7. Check the option box to make a new graph of the transformed data.

Note: When fitting a curve with nonlinear regression, be sure to
fit to the new transformed data table or the new graph.
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Decisions to make before fitting the data
Weighting
When analyzing the data, you need to decide whether to minimize the sum
of the squares of the absolute distances of the points from the curve or to
minimize the sum of the squares of the relative distances. See "Weighting
method" on page 200. The choice depends on the source of the
experimental error. Follow these guidelines:

• If the bulk of the error comes from pipetting, the standard deviation
of replicate measurements will be, on average, a constant fraction of
the amount of binding. In a typical experiment, for example, the
highest amount of binding might be 2000 cpm with an SD of 100
cpm. The lowest binding might be 400 cpm with an SD of 20 cpm.
With data like this, you should evaluate goodness-of-fit with relative
distances. The details on how to do this are in the next section.

• In other experiments, there are many contributions to the scatter and
the standard deviation is not related to the amount of binding. With
this kind of data, you should evaluate goodness-of-fit using absolute
distances, which is the default choice.

• You should only consider weighting by relative distances when you
are analyzing total binding data. When analyzing specific binding (or
data normalized to percent inhibition), you should evaluate
goodness-of-fit using absolute distances, as there is no clear
relationship between the amount of scatter and the amount of
specific binding.

Constants
To find the EC50, the concentration that blocks 50% of the binding, Prism
needs to first define 100% and 0%.

Ideally your data span a wide range of concentrations of unlabeled drug,
and clearly define the bottom or top plateaus of the curve. If this is the
case, Prism can fit the 0% and 100% values from the plateaus of the curve
and you don't need to do anything special.

In some cases, your competition data may not define a clear bottom
plateau, but you can define the plateau from other data. All drugs that bind
to the same receptor should compete all specific radioligand binding and
reach the same bottom plateau value. This means that you can define the
0% value (the bottom plateau of the curve) by measuring radioligand
binding in the presence of a standard drug known to block all specific
binding. If you do this, make sure that you use plenty of replicates to
determine this value accurately. If your definition of the lower plateau is
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wrong, the values for the IC50 will be wrong as well. You can also define
the top plateau as binding in the absence of any competitor.

If you have collected enough data to clearly define the entire curve, let
Prism fit all the variables and fit the top and bottom plateaus based on the
overall shape of your data. If your data don't define a clear top or bottom
plateau, you should define one or both of these values to be constants fixed
to values determined from other data.

Competitive binding data with one class of receptors

Fitting data to a one-site competitive binding curve
Follow these steps to fit data to a one-site competitive binding equation:

1. Press Analyze.

2. From the curves section, choose nonlinear regression.

3. Choose the one-site competitive binding equation

4. If you choose to minimize the sum of the relative distances (as
percent of Y), click on the Methods option button and choose
"Minimize relative distances".

5. If you want to fix the top and bottom plateaus to constant values,
click the Constants button and enter the values.

6. From the nonlinear regression dialog, choose the option Ki from IC50

and enter values for the Kd of the radioligand and its concentration.
Enter both in nM (or any concentration units; only the ratio matters).
Enter concentrations, not the logarithm of concentration. The Kd must
be known from previous saturation binding experiments

Checklist for competitive binding results
When evaluating results of competitive binding, ask yourself these
questions:
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Question Comment
Is the logIC50 reasonable? The IC50 should be near the middle of the

curve, with at least several concentrations of
unlabeled competitor on either side of it.

Are the standard errors too
large? Are the confidence
intervals too wide.

The SE of the logIC50 should be less than 0.5
log unit (ideally a lot less).

Are the values of TOP and
BOTTOM reasonable?

TOP should be near the binding you observed
in the absence of competitor. BOTTOM should
be near the binding you observed in the
presence of a maximal concentration of
competitor. If the best-fit value of BOTTOM is
negative, consider fixing it to a constant value
equal to nonspecific binding determined in a
control tube.

Has binding reached
equilibrium?

Competitive binding incubations take longer to
equilibrate than saturation binding incubations.
You should incubate for 4-5 times the half-life
for radioligand dissociation.

Does only a small fraction
of the radioligand bind?

The equations are based on the assumption that
the free concentration of labeled ligand is
essentially identical to the concentration you
added. Compare the total binding in the
absence of competitor in cpm, to the amount of
ligand added in cpm. If the ratio is greater than
10% at any concentration, then you've violated
this assumption.  Try to revise your
experimental protocol, perhaps using a large
incubation volume.

Does the curve have the
expected steepness?

The competitive binding curve has a Hill slope
(or slope factor) of –1. If your data form a curve
shallower than this, see "Shallow competitive
binding curves" on page 268.

Ki from EC50
Prism first fits the curve to find the EC50, the concentration of competitor
that competes for half the specific binding. This is the same as the IC50.

The value of the EC50 is determined by three factors:
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• The affinity of the receptor for the competing drug. If the affinity is
high, the EC50 will be low. The affinity is usually quantified as the
equilibrium dissociation constant, Ki. The subscript i is used to
indicate that the competitor inhibited radioligand binding. You can
interpret it the same as you interpret a Kd. The Ki is the concentration
of the competing ligand that will bind to half the binding sites at
equilibrium, in the absence of radioligand or other competitors. If the
Ki is low, the affinity of the receptor for the inhibitor is high.

• The concentration of the radioligand. If you choose to use a higher
concentration of radioligand, it will take a larger concentration of
unlabeled drug to compete for half the radioligand binding sites.

• The affinity of the radioligand for the receptor (Kd). It takes more
unlabeled drug to compete for a tightly bound radioligand (low Kd)
than for a loosely bound radioligand (high Kd).

Prism calculates the Ki, using the equation of Cheng and Prusoff (Cheng Y.,
Prusoff W. H., Biochem. Pharmacol. 22: 3099-3108, 1973).

K
EC
ligand

K

i

d

=
+

50

1 [ ]

EC50 or log(EC50)?
The equation built-in to Prism is defined in terms of the log(EC50), so Prism
finds the best-fit value of the log(EC50) along with its SE and 95% CI. Prism
also reports the EC50 and its 95% CI. It does this by taking the antilog of the
log(EC50) and of both ends of the 95% CI. Since the confidence interval is
symmetrical on the log scale, it is not symmetrical when converted to EC50.

If the concentrations of unlabeled compound are equally spaced on a log
scale, the uncertainty of the log(EC50) will be symmetrical, but the un-
certainty of the EC50 will not be. That is why the equation is written in
terms of log(EC50).

If you average together results from several experiments, it is better to
average the log(Ki) values, rather than the Ki values. If you average Ki

values, one value that is far from the rest will have too much influence on
the mean. See “Why Prism fits the logEC50 rather than EC50” on page 301.

Shallow competitive binding curves

The slope factor or Hill slope
If the labeled and unlabeled ligands compete for a single class of binding
site, the competitive binding curve will have a shape determined by the
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law of mass action. In this case, the curve will descend from 90% specific
binding to 10% specific binding over an 81-fold increase in the
concentration of the unlabeled drug. More simply, virtually the entire curve
will cover two log units (100-fold change in concentration).
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To quantify the steepness of a competitive binding curve, fit the data to the
built-in equation “Sigmoid dose-response (variable slope)”. Prism will fit the
top and bottom plateaus, the IC50, and the slope factor (also called Hill
slope). A standard competitive binding curve that follows the law of mass
action has a slope of -1.0. If the slope is shallower, the slope factor will be
a negative fraction, perhaps -0.85 or -0.60.

The slope factor describes the steepness of a curve. In most situations, there
is no way to interpret the value in terms of chemistry or biology. If the
slope factor is far from 1.0, then the binding does not follow the law of
mass action with a single site.

Some investigators transform the data to create a linear Hill
plot. The slope of this plot equals the slope factor. There is no
advantage to determining the Hill slope this way – it is more
difficult and less accurate.
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Explanations for shallow binding curves include:

Explanation Comment
Experimental problems If the serial dilution of the unlabeled drug

concentrations was done incorrectly, the slope factor is
not meaningful.

Curve fitting problems If the top and bottom plateaus are not correct, then the
slope factor is not meaningful. Don't try to interpret the
slope factor unless the curve has clear top and bottom
plateaus. You may need to set the variables Top and
Bottom to constant values.

Negative cooperativity You will observe a shallow binding curve if the binding
sites are clustered (perhaps several binding sites per
molecule) and binding of the unlabeled ligand to one
site causes the remaining site(s) to bind the unlabeled
ligand with lower affinity.

Heterogeneous receptors The receptors do not all bind the unlabeled drug with
the same affinity.

Ternary complex model When agonists interact with a G protein whose
availability is limited, curves will be shallow. This is a
common explanation for shallow binding. See
"Receptors linked to G proteins" on page 271.

Competitive binding with two sites
Included in the list of built-in equations of Prism is “Competitive binding
(two sites)”. This equation fits data for the fairly common situation where:

• There are two distinct classes of receptors. For example, a tissue
could contain a mixture of β1 and β2 adrenergic receptors.
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• The unlabeled ligand has distinct affinities for the two sites.

• The labeled ligand has equal affinity for both sites. (If you are not
willing to make this assumption, see "Competitive binding to two
receptor types (" on page 282.)

• Binding has reached equilibrium.

• A small fraction of both labeled and unlabeled ligand bind. This
means that the concentration of labeled ligand that you added is very
close to the free concentration in all tubes.

This equation has five variables: the top and bottom plateau binding, the
fraction of the receptors of the first class, and the IC50 of competition of the
unlabeled ligand for both classes of receptors. If you know the Kd of the
labeled ligand and its concentration, you (or Prism) can convert the IC50

values to Ki values.

When you look at the competitive binding curve, you will only see a
biphasic curve in unusual cases where the affinities are extremely different.
More often you will see a shallow curve with the two components blurred
together. For example, the graph below shows competition for two equally
abundant sites with a ten fold (one log unit) difference in EC50. If you look
carefully, you can see that the curve is shallow (it takes more than two log
units to go from 90% to 10% competition), but you cannot see two distinct
components.
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Comparing one- and two-site models
Prism can simultaneously fit your data to two equations and compare the
two fits. This feature is commonly used to compare a one-site competitive
binding model and a two-site competitive binding model. Since the model
has an extra parameter and thus the curve has an extra inflection point, the
two-site model almost always fits the data better than the one site model.
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And a three-site model fits even better. Before accepting the more
complicated models, you need to ask whether the improvement in
goodness of fit is more than you'd expect by chance. Prism answers this
question with an F test. The resulting P value answers this question: If the
one site model were really correct, what is the chance that randomly
chosen data points would fit to a two-site model this much better (or more
so) than to a one-site model. See "Comparing the fits of two models " on
page 221.

Before looking at Prism’s comparison of the two equations, you should
look at both fits yourself. Sometimes the two-site fit gives results that are
clearly nonsense. For example, disregard a two-site fit when:

• The two IC50 values are almost identical.

• One of the IC50 values is outside the range of your data.

• The variable FRACTION is close to 1.0 or to 0.0. In this case,
virtually all the receptors have the same affinity, and the IC50 value
for the other site will not be reliable.

• The variable FRACTION is negative or greater than 1.0.

• The best-fit values for BOTTOM or TOP are far from the range of Y
values observed in your experiment.

If the results don’t make sense, don’t believe them. Only pay attention to
the comparison of two fits when each of the fits makes sense.

Receptors linked to G proteins
A well studied example of agonist binding is the interaction of agonists
with receptors linked to G proteins. This is studied by comparing the
competition of agonists with radiolabeled antagonist binding in the
presence and absence of GTP (or its analogues). These experiments are
done in membrane preparations to wash away endogenous GTP. Without
added GTP, the competitive binding curves tend to be shallow. When GTP
or an analog is added, the competitive binding curve is of normal
steepness. This figure shows an idealized experiment.
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The extended ternary complex model, shown in the figure below, can
partially account for these findings (and others). In this model, receptors
can exist in two states, R and R*. The R* state has a high affinity for agonist
and preferentially associates with G proteins. Although some receptor may
exist in the R* state in the absence of agonist, the binding of agonist fosters
the transition from R to R* and thus promotes interaction of the receptor
with G protein. The extended ternary complex model is shown on the
right. Even this extended ternary complex model may be too simple, as it
does not allow for receptors in the R state to interact with G. A cubic
ternary complex model adds these additional equilibria. For details, see
Kenakin, Pharmacologic Analysis of Drug-Receptor Interaction, 3rd edition,
Lippincott-Raven, 1997.

H + R + G

HRGH + RG

HR + G H + R* + G

HR*GH + R*G

HR* + G

H + R + G HR + G

H + R + G

HRGH + RG

HR + G

Simple Model Ternary Complex Model Extended Ternary Complex Model

The agonist binding curve is shallow (showing high and low affinity
components) in the absence of GTP because some receptors interact with
G proteins and others do not. The receptors that interact with G proteins
bind agonist with high affinity, while those the receptors that don't interact
with G proteins bind agonist with low affinity. Why don’t all receptors bind
to G proteins? The simplest answer is that there are fewer G proteins than
receptors, but biochemical evidence disputes this idea. Other possible
explanations include heterogeneous receptors and membrane
compartmentation (so some receptors are sequestered from G proteins). For
a review of these issues, see RR Neubig, Faseb J. 8:939-946, 1994.
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If all the receptors could interact with G proteins, you'd expect to see an
entirely high affinity binding curve in the absence of GTP. In the presence
of GTP (or an analog) the HR*G complex is not stable, the G protein
dissociates into its αGTP and βγ subunits, and the receptor is uncoupled from
G.  With GTP present, only a tiny fraction of receptors are coupled to G at
any given time, so the agonist competition curves are of low affinity and
normal steepness, as if only R was present and not RG.

Although the extended ternary complex model is very useful conceptually,
it is not very useful when analyzing data. There are simply too many
variables! The simpler ternary complex model shown in the middle of the
figure has fewer variables, but still too many to reliably fit with nonlinear
regression. For routine analyses, most investigators fit data to the much
simpler two-state model shown on the left of the figure. This model allows
for receptors to exist in two affinity states (R and RG), but does not allow
conversion between R and RG. It is easy to fit data to this simpler model
using a two-site competition curve model. Since we know the model is too
simple, the high and low affinity dissociation constants derived from the
model should be treated merely as empirical descriptions of the data, and
not as true molecular equilibrium constants.

Homologous competitive binding curves

Introducing homologous competition
The most common way to determine receptor number and affinity is to
perform a saturation binding experiment where you vary the concentration
of radioligand. An alternative is to keep the radioligand concentration
constant, and compete for binding with the same chemical, but not
radioactively labeled. Since the hot (radiolabeled) and cold (unlabeled)
ligands are chemically identical, this is called a homologous competitive
binding experiment.

Most analyses of homologous competition data are based on these
assumptions:
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Assumption Comments
The receptors have
identical affinity for the
labeled and unlabeled
ligand.

This is a nontrivial assumption. With tritiated
ligands, there is no reason to doubt it, since
tritium doesn’t greatly alter the conformation of a
molecule. However iodination can change
conformation and alter the binding affinity. Don't
assume that iodinated and noniodinated
compounds bind with the same affinity. If your
radioligand is labeled with radioactive iodine,
then you should use a competitor that is the same
compound iodinated with nonradioactive iodine.

There is no cooperativity. This means that binding of ligand to one binding
site does not change its affinity at other site(s).

No ligand depletion. The basic analysis methods assume that only a
small fraction of ligand binds. In other words, the
method assumes that free concentration of hot
(and cold) equals the concentration you added.
Since homologous competition curves are best
performed with low concentrations of
radioligand, it may be difficult to comply with this
assumption. If a large fraction of radioligand
binds, you can lower the fractional binding by
increasing the incubation volume (without
increasing the amount of tissue). A later section in
this chapter explains how to analyze data when
this assumption is not valid.

Nonspecific binding is
proportional to the
concentration of labeled
ligand.

We assume that a certain fraction of hot ligand
binds nonspecifically, regardless of the
concentration of unlabeled ligand. This
assumption has proven to be true in many
systems.

Theory of homologous competition binding
Start with the equation for equilibrium binding to a single class of
receptors.

Specific  Binding  
[Ligand] B
[Ligand] K

max

d
=

⋅

+
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Set [Ligand] equal to the sum of the labeled (hot) and unlabeled ligand
(cold). Specific binding you measure (specific binding of the labeled ligand)
equals specific binding of all ligand times the fraction of the ligand that is
labeled. This fraction, hot/(hot+cold), varies from tube to tube.  Therefore
specific binding of labeled ligand follows this equation:

Sp. Binding of hot ligand  Sp. binding of all ligand  Fraction of ligand that is ho
([Hot] [Cold]) B
[Hot] [Cold] K

[Hot]
[Hot] [Cold]

B [Hot]
[Hot] [Cold] K

max

d

max

d

= ⋅

=
+ ⋅
+ +

⋅
+

=
⋅

+ +

Specific binding and Bmax are in the same units, usually cpm, sites/cell or
fmol/mg. [Hot], [Cold] and Kd are in concentration units. Those units cancel
so it doesn’t matter if you use molar, nM, or some other unit, so long as
you are consistent.

Maximum binding of labeled ligand occurs when the concentration of cold
ligand equals zero. This is not the same as Bmax, because the concentration
of hot ligand will not saturate all the receptors. In the absence of cold
ligand (set [cold]=0), the binding equals

Sp. Binding  
[Hot] K[Cold] 0

d
= =

⋅

+

B Hotmax [ ]

The IC50 in a homologous binding experiment is the concentration of [Cold]
that reduces specific binding of labeled ligand by 50%. So the IC50 is the
concentration of cold that solves the equation below. The left side of the
equation is half the maximum binding with no cold ligand. The right side is
binding in the presence of a particular concentration of cold ligand. We
want to solve for [Cold].

05.
[ ] [ ]max max⋅
⋅

+
=

⋅

+ +

B Hot B Hot
[Hot] K

  
[Hot] K [Cold]d d

Solve this equation for [Cold], and you’ll find that you achieve half-
maximal binding when [Cold] = [Hot] + Kd .  In other words,

IC Hot Kd50 = +[ ]

Why homologous binding data can be ambiguous
Since the IC50 equals [Hot] + Kd , the value of the Kd doesn’t affect the IC50

very much when you use a high concentration of radioligand. This means



 Analyzing competitive binding data 283 www.graphpad.com

that you’ll see the same IC50 with a large range of Kd values. For example if
you use a Hot ligand concentration of 10 nM, the IC50 will equal 10.1 nM if
the Kd is 0.1 nM (dashed curve below), and the IC50 will equal 11 nM if the
Kd is 1 nM (solid curve below). These two IC50 values are almost identical,
and cannot be distinguished in the presence of experimental error.
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If the concentration of hot (radiolabeled) ligand greatly exceeds the Kd , the
curve is ambiguous. There are an infinite number of curves, defined by
different Kd and Bmax values, which are almost identical. The data simply
don’t define the Kd and Bmax . No curve-fitting program can determine the Kd

and Bmax from this type of experiment – the data are consistent with many
Kd and Bmax values.

Fitting homologous competition data (one site)
We recommend that you follow a two-step procedure for fitting
homologous competition data, at least with new systems. Once you have a
routine assay, you may want to skip step 1.

Step 1. Determine the IC50

This first step is to check that you used a reasonable concentration of
radioligand.

Fit your data to the built-in equation, One-site competition. If your
competition curve doesn’t have clearly defined top and bottom plateaus,
you should set one or both of these to constant values based on control
experiments.

Compare the best-fit value of the EC50  (same as IC50) to the concentration
of hot ligand you used. Homologous competition experiments only lead to
useful results when the concentration of hot ligand is less than half the IC50.
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If Then do this
IC50 is more than ten
times [Hot]

The concentration of [Hot] is lower than it needs to be.
If you have quality data, you can continue with step 2. If
you have too few cpm bound or if more than 10% of
the added radioactivity binds to tissue, rerun the
experiment with more radioligand

 IC50 is between two and
ten times [Hot]

You’ve designed the experiment appropriately.
Continue to step 2 to determine the Kd and Bmax with
confidence limits.

IC50 is greater than [Hot]
but not twice as high

You’ll get better results if you repeat the experiment
using less hot ligand.

 IC50 is less than [Hot] If binding follows the assumptions of the analysis, it is
impossible for the IC50 to be less than the concentration
of hot ligand. Since Kd  = IC50 –[Hot], these data would
lead to a negative value for Kd , which is impossible.
One possibility is that your system does not follow the
assumptions of the analysis. Perhaps the hot and cold
ligands do not bind with identical affinities. Another
possibility is that you simply used too high a
concentration of hot ligand, so the true IC50 is very close
to (but greater than) [Hot]. Experimental scatter may lead
to a best-fit IC50 that is too low, leading to the
impossible results. Repeat the experiment using a lot
less hot ligand.

Step 2. Determine Kd  and Bmax

Once you’ve determined that the IC50 is quite a bit larger than the
concentration of hot ligand, continue with this step to determine the Bmax

and Kd.

Total binding equals specific binding plus nonspecific binding. Nonspecific
binding is the same for all tubes since it only depends on the concentration
of hot ligand, which is constant. The equation for specific binding is
derived in “Theory of homologous competition binding” on page 274. Add
a nonspecific binding term to define total binding:

Total Binding  
[Hot] [Cold] Kd

=
⋅

+ +
+

B Hot
NSmax [ ]

Since this equation is not built-in to Prism, you’ll need to enter it as a user-
defined equation as follows:
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ColdNM=10^(x+9) ;Cold concentration in nM

KdNM=10^(logKD+9) ;Kd  in nM

Y=(Bmax*HotnM)/(HotnM + ColdNM + KdNM) + NS

With any user-defined equation, you need to define initial values. The best
way to do this is to enter rules, so Prism can compute initial values for any
set of data. After entering the equation, press the button to define rules for
initial values. Here are some suggested rules.

Variable Units Comments
X Log(moles/liter) The logarithm of the concentration of the

unlabeled compound.

Y CPM , fmol/mg
or sites/cell

Total binding of the labeled compound

Bmax Same as Y
values

Initial value=10*Ymax (This assumes that you
used a concentration of ligand that binds to
about one tenth of these receptors)

HotnM nM Concentration of labeled ligand in every tube.
Set this to a constant value that you know from
experimental design. Prism cannot fit this
value. You must set it to a constant value.

LogKd Log(moles/liter) Initial value = 1.2*XMID

NS Same as Y
values

Initial value = 1.0*YMIN

This equation assumes that you have entered X values as the logarithm of
the concentrations of the unlabeled ligand in molar, so 1nM (10-9 molar) is
entered as -9. The first line in the equation adds 9 to make it the logarithm
of the concentration in nM, and then takes the antilog to get concentration
in nM.

Since the experiment is performed with the concentrations of unlabeled
ligand equally spaced on a log scale, the confidence intervals will be most
accurate when the Kd is fit as the log(Kd). The second line converts the log
of the Kd  in moles/liter to nM.

Set HotnM equal to the concentration of labeled ligand in nM, and set it to
be a constant value. Prism cannot fit this value; you must make it a constant
and enter its value.
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Homologous competitive binding with ligand depletion
If a large fraction of the radioligand is bound to the receptors, homologous
binding will be affected. Although you add the same amount of labeled
ligand to each tube, the free concentration will not be the same. High
concentrations of unlabeled drug compete for the binding of the labeled
ligand, and thus increase the free concentration of the labeled ligand.

Nonspecific binding is also affected by ligand depletion. Since nonspecific
binding is proportional to the free concentration of labeled ligand, the
amount of nonspecific binding will not be the same in all tubes. The tubes
with the highest concentration of unlabeled drug have the highest
concentration of free radioligand, so will have the most nonspecific
binding.

Because the free concentration varies among tubes, as does the nonspecific
binding, there is no simple relationship between IC50 and Kd. The IC50 is
nearly meaningless in a homologous binding curve with ligand depletion.

The equations for homologous binding with ligand depletion are quite a bit
more complicated than for homologous binding without depletion. The
math that follows is adapted from S. Swillens (Molecular Pharmacology,
47: 1197-1203, 1995).

Start with the equation for total binding in homologous competition as a
function of the free concentration of radioligand.

Specific =
B [Free Radioligand, nM]

Kd [Free  Radioligand, nM] [Free Cold ligand, nM]

Nonspecific  [Free Radioligand, cpm] NS

Y Specific Nonspecific

max ⋅

+ +

= ⋅

= +

This equation defines total binding as specific binding plus nonspecific
binding. Nonspecific binding equals a constant fraction of free radioligand,
and we define this fraction to be NS. To keep units consistent, the
radioligand concentration is expressed in nM in the left half of the equation
(to be consistent with Kd and the concentration of cold ligand) and is
expressed in cpm on the right half of the equation (to be consistent with Y).

The problem with this equation is that you don't know the concentrations
of free radioligand or free cold ligand. What you know is the
concentrations of labeled and unlabeled ligand you added. Since a high
fraction of ligand binds to the receptors, you cannot assume that the
concentration of free ligand equals the concentration of added ligand.

Defining the free concentration of hot ligand is easy. You added the same
number of cpm of hot ligand to each tube, which we'll call HotCPM. The
concentration of free radioligand equals the concentration added minus the
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total concentration bound, or HotCPM-Y (both HotCPM and Y are
expressed in cpm).

Defining the free concentration of cold ligand is harder, so it is done
indirectly. The fraction of hot radioligand that is free equals (HotCPM -
Y)/HotCPM. This fraction will be different in different tubes. Since the hot
and cold ligands are chemically identical, the fraction of cold ligand that is
free in each tube is identical to the fraction of hot ligand that is free. Define
X to be the logarithm of the total concentration of cold ligand, the variable
you vary in a homologous competitive binding experiment. Therefore, the
total concentration of cold ligand is 10X, and the free concentration of cold
ligand is 10X(HotCPM - Y)/HotCPM.

Substitute these definitions of the free concentrations of hot and cold ligand
into the equation above, and the equation is still unusable. The problem is
that the variable Y appears on both sides of the equal sign.  Some simple,
but messy, algebra puts Y on the left side of a quadratic equation, shown
below as a user-defined Prism equation.

ColdnM=10^(X+9)

KDnM=10^(LogKD+9)

HotnM=HotCPM/(SpAct*vol*1000)

; cpm/(cpm/fmol * ml * .001L/ml * 1000000fmol/nmol)

TotalnM=HotnM+ColdnM

Q=HotCPM*(TotalnM + KDnM)

a=(Ns+1)*TotalnM*-1

b=Q*(NS+1)+TotalnM*HotCPM*NS + Bmax*HotnM

c=-1*Q*HotCPM*NS - HotCPM*Bmax*HotnM

Y= (-1*b + sqrt(b*b-4*a*c))/(2*a)

Select this equation from the Advanced Radioligand Binding
equation library.

Variable Units Comments
X Log(Molar)

Y Cpm

HotCPM Cpm Amount of labeled ligand added to
each tube. Set to a constant value.

SpAct Cpm/fmol Specific radioactivity of labeled
ligand. Set to a constant value.
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Vol ml Incubation volume. Set to a constant
value.

logKd Log(Molar) Initial value = 1.0*XMID

Bmax Units of Y axis, usually
cpm

Initial value = 10*YMAX (This
assumes that you've used a
concentration of radioligand that
binds to one tenth of the receptors.
You may wish to adjust this.)

NS Unitless fraction This is the fraction of free ligand that
binds nonspecifically. Initial value
=0.01

When fitting data to this equation, you need to set three parameters to
constant values. HotCPM is the number of cpm of hot ligand added to each
tube. Vol is the incubation volume in ml. SpAct is the specific radioactivity
in cpm/fmol. Prism fits Bmax in the units of the Y axis (usually cpm which
you can convert to more useful units) and logKd as log molar.

Fitting homologous competition data (two sites)
With some systems it is possible to determine Kd  and Bmax values for two
independent sites using homologous competition data. With most systems,
however, you won’t get reliable results.

You can only determine Bmax and Kd from homologous binding data if you
use a concentration of hot ligand that is much lower than the Kd value. If
your system has two binding sites, you must choose a concentration much
lower than the Kd of the high affinity site. Using such a low concentration
of radioligand, you’ll bind only a small fraction of low-affinity sites. You
only be able to detect the presence of the second, low-affinity, site if they
are far more abundant than the high-affinity sites.

For example, imagine that the low affinity site (Kd=10 nM) is ten times as
abundant as the high affinity site (kd=0.1 nM). You need to use a
concentration of hot ligand less than 0.1 nM, say 0.05 nM. At this
concentration you bind to 33.33% of the high affinity sites, but only to
0.0049% of the low affinity sites. Even though the low affinity sites are ten
times as abundant, you won’t find them in your assay (low affinity binding
will be only 0.15% of the binding).

To attempt to determine the two Kd  and Bmax   values from a homologous
competition curve, fit the data to the equation below. Assuming no
cooperativity and no ligand depletion, the binding to each site is
independent and depends on the Bmax and Kd values of each site. The
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binding that you measure, Y, is the sum of the binding to the two receptor
sites plus nonspecific binding.

Site1=(Bmax1*HotnM)/(HotnM + 10^(X+9)+ 10^(logKd1+9))

Site2=(Bmax2*HotnM)/(HotnM + 10^(X+9)+ 10^(logKd2+9))

Y= site1 + site2 + NS

Define rules for initial values using the suggestions in the table below. This
is a difficult equation to fit, and you will almost certainly have to try many
sets of initial values to converge on a reasonable solution. It is especially
important to adjust the initial values of the two Bmax values.

Variable Units Comments
X log(molar) Concentration of the unlabeled

compound.

Y CPM or fmol/mg or
sites/cell.

Total binding of the labeled compound.

Bmax1 Same as Y values. Initial value=1*Ymax (this assumes that
you used a concentration of ligand that
binds to almost all of the high affinity
class of receptors).

Bmax2 Same as Y values. Initial value = 20*YMAX (this assumes
that you used a concentration of ligand
that binds to five percent of the second
class of receptors).

LogKd1 log(molar) Initial value = 1.2*XMID.

LogKd2 log(molar) Initial value = 0.8*XMID.

NS Same as Y values. Initial value = 1.0*YMIN.

HotnM NM Concentration of labeled ligand in
every tube. Set this to a constant value
that you know from your experimental
design.

Consider this approach for analyzing homologous competitive binding data
to determine the characteristics of two sites. First use a very low
concentration of radioligand and fit to a single site. This will determine the
Bmax and Kd  of the high affinity site. Then repeat the experiment with a
higher concentration of radioligand. Fit these data to the two-site equation,
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but set the Kd  and Bmax  of the high affinity site to constant values
determined from the first experiment.

Advantages and disadvantages of homologous binding
experiments
Determining receptor number with homologous binding has one clear
advantage: You need far less radioligand than you would need if you
performed a saturation binding experiment. This reason can be compelling
for ligands that are particularly expensive or difficult to synthesize.

The disadvantage of determining receptor number and affinity from a
homologous competitive binding experiment is that it can be hard to pick
an appropriate concentration of radioligand. If you use too little
radioligand, you’ll observe little binding and will obtain poor quality data.
If you use too much radioligand, the curve will be ambiguous and you
won’t be able to determine Bmax and Kd.

Using homologous binding to determine the Kd and Bmax of two binding
sites with homologous binding is difficult. You are probably better off using
a saturation binding experiment.

Competitive binding to two receptor types (different
Kd for hot ligand)

The standard equation for competitive binding to two sites assumes that the
labeled ligand has equal affinity for both sites. It is easy to derive an
equation for situations where the labeled ligand binds differently to the two
sites.

This is the standard equation for competitive binding to one site:

Y = [Hot Ligand] B

[Hot Ligand] +  K [Cold Ligand]
Nonspecificmax⋅

+ ⋅
+

D
D

i

K
K

Binding is the sum of specific and nonspecific binding. To create an
equation for two sites, you simply need to create an equation with two
specific binding components with different values for Bmax, Kd, and Ki.:
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;Enter data with X=log[unlabeled] and Y=CPM

ColdnM=10^(X+9)

KI1nM = 10^(LogKI1+9)

KI2nM = 10^(LogKI2+9)

SITE1= HotnM*Bmax1/(HotnM + KD1*(1+coldnM/Ki1nM))

SITE2= HotnM*Bmax2/(HotnM + KD2*(1+coldnM/Ki2nM))

Y = SITE1 + SITE2 + NSCPM

Select this equation from the Advanced Radioligand Binding
equation library.

Variable Units Comments
X log(Molar) Concentration of unlabeled drug.

Y cpm Total binding of radioligand.

HotnM nM Concentration of labeled ligand added to
each tube. Set to a constant value.

KD1 nM Kd of the labeled ligand for the first site. Set
to a constant value based on other
experiments.

KD2 nM Kd of the labeled ligand for the second site.
Set to a constant value .

logKI1 log(Molar) Affinity of the unlabeled drug for the first
site. Initial value = 1.2*XMID

logKI2 log(Molar) Affinity of the unlabeled drug for the second
site. Initial value = 0.8*XMID

Bmax1 Units of Y axis,
usually cpm

Initial value = 2*YMAX (This assumes that
you've used a concentration of radioligand
that binds to half of the receptors. You may
wish to adjust this.)

Bmax2 Units of Y axis,
usually cpm

Initial value = 10*YMAX (This assumes that
you've used a concentration of radioligand
that binds to one tenth of the receptors.)

NSCPM Units of Y-axis,
usually cpm.

Nonspecific binding. Initial value = 1.0 *
YMIN.
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Notes:

• This equation does not account for ligand depletion. It assumes that
the free concentration equals the added concentration.

• When using this equation to fit data, you will need to assign constant
values to KD1 and KD2, the KD of the hot ligand for the two sites.
You will need to obtain these values from other experiments. Perhaps
you can isolate tissue with only one of the receptor types and
measure KD in that preparation.

Heterologous competitive binding with ligand
depletion

The standard sigmoidal equations used to fit competitive binding data
assume that a small fraction of the radioligand binds. This means that the
free concentration of radioligand is almost equal to the concentration you
added, and that the free concentration is the same in all tubes in the assay.

If a large (say greater than 10%) fraction of the radioligand binds to
receptors, then the free concentration will be less than the added
concentration of radioligand. The discrepancy between free and added
radioligand concentration depends on the concentration of the unlabeled
drug. The standard equation for competitive binding, shown below, needs
two corrections to account for ligand depletion.

Y=
[Free Ligand] B

[Free Ligand] + K 1
[Cold Ligand]

K

Nonspecificmax

d
i

⋅

+
F
HG

I
KJ

+

• The free concentration of labeled ligand equals the amount you
added minus the amount that bound.

[Free ligand] =[Added ligand] - Y

• The nonspecific binding is not the same for all tubes. As you increase
the concentration of cold ligand, less radioligand binds to receptors
so the free concentration of radioligand increases. Since nonspecific
binding is assumed to be proportional to the free concentration of
radioligand, there will be more nonspecific binding in the tubes with
higher concentrations of unlabeled drug.

Nonspecific binding = NS [Free ligand] ⋅

Y, [Free ligand], and [Added ligand] are expressed in units of cpm. To be
consistent, therefore the Kd also needs to be expressed in cpm units. [Cold
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ligand] and Ki are expressed in the same units (molar), so the ratio is
unitless.

Combine these equations, and you end up with a complicated quadratic
equation whose solution is shown here:

KdCPM=KdnM*SpAct*vol*1000

; nmol/L *(cpm/fmol * ml * .001L/ml * 1000000fmol/nmol) = cpm

R=NS+1

S=[1+10^(X-LogKi)]*KdCPM+Hot

a=-1*R

b=R*S+NS*Hot + Bmax

c= -1*Hot*(S*NS + Bmax)

Y= (-1*b + sqrt(b*b-4*a*c))/(2*a)

Select this equation from the Advanced Radioligand Binding
equation library.

Variable Units Comments
X log(Molar)

Y CPM

Hot CPM Amount of labeled ligand added to each
tube. Set to a constant value.

SpAct cpm/fmol Specific radioactivity of labeled ligand.
Set to constant value.

Vol ml Incubation volume. Set to a constant
value.

KdnM nM Kd of labeled ligand. Set to a constant
value.

LogKi log(Molar) Initial value = 1.0*XMID

Bmax Units of Y axis,
usually cpm

Initial value = 10*YMAX (This assumes
that you've used a concentration of
radioligand that binds to one tenth of the
receptors. You may wish to adjust this.)

NS Unitless fraction Initial value =0.01
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You need to set four of the parameters to constant values. Hot is the
number of cpm of labeled ligand added to each tube. SpAct is the specific
activity of the radioligand in cpm/fmol, Vol is the incubation volume in ml,
and Kd is the KdnM of the radioligand in nM (determined from other
experiments). The program fits this equation to your data to determine the
logKI. It also fits two other variables which are of less interest: Bmax which
is the maximum binding of radioligand (if present at a saturating
concentration) in cpm, and NS which is the fraction of the free ligand that
binds nonspecifically.

Notes:

• This equation accounts for ligand depletion when a large fraction of
the radioligand binds to receptors. It does not adjust for depletion of
the unlabeled compound. It assumes that the concentration of
unlabeled compound that you added (antilog of X) equals the free
concentration. If your unlabeled compound binds with high affinity,
this assumption may not be true.

• You may use this equation for any competitive binding curve, even if
only a small fraction of the radioligand binds. The results will be
identical to the results from the more conventional equations.

• This equation is not easily extended to a situation with two binding
sites.
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Analyzing kinetic binding data

Dissociation ("off rate") experiments
A dissociation binding experiment measures the “off rate” for radioligand
dissociating from the receptor. Initially ligand and receptor are allowed to
bind, perhaps to equilibrium. At that point, you need to block further
binding of radioligand to receptor so you can measure the rate of
dissociation. There are several ways to do this:

• If the tissue is attached to a surface, you can remove the buffer
containing radioligand and replace with fresh buffer without
radioligand.

• Spin the suspension and resuspend in fresh buffer.

• Add a very high concentration of an unlabeled ligand. If this
concentration is high enough, it will instantly bind to nearly all the
unoccupied receptors and thus block binding of the radioligand.

• Dilute the incubation by a large factor, perhaps a 20 to 100 fold
dilution. This will reduce the concentration of radioligand by that
factor. At such a low concentration, new binding of radioligand will
be negligible. This method is only practical when you use a fairly low
concentration of radioligand so its concentration after dilution is far
below its Kd for binding.

You then measure binding at various times after that to determine how
rapidly the ligand falls off the receptors.
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Each ligand-receptor complex dissociates at a random time, so the amount
of specific binding follows an exponential dissociation (see “Example
model 2. Exponential ” on page 158).

Y Span e PlateauK X= ⋅ +− ⋅

Variable Meaning Comment
X Time Usually expressed in units of

seconds or minutes.

Y Total binding Usually expressed in units of
cpm, fmol/mg, or sites/cell.

Span Difference between binding at
time zero and plateau.

Specific binding (same units
as Y)

Plateau Binding that doesn't dissociate. Nonspecific binding (same
units as Y).

K Dissociation rate constant often
called koff.

Expressed In units of inverse
time (inverse of units of X-
axis)

t1/2 Half-life  0.69302/koff

Analyzing dissociation data with Prism
To analyze dissociation binding data:

1. Enter the data with X equal to time after you initiated dissociation and
Y equal to binding (usually total binding).

2. Perform nonlinear regression using the one phase exponential decay
equation.
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3. If you entered specific (rather than total) binding, make the variable
PLATEAU a constant equal to zero. If you have entered total binding,
leave the variable PLATEAU as a variable to fit.

4. Look at the nonlinear regression results. The variable K is the
dissociation constant (koff or k-1) expressed in units of inverse time. If
you entered the X values as minutes, koff is in units of min-1. The
results also show the half-life in units of time (minutes in this
example).

Association binding experiments
Association binding experiments are used to determine the association rate
constant. You add radioligand and measure specific binding at various
times thereafter.

Binding follows the law of mass action:

Receptor Ligand    Receptor Ligand
Kon

Koff

+
⎯ →⎯⎯

← ⎯⎯⎯
⋅

At any given time, the rate at which receptor-ligand complexes form is
proportional to the radioligand concentration and the number of receptors
still unoccupied. The rate of dissociation is proportional to the
concentration of receptor-ligand complexes.

Binding increases over time until it plateaus when specific binding equals a
value we call Ymax. This is not the same as Bmax. Ymax is the amount of
specific binding at equilibrium for a certain concentration of ligand used in
an association experiment. Bmax is the maximum amount of binding
extrapolated to a very high concentration of ligand. The free concentration
of receptors at any time equals Ymax minus the amount of specific binding at
that time.

These principles let us define the model mathematically.

Rate of association  [Receptor] [Ligand] k [Ligand] k

Rate of dissociation [Receptor Ligand] k

Net rate of association Rate of association -  rate of dissociation

[Ligand] k

on on

off

on

= ⋅ ⋅ = − ⋅ ⋅

= ⋅ ⋅ = ⋅

= =

= − ⋅ ⋅ − ⋅

= ⋅ ⋅ − ⋅ +

Y Y

Y k
dY
dX
Y Y Y k

Y Ligand k Y Ligand k k

off

off

on on off

max

max

max [ ] [ ]

b g

b g
b g
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Integrate that differential equation to obtain the equation defining the
kinetics of association:

Y Ymax e K X= ⋅ − − ⋅1e j

MaxMax

TIME
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ec
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c 
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ng

The rate at which binding increases is determined by three factors (as well
as experimental conditions such as pH and temperature):

• The association rate constant, kon or k+1. This is what you are trying to
determine.

• The concentration of radioligand. If you use more radioligand, the
system equilibrates faster.

• The dissociation rate constant, koff or k-1. Some people are surprised to
see that the observed rate of association depends in part on the
dissociation rate constant. During the incubation, radioligand both
binds to and dissociates from receptors. The system reaches
equilibrium when the two rates are equal. The observed rate of
association measures how long it takes to reach equilibrium. If the
radioligand dissociates quickly from the receptor, equilibrium will be
reached faster (but with less binding).

Analyzing "on rate" experiments with Prism
To analyze association (on-rate) data:

1. Enter the data with X equal to time and Y equal to specific binding. (If
you enter total binding, you'll need to use a more complicated
equation that accounts for the kinetics of nonspecific binding.)

2. Fit the specific binding data to the one-phase exponential association
equation.

Y Ymax e k X= ⋅ − − ⋅1e j
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3. The variable k in the exponential association equation is the observed
rate constant, kob, expressed in units of inverse time. If you entered X

values in minutes, then kob is expressed in min-1. This is not the same

as the association rate constant, kon.

4. This equation assumes that a small fraction of the radioligand binds to
receptors, so the concentration of free radioligand equals the amount
you added and does not change over time.

5. To calculate the association rate constant (kon or k1) usually
expressed in units of Molar-1 min-1, use this equation:

k
k k

radioligandon
ob off=
−

[ ]

Variable Units Comment
Kon Molar-1 min-1 What you want to know.

kob min-1 The value of K determined by fitting an
exponential association equation to your data.

koff min-1 The dissociation rate constant. See the
previous section.

[radioligand] Molar Set by the experimenter. Assumed to be
constant during the experiment (only a small
fraction binds).
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Analysis checklist for kinetic binding experiments

Question Comment
Did you go out to a
long enough time point?

Dissociation and association data should plateau,
so the data obtained at the last few time points
should be indistinguishable.

Is the value of kon

reasonable?
The association rate constant, kon, depends largely
on diffusion so is similar for many ligands. Expect a
result of about 108 M-1 min-1

Is the value of koff

reasonable?
If the koff is greater than 1 min-1, the ligand has a
low affinity for the receptor, dissociation will occur
while you are separating bound and free ligands,
and you'll have a hard time obtaining quality data.
If koff is less than 0.001 min-1 , you'll have a
difficult time obtaining equilibrium as the half-time
of dissociation will be greater than 10 hours! Even
if you wait that long, other reactions may occur
that ruin the experiment.

Are the standard errors
too large? Are the
confidence intervals too
wide.

Examine the SE and the confidence intervals to see
how much confidence you have in the rate
constants.

Does only a tiny
fraction of radioligand
bind to the receptors.

The standard analyses of association experiments
assume that the concentration of free radioligand is
constant during the experiment. This will be
approximately true only if a tiny fraction of the
added radioligand binds to the receptors. Compare
the maximum total binding in cpm to the amount
of added radioligand in cpm. If that ratio exceeds
10% or so, you should revise your experimental
protocol.

Using kinetic data to test the law of mass action
Standard binding experiments are usually fit to equations derived from the
law of mass action. Kinetic experiments provide a more sensitive test than
equilibrium experiments to determine whether the law of mass action
actually applies for your system. To test the law of mass action, ask these
questions:
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Does the Kd calculated from kinetic data match the Kd
calculated from saturation binding?
According to the law of mass action, the ratio of koff to kon is the Kd of
receptor binding:

K
k
kd

off

on
=

The units are consistent: koff is in units of min-1; kon is in units of M-1min-1, so
Kd is in units of M.

If binding follows the law of mass action, the Kd calculated this way should
be the same as the Kd calculated from a saturation binding curve.

Does kob increase linearly with the concentration of
radioligand?
The observed association rate constant, kob, is defined by this equation:

k k k radioligandob off on= + ⋅ [ ]

Therefore, if you perform association rate experiments at various
concentrations of radioligand, the results should look like the figure below.
As you increase the concentration of radioligand, the observed rate
constant increases linearly. If the binding is more complex than a simple
mass action model (such as a binding step followed by a conformational
change) the plot of kob vs. [radioligand] may plateau at higher radioligand
concentrations. Also, you should extrapolate the plot back to zero
radioligand to determine the intercept which equals koff. If the law of mass
action applies to your system, the koff determined this way should
correspond to the koff determined from a dissociation experiment. Finally,
this kind of experiment provides a more rigorous determination of kon than
that obtained with a single concentration of radioligand.

 koff

slope = kon

[radioligand]

k o
b 

(m
in

-1
)
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Is specific binding 100% reversible, and is the
dissociated ligand chemically intact?
Nonspecific binding at "time zero" should equal total binding at the end
(plateau) of the dissociation. In other words, all of the specific binding
should dissociate if you wait long enough. Use chromatography to analyze
the radioligand that dissociates to prove that it has not been altered.

Is the dissociation rate consistent with different
experimental conditions?
Determine the dissociation constant after binding various concentrations of
radioligand for various lengths of time. If your ligand binds to a single site
and obeys the law of mass action, you'll obtain the same dissociation rate
constant in all experiments.

Is there cooperativity?
If the law of mass action applies, binding of a ligand to one binding site
does not alter the affinity of another binding site. This also means that
dissociation of a ligand from one site should not change the dissociation of
ligand from other sites. To test this assumption, compare the dissociation
rate after initiating dissociation by infinite dilution with the dissociation rate
when initiated by addition of a large concentration of unlabeled drug. If the
radioligand is bound to multiple noninteracting binding sites, the
dissociation will be identical in both experimental protocols as shown in
the left figure. Note that the Y axis is shown using a log scale. If there were
a single binding site, you'd expect the dissociation data to appear linear on
this graph. With two binding sites, the graph is curved even on a log axis.

Multiple subtypes
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0.10

1.00

Time

B t
/B

0

Negative cooperativity

0.01
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Excess unlabeled
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The right figure shows ideal dissociation data when radioligand is bound to
interacting binding sites with negative cooperativity. The data are different
depending on how dissociation was initiated. If dissociation is initiated by
infinite dilution, the dissociation rate will change over time. The
dissociation of some radioligand will leave the remaining ligand bound
more tightly. When dissociation is initiated by addition of cold drug, all the
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receptors are always occupied by ligand (some hot, some cold) and
dissociation occurs at its maximal unchanging rate.

Kinetics of competitive binding
The standard methods of analyzing competitive binding experiments
assume that the incubation has reached equilibrium. These experiments are
usually used to learn the dissociation constant of the receptors for the
unlabeled compound, the Ki. The law of mass action tells us that the Ki is
the ratio of the off-rate to the on-rate of the unlabeled compound. You can
determine these values in a kinetics experiment as follows. Add labeled
and unlabeled ligand together and measure the binding of the labeled
ligand over time. This method was described by Motulsky and Mahan in
Molecular Pharmacology 25:1-9, 1984.

KA = K1*L*1E-9 + k2

KB = K3*I*1e-9 + K4

S=SQRT((KA-KB)^2+4*K1*K3*L*I*1e-18)

KF = 0.5 * (Ka + KB + S)

KS = 0.5 * (KA + KB - S)

DIFF=KF - KS

Q=Bmax*K1*L*1e-9/DIFF

Y=Q*(k4*DIFF/(KF*KS)+((K4-Kf)/KF)*exp(-KF*X)-((K4-

KS)/KS)*exp(-KS*X))

Select this equation from the Advanced Radioligand Binding
equation library.

Variable Units Comments
X Minutes Time.

Y cpm Specific binding.

k1 M-1 min-1 Association rate constant of radioligand. Set to a
constant value known from other experiments.

k2 min-1 Dissociation rate constant of radioligand. Set to a
constant value known from other experiments.

k3 M-1 min-1 Association rate constant of unlabeled ligand.
Variable to be fit. Try 1e8 as an initial value.

k4 min-1 Dissociation rate constant of unlabeled ligand.
Variable to be fit. Try 0.01 as an initial value.
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L nM Concentration of radioligand. Set to a constant value
you know from experimental design.

Bmax Units of Y
axis. Usually
cpm.

Total number of receptors. Either leave as a variable
or set to a constant you know from other
experiments. If a variable, set the initial value to
100*Ymax (assumes that it bind to 1% of receptors.

I nM Constant set experimentally. Concentration of
unlabeled ligand.

Notes:

• This equation does not account for ligand depletion. It assumes that
only a small fraction of radioligand binds to receptors, so that the free
concentration of radioligand is very close to the added concentration.

• This method will only give reliable results if you have plenty of data
points at early time points.
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Analyzing dose-response
curves

Introducing dose-response curves

What is a dose-response curve?
Dose-response curves can be used to plot the results of many kinds of
experiments. The X-axis plots concentration of a drug or hormone. The Y-
axis plots response, which could be almost anything. For example, the
response might be enzyme activity, accumulation of an intracellular second
messenger, membrane potential, secretion of a hormone, heart rate or
contraction of a muscle.

The term "dose" is often used loosely. The term “dose” strictly only applies
to experiments performed with animals or people, where you administer
various doses of drug. You don't know the actual concentration of drug --
you know the dose you administered. However, the term “dose-response
curve” is also used more loosely to describe in vitro experiments where
you apply known concentrations of drugs. The term "concentration-
response curve" is a more precise label for the results of these experiments.
The term "dose-response curve" is occasionally used even more loosely to
refer to experiments where you vary levels of some other variable, such as
temperature or voltage.

An agonist is a drug that causes a response. If you administer various
concentrations of an agonist, the dose-response curve will go uphill as you
go from left (low concentration) to right (high concentration). A full agonist
is a drug that appears able to produce the full tissue response.  A partial
agonist is a drug that provokes a response, but the maximum response is
less than the maximum response to a full agonist. An antagonist is a drug
that does not provoke a response itself, but blocks agonist-mediated
responses. If you vary the concentration of antagonist (in the presence of a
fixed concentration of agonist), the dose-response curve will run downhill.
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The shape of dose-response curves
Many steps can occur between the binding of the agonist to a receptor and
the production of the response. So depending on which drug you use and
which response you measure, dose-response curves can have almost any
shape. However, in very many systems dose-response curves follow a
standard shape, shown below.

log[Dose]
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Dose-response experiments typically use 10-20 doses of agonist,
approximately equally spaced on a logarithmic scale. For example doses
might be 1, 3, 10, 30, 100, 300, 1000, 3000, and 10000 nM. When
converted to logarithms, these values are equally spaced: 0.0, 0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, and 4.0.

Note: The logarithm of 3 is actually 0.4771, not 0.50. The
antilog of 0.5 is 3.1623. So to make the doses truly equally
spaced on a log scale, the concentrations ought to be 1.0,
3.1623, 10.0, 31.623 etc.

Since the linkage between agonist binding and response can be very
complex, any shape is possible. It seems surprising, therefore, that so many
dose-response curves have shapes identical to receptor binding curves. The
simplest explanation is that the link between receptor binding and response
is direct, so response is proportional to receptor binding. However, in most
systems one or more second-messenger systems link receptor binding to
response. For example, agonist binding activates adenylyl cyclase, which
creates the second-messenger cAMP. The second messenger can then bind
to an effector (such as a protein kinase) and initiate a response.

What do you expect a dose-response curve to look like if a second
messenger mediates the response? If you assume that the production of
second messenger is proportional to receptor occupancy, the graph of
agonist concentration vs. second messenger concentration will have the
same shape as receptor occupancy (a hyperbola if plotted on a linear scale,
a sigmoid curve with a slope factor of 1.0 if plotted as a semilog graph). If
the second messenger works by binding to an effector, and that binding
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step follows the law of mass action, then the graph of second messenger
concentration vs. response will also have that same standard shape. It isn’t
obvious, but Black and Leff (see "The operational model of agonist action"
on page 305) have shown that the graph of agonist concentration vs.
response will also have that standard shape (provided that both binding
steps follow the law of mass action). In fact, it doesn't matter how many
steps intervene between agonist binding and response. So long as each
messenger binds to a single binding site according to the law of mass
action, the dose-response curve will follow the same hyperbolic/sigmoid
shape as a receptor binding curve.

The EC50

A standard dose-response curve is defined by four parameters: the baseline
response (Bottom), the maximum response (Top), the slope, and the drug
concentration that provokes a response halfway between baseline and
maximum (EC50).

It is easy to misunderstand the definition of EC50. It is defined quite simply
as the concentration of agonist that provokes a response half way between
the baseline (Bottom) and maximum response (Top).  It is impossible to
define the EC50 until you first define the baseline and maximum response.

Depending on how you have normalized your data, this may not be the
same as the concentration that provokes a response of Y=50. For example,
in the example below, the data are normalized to percent of maximum
response, without subtracting a baseline. The baseline is about 20%, and
the maximum is 100%, so the EC50 is the concentration of agonist that
evokes a response of about 60% (half way between 20% and 100%).
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Don't over interpret the EC50. It is simply the concentration of agonist
required to provoke a response halfway between the baseline and
maximum responses. It is usually not the same as the Kd for the binding of
agonist to its receptor.
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The steepness of a dose-response curve
Many dose-response curves follow exactly the shape of a receptor binding
curve. As shown below, 81 times more agonist is needed to achieve 90%
response than a 10% response.
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Some dose-response curves however, are steeper or shallower than the
standard curve. The steepness is quantified by the Hill slope, also called a
slope factor. A dose-response curve with a standard slope has a Hill slope
of 1.0. A steeper curve has a higher slope factor, and a shallower curve has
a lower slope factor. If you use a single concentration of agonist and
varying concentrations of antagonist, the curve goes downhill and the slope
factor is negative.
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Slope = 1.5

Slope = 1.0

Slope = 0.5

Fitting sigmoid dose-response curves with Prism
To fit a sigmoidal curve with Prism, the X values must be logarithm of
concentration. If you entered concentrations, Prism can transform those
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values. Click Analyze, choose Transformations from the list of Data
Manipulations, and choose to transform X to log(X). Also check the option
box to create a new graph.

Since the log(0) is undefined, you cannot enter a concentration of zero as a
logarithm. If you enter a concentration of zero and then transform to
logarithms, the result will be blank. Instead of entering a dose of zero, enter
a low concentration -- one or two log units below your lowest
concentration.

Beware of entering the zero value as a value much lower than
two log units below your lowest concentration. When fitting a
sigmoid curve, Prism sets the initial estimated value of the IC50
to be halfway between the lowest and highest X values. If you
enter a really low value for the zero concentration, the initial
value will be much lower than the true IC50, and Prism may not
be able to complete the curve fit (unless you override the initial
value).

Before fitting a dose-response curve, make these decisions:

Decision Discussion
Choose standard slope or
variable slope?

Prism offers two equations. One uses a
standard slope factor of 1.0; the other fits the
slope factor. If you have plenty of data points,
choose the equation with variable slope. If data
are scanty, use the standard slope.

Set Top to a constant value? Ideally, the top part of the curve is defined by
at least several data points. In this case, Prism
will be able to fit the top plateau of the curve. If
the top plateau is not well defined by data, then
you'll need to make the top plateau be a
constant based on controls.

Set Bottom to a constant
value?

Ideally, the bottom part of the curve is defined
by at least several data points. In this case,
Prism will be able to fit the bottom plateau of
the curve. If the bottom plateau is not well
defined by data, then you'll need to make the
bottom plateau be a constant based on
controls. If you have subtracted a background
value, then the bottom plateau of the curve
must be 0. Prism doesn't know this unless you
tell it. Make Bottom a constant equal to zero in
this case.
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Absolute or relative
weighting?

See "Weighting method" on page 200.

Fit each replicate or
averages?

See "Replicates" on page 202.

To fit the curve: From the data table or a graph, click Analyze. Choose
nonlinear regression from the list of regressions. Choose the list of classic
equations and choose either "Sigmoid dose-response" or "sigmoid dose-
response (variable slope)". Then click the Method and/or Constants option
buttons to configure the fit according to your choices above.

Prism fits the data to the equation below. If you choose the equation with a
standard slope, HillSlope is fixed to 1.0.
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

Why Prism fits the logEC50 rather than EC50

You can write an equation for a dose response curve either in terms of EC50

or log(EC50). Curve fitting finds the curve that minimizes the sum-of-squares
of the vertical distance from the points. Rewriting the equation to change
between EC50 and log(EC50) isn't going to make a different curve fit better.
All it does is change the way that the best-fit EC50 is reported.

However, rewriting the equation to change between EC50 and log(EC50) has
a major effect on standard error and confidence interval of the best-fit
values. Consider these sample results:
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These data were fit to a dose-response curve with a standard slope. The
best-fit value for logEC50 is -6.059.  Converting to the EC50 is no problem –
simply take the antilog. The EC50 is 10-6.059 M, about 0.87 µM.
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The standard error of the logEC50 is 0.2717. It is used as an intermediate
result to calculate a confidence interval, which ranges from -6.657 to -
5.461.  This means that the 95%CI of the EC50 extends from 10-6.657 to
10-5.461 –- from 0.2207 to 3.458 µM. Expressed as concentrations (rather
than log of concentration) the interval is not centered on the best-fit value
(0.87 µM). Switching from linear to log scale turned a symmetrical
confidence interval into a very asymmetrical interval, which you can
report.

If you fit the same data to an equation describing a dose-response curve in
terms of the EC50 rather than the logEC50, the EC50, remains 0.87 µM.  But
now the program computes the SE of the EC50 (0.5459 µM), and uses this to
compute the 95% confidence interval of the EC50, which ranges from
-0.3290 to +2.074 µM. Note that the lower limit of the confidence interval
is negative! Even setting aside the negative portion of the confidence
interval, it includes all values from zero on up, which isn't terribly useful.
The uncertainty of the EC50 really isn't symmetrical, so the confidence
intervals are not useful if you fit to a model written in terms of the EC50.

When some people see the SE of the logEC50, they are tempted to convert
this to the standard error of the EC50 by taking the antilog. In the example,
the SE of the logEC50 is 0.2717. The antilog of 0.2717 equals 100.2717 or
1.896. What does this mean? It certainly is NOT the SE of the EC50. The SE
does not represent a point on the axis; rather it represents a distance along
the axis. A distance along a log axis does not represent a consistent
distance along a linear (standard) axis. For example, increasing the logEC50

1 unit from -9 to -8 increases the EC50 9nM; increasing the logEC50 1 unit
from -3 to -2 increases the EC50 by 9 mM (which equals 9,000,000 nM). So
you cannot interpret the number 1.896 as a concentration. You can
interpret it as a multiplier – a factor you multiply by or divide into the EC50.
To calculate the 95% CI, first multiply 1.896 by a constant from the t
distribution for 95% confidence and the appropriate number of degrees of
freedom (2.2201 for this example). The result is 3.963. Then compute the
95% CI of the EC50. It extends from the best-fit EC50 divided by 3.963 to the
best-fit EC50 times 3.963, from 0.22 µM to 3.45 µM.

Other measures of potency: pEC50, EC80, EC90, etc.

The pEC50

The pEC50 is defined as the negative logarithm of the EC50. If the EC50

equals 1 micromolar (10-6 molar), the log(EC50) is –6 and the pEC50 is 6.
There is no particular advantage to expressing potency this way, but it is
the custom in some fields.
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If you fit a dose response curve using one of the classic equations, Prism
will report the logEC50. Multiply by –1 to obtain the pEC50.

If you want to fit the pEC50 directly, perhaps to embed into a table on a
Prism graph, use the following equation.
Y=Bottom + (Top-Bottom)/(1+10^((X - pEC50)*HillSlope))

Calculating any EC value from the EC50 and Hill slope
The potency of a drug is commonly quantified as the EC50, the
concentration that leads to 50% maximal response (or the logarithm of the
EC50).  But in some systems you might be more interested in the EC80 or the
EC90 or some other value. You can compute the EC80 or EC90 (or any other
EC value) from the EC50 and Hill slope. Or you can fit data to determine
any EC value directly. If you express response as a percentage, a standard
dose response curve is described by this equation:

F
L

L EC

H

H H=
+

100
50

L is the ligand concentration, EC50 is the concentration that gives half-
maximal effect, and H is the Hill constant or slope factor that defines the
steepness of the curve. L and EC50 are expressed in the same units of
concentration, so the units cancel out.  F is the fractional response (or
fractional occupancy for binding data), expressed as a percentage.

Set F to any percentage you want (80 if you want to obtain the EC80) and
then solve for L. We call that value of L the ECF, as that is the quantity of
drug needed to elicit an F percentage response (or with binding data, F is
the concentration of ligand needed to occupy fraction F of the receptors). A
bit of algebra yields this equation:
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If you know the EC50 and Hill slope (H), you can easily compute the EC80 or
EC10 or any other value you want. For example, if the Hill slope equals 1,
the EC90 equals the EC50 times nine. If H equals 0.5, the curve is shallower
and the EC90 equals the EC50 times 81.

Determining any EC value directly
You can also fit data directly to an equation written in terms of the ECF. The
advantage of this approach is that Prism will report the 95% confidence
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value for ECF. Use the equation below, where X is the log of concentration
and Y is response, which ranges from Bottom to Top.

F=80

logEC50=logECF - (1/HillSlope)*log(F/(100-F))

Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

To fit data to this equation, you'll need to enter rules for computing initial
values. Set Top equal to 1*Ymax, Bottom equal to 1*Ymin. For the Hill
slope, simply pick a value, probably +1.0 or –1.0. For the log EC value,
enter 1*XMID as a crude initial value, or enter a value based on the range
of concentrations you use.

Here is a simplified equation, for fitting the EC90. Here the response is
expressed as a percent ranging from zero to one hundred, so we dispense
with the variables Top and Bottom.

logEC50=logEC90 - (1/HillSlope)*log(9)

Y=100/(1+10^((LogEC50-X)*HillSlope))

Checklist. Interpreting a dose-response curve.
After fitting a dose-response model to your data, ask yourself these
questions:

Question Comment
Is the logEC50 reasonable? The EC50 should be near the middle of the

curve, with at least several data points on
either side of it.

Are the standard errors too
large? Are the confidence
intervals too wide.

The SE of the logEC50 should be less than 0.5
log unit (ideally a lot less).

Is the value of BOTTOM
reasonable?

BOTTOM should be near the response you
observed with zero drug. If the best-fit value of
BOTTOM is negative, consider fixing it to a
constant value equal to baseline response. If
you know where the bottom of the curve
should be, then set BOTTOM to that constant
value.
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Is the value of TOP
reasonable?

TOP should be near the response you
observed with maximal concentration drug. If
the best-fit value of TOP is not reasonable,
consider fixing it to a constant value. If you
know where the top of the curve should be,
then set TOP that constant value.

If you used a variable slope
model, are there enough
data to define the slope?

If you asked Prism to find a best-fit value for
slope, make sure there at least a few data
points between 10 and 90% . If not, your data
don't accurately define the slope factor.
Consider fixing the slope to its standard value
of 1.0

If you used a model with a
standard slope, does the data
appear to be steeper or
shallower?

If the data appear to form a curve much
steeper or shallower than the standard dose-
response curve, consider fitting to a model
with a variable slope.

Does the curve appear to be
biphasic?

The standard dose-response models assume
that the curve is monotonic. If the curve goes
up, and then down, you'll need a more
complicated model (beyond the scope of this
manual).

The operational model of agonist action

Limitations of dose-response curves
Fitting a sigmoidal (logistic) equation to a dose-response curve to determine
EC50 (and perhaps slope factor) doesn't tell you everything you want to
know about an agonist. The EC50 reflects both the ability of the drug to bind
to its receptor (the agonist’s affinity) and the ability of the drug to cause a
response once it is bound (the agonist’s efficacy). Thus, the EC50 you
observe could have different causes. The agonist could bind with very high
affinity, but have low efficacy once bound. Or it could bind weakly with
low affinity, but have very high efficacy. Two very different drugs could
have the same EC50s and maximal responses (in the same tissue). One drug
could have high affinity and low efficacy, while the other has low affinity
and high efficacy. Since efficacy reflects properties of both agonist and
tissue, a single drug acting on one kind of receptor could have different
EC50 values in different tissues.
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Derivation of the operational model
Black and Leff (Proc. R. Soc. Lond. B, 220:141-162, 1983) developed the
operational model of agonism to help understand the action of agonists
and partial agonists, and to develop experimental methods to determine the
affinity of agonist binding and a systematic way to measure relative agonist
efficacy based on an examination of the dose-response curves.

Start with a simple assumption: Agonists bind to receptors according to the
law of mass action. At equilibrium, the relationship between agonist
concentration ([A]) and agonist-occupied receptor ([AR]) is described by the
following hyperbolic equation:

[AR] [R ] [A]
[A] K

T

A
=

⋅

+

[RT] represents total receptor concentration and KA represents the agonist-
receptor equilibrium dissociation constant (see "Example model 3.
Equilibrium binding" on page 160).

What is the relationship between agonist occupied receptor (AR) and
receptor action? We know biochemical details in some cases, but not in
others. This lack of knowledge about all the steps between binding and
final response prevents the formulation of explicit, mechanistic equations
that completely describe a dose-response curve. However, Black and Leff
derived a “practical” or “operational” equation that encompasses the
behavior of all of these unknown biochemical cascades. They began with
the observation that dose-response curves often have a sigmoidal shape
with a Hill Slope of 1.0, (the curves are hyperbolas when response is
plotted against agonist concentration, sigmoidal when response is plotted
against the log of concentration). They then proved mathematically that if
agonist binding is hyperbolic and the dose-response curve has a Hill slope
of 1.0, the equation linking the concentration of agonist occupied receptors
to response must also be hyperbolic. This second equation, shown below,
has been termed the “transducer function”, because it is a mathematical
representation of the transduction of receptor occupation into a response:

Effect Effect [AR]
[AR] K

max

E
=

⋅

+

The parameter, Effectmax, is the maximum response possible in the system.
This may not be the same as the maximum response that a particular
agonist actually produces. The parameter KE is the concentration of [AR]
that elicits half the maximal tissue response. The efficacy of an agonist is
determined by both KE and the total receptor density of the tissue ([RT]).
Black and Leff combined those two parameters into a ratio ([RT]/KE) and
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called this parameter tau (τ), the “transducer constant”. Combining the
hyperbolic occupancy equation with the hyperbolic transducer function
yields an explicit equation describing the effect at any concentration of
agonist:

Effect Effect [A]
(K [A]) [A]

max

A
=

⋅ ⋅

+ + ⋅

 τ
τ

This equation can be rewritten as follows, to make it easier to compare the
operational model with the equation of agonist occupancy of receptors.

Effect Effect [A]
K A] 1

max

A
=

⋅ ⋅

+ ⋅ +
=

⋅ ⋅
+

F
HG

I
KJ

+
+

 τ
τ

τ
τ

τ
[

[ ]

[ ]

max

b g
A Effect

K AA

1

1

This form of the equation makes it clear that the maximum effect seen with
a particular agonist is not Effectmax, but rather is Effectmax multiplied by
tau/(tau+1). Only a full agonist in a tissue with plenty of receptors (high
values of τ) will yield a maximum response that approaches Effectmax.

The EC50 does not equal KA (the equilibrium dissociation constant for
agonist binding to the receptors) but rather KA/(1+ τ). With a strong agonist,
you'll get half-maximal response by binding fewer than half the receptors,
so the EC50 will be much less than KA.

This figure shows a dose-response curve for a partial agonist, and shows the
relationship between EC50 and maximum response to terms in the
operational model.
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The parameter, tau, is a practical measure of efficacy. It equals the total
concentration of receptors in the system divided by the concentration of
receptors that need to be occupied by agonist to provoke a half-maximal
tissue response. The tau value is the inverse of the fraction of receptors that
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must be occupied to obtain half-maximal response. If tau equals 10, that
means that occupation of only 10% of the receptors leads to a half-maximal
response. If tau equals 1.0, that means that it requires occupation of all the
receptors to give a half-maximal response. This would happen with a
partial agonist or with a full agonist in a tissue where the receptors had
been significantly depleted. Because tau is a property of both the tissue and
receptor system, it is not a direct measure of intrinsic efficacy, which is
commonly defined as a property belonging only to an agonist-receptor pair,
irrespective of the assay system in which it is measured.

The equations here show agonist stimulated response, so the curves all
begin at zero. It is easy to add a basal term to model observed response, so
the response with no agonist equals basal rather than zero.

Shallower and steeper dose-response curves
Some dose-response curves are steeper or shallower than a sigmoid curve
with standard slope. The operational model can be extended to analyze
these curves.

If you assume the initial binding of the agonist to the receptor follows the
law of mass-action (hill slope equals 1 for the binding step), then
transduction step(s) between occupancy and final response must follow an
equation that allows for variable slope. If the dose-response curve is still
symmetrical and sigmoid, then the operational model can be extended
fairly simply, by including a slope parameter, n. The extended form of the
operational model is:

Effect Effect [A]
(K [A]) [A]

max
n n

A
n n n=
⋅ ⋅

+ + ⋅

 
 
τ

τ

The relationship between this operational model and the variable slope
sigmoid equation are as follows:

EC K
(2 ) 1

50
A

n 1/n=
+ − τ

E Effect
1max

max
n

n=
⋅

+

 
 

τ

τ

When n equals 1, the equation is the same as those shown earlier,
describing dose-response curves with Hill slopes of 1.0. However, n is not
always the same as the Hill Slope (but the two values will be close for full
agonists).
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Designing experiments to fit to the operational model
If you try to fit the operational model equation indiscriminately to dose-
response data, you'll run into a problem. Either the curve-fitting program
will report an error message, or it will report best-fit values with
enormously wide confidence intervals.

Any symmetrical dose-response curve is defined by four parameters:
Bottom (response with no agonist), Top  (response at very high
concentrations), EC50 (concentration of agonist needed to provoke a
response halfway between Bottom and Top) and the Hill Slope. However,
the operational model equation has five parameters: Basal (response with
no agonist), KA (dissociation constant of agonist binding), Effectmax

(maximum possible effect with a full agonist and plenty of receptors), τ (a
measure of agonist efficacy) and n.

Since the operational model has more parameters than are needed to
describe a sigmoid dose-response curve, any curve can be defined by an
infinite combination of operational model parameters. Even if a curve
fitting program could find best-fit values (rather than report an error
message), the best-fit parameter estimates may not be correct.

To fit the operational model to data, you must compare curves. The most
common approach has been to reduce the receptor number, usually with
an irreversible alkylating agent, to such an extent that a full agonist can no
longer produce the maximal tissue response, no matter how high a
concentration is used. The agonist curve before alkylation is then compared
to the curve after alkylation. Alkylation is not required with partial agonists.
Instead, the dose-response curve of the partial agonist curve is compared to
the dose-response curve of the full agonist.

All the dose-response curves should be obtained in the same tissue, in
order to reduce the variability in Effectmax estimates that can occur between
tissues.

Fitting the operational model with Prism
To fit the operational model, the analysis must simultaneously account for
the dose-response curve of a full agonist as well as one or more curves
from a partial agonist or a full agonist in receptor-depleted tissue.

Some investigators have fit the two (or more) curves at once, using a
nonlinear regression program that can fit several data sets at once (Leff et
al., J. Pharmacol. Meth., 23: 225-237, 1990). However, Prism can only fit
one curve at a time (it will fit a whole family of curves as part of one
analysis, but each fit is mathematically independent). Use the following
approach (devised by A. Christopoulos).

The first step is to fit the dose-response curve for the full agonist. Use the
sigmoidal dose-response (variable slope) equation using nonlinear
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regression. Record the best-fit values for Top, Bottom and HillSlope. (The
EC50 is not relevant.)

The second step is to fit the dose-response curve for each partial agonist (or
full agonist in receptor depleted tissue) to the operational model written as
a user-defined Prism equation. When writing the equation for Prism,
consider these three points.

• When writing any model for data analysis, you should arrange the
parameters so that the uncertainty is symmetrical and Gaussian. See
"Why Prism fits the logEC50 rather than EC50" on page 301. If you fit
to the logarithm of Ka and tau, the uncertainty is more symmetrical
(and more Gaussian) than it would be if you fit to KA and tau (see A.
Christopoulos, Trends Pharmacol. Sci, 19:351-357, 1998).

• Since concentrations are equally spaced on a log scale, enter data
with X equal to the logarithm of the agonist concentration.

• You may measure a "response" even in the absence of agonist. So
we'll include a Basal parameter in the model. Basal is the measured
response in the absence of agonist. If there is no basal activity, then
fix Basal to a constant value of zero.

Here is the operational model written as a Prism equation.

operate= (((10^logKA)+(10^X))/(10^(logtau+X)))^n

Y=Basal + (Effectmax-Basal)/(1+10^operate)

Variable Comment
Effectmax Set constant to value of Top fit from the sigmoid curve of the

full agonist (because the top plateau in a sigmoid dose-
response curve is very close to Effectmax for a full agonist).

n Set constant to the value of the Hill slope of the full agonist
(which is very close to the value of n in the operational
model).

Basal Set constant to the value of Bottom determined by fitting the
sigmoid curve.

logKA Make the initial value equal to equal to XMID (half way
between the highest and lowest X values). .An alternative
approach is to make the initial value equal to the logEC50
value obtained by fitting the data to a standard dose-response
curve.
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logTau Make the initial value zero, so tau equals 1. This value of tau
corresponds to a dose-response curve that plateaus at half
Effectmax An alternative is to calculate the initial value using
the equation below.  Top is the maximum response of the
partial agonist (the top plateau from the dose-response curve
of the partial agonist). Effectmax is the top plateau of the full
agonist. Hill Slope also comes from the fit of the full agonist
to the variable slope equation.

logtau log Top
Effect Topmax

1/HillSlope

=
−

F
HG

I
KJ

L

N
MM

O

Q
PP

Since you fix the first three paramters to constant values, nonlinear
regression will find values for logKA and logTau.

Dose-response curves in the presence of antagonists

Competitive antagonists
The term antagonist refers to any drug that will block, or partially block, a
response. When investigating an antagonist the first thing to check is
whether the antagonism is surmountable by increasing the concentration of
agonist. The next thing to ask is whether the antagonism is reversible.  After
washing away antagonist, does agonist regain response? If an antagonist is
surmountable and reversible, it is likely to be competitive (see next
paragraph). Investigations of antagonists that are not surmountable or
reversible are beyond the scope of this manual.

A competitive antagonist binds reversibly to the same receptor as the
agonist. A dose-response curve performed in the presence of a fixed
concentration of antagonist will be shifted to the right, with the same
maximum response and (generally) the same shape.

Gaddum derived the equation that describes receptor occupancy by
agonist  in the presence of a competitive antagonist. The agonist is drug A.
Its concentration is [A] and its dissociation constant is Ka. The antagonist is
called drug B, so its concentration is [B] and dissociation constant is Kb. If
the two drugs compete for the same receptors, fractional occupancy by
agonist (f) equals:

f A

A K B
Kba

=
+ +FH IK

[ ]

[ ] [ ]1
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The presence of antagonist increases the EC50 by a factor equal to 1+[B]/Kb.
This is called the dose-ratio.

You don't have to know the relationship between agonist occupancy and
response for the equation above to be useful in analyzing dose response
curves. You don't have to know what fraction of the receptors is occupied
at the EC50 (and it doesn't have to be 50%). Whatever that occupancy,
you'll get the same occupancy (and thus the same response) in the
presence of antagonist when the agonist concentration is multiplied by the
dose-ratio.

The graph below illustrates this point. If concentration A of agonist gives a
certain response in the absence of antagonist, but concentration A' is
needed to achieve the same response in the presence of a certain
concentration of antagonist, then the dose-ratio equals A'/A. You'll get a
different dose ratio if you use a different concentration of antagonist.

If the two curves are parallel, you can assess the dose-ratio at any point.
However, you'll get the most accurate results by calculating the dose-ratio
as the EC50 in the presence of antagonist divided by the EC50 in the absence
of antagonist. The figure below shows the calculation of dose ratio.
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If the antagonist is competitive, the dose ratio equals one plus the ratio of
the concentration of antagonist divided by its Kd for the receptor. (The
dissociation constant of the antagonist is sometimes called Kb and
sometimes called Kd)

Dose ratio 1
[Antagonist]

Kd

= + = +1 [ ]B
Kb

A simple rearrangement gives:
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Dose ratio -1
[Antagonist]

K

log(dose ratio 1) log([Antagonist]) log(K )
d

d

=

− = −

If you perform experiments with several concentrations of antagonist, you
can create a graph with log(antagonist) on the X-axis and log(dose ratio –1 )
on the Y-axis. If the antagonist is competitive, you expect a slope of 1.0 and
the X-intercept and Y-intercept will both equal the Kd of the antagonist.
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If the agonist and antagonist are competitive, the Schild plot will have a
slope of 1.0 and the X intercept will equal the logarithm of the Kd of the
antagonist. If the X-axis of a Schild plot is plotted as log(molar), then minus
one times the intercept is called the pA2 (p for logarithm, like pH; A for
antagonist; 2 for the dose ratio when the concentration of antagonist equals
the pA2). The pA2 (derived from functional experiments) will equal the Kd

from binding experiments if antagonist and agonist compete for binding to
a single class of receptor sites.

Creating and analyzing Schild plots with Prism
Enter your dose-response data with X as log of the agonist concentration,
and Y as response. (If you enter your data with X as concentration, do a
transform to create a table where X is log of agonist concentration). Label
each Y column with a heading (title) that is the log of antagonist
concentration. The first column should be the control, with agonist only
(no antagonist). Label this column "control".

Use nonlinear regression to fit a sigmoid dose-response curve. Choose a
standard slope or variable slope, depending on your data. From the
nonlinear regression dialog, check the option to calculate dose-ratios for
Schild plots.

The values of the dose ratio can only be interpreted if all the dose-response
curves are parallel. If you selected the sigmoid curve with a standard slope,
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this will be true by definition. If you let Prism determine the slope factor for
each curve, look at these (and their standard errors) to see if they differ
significantly. If the slope factors differ, then the interaction is probably not
strictly competitive, and Schild analysis won't be useful. If the slope factors
are indistinguishable, consider holding all the slope factors constant to a
single value.

The curve fit results include a results view called Summary table which
tabulates the log(DR-1) for each data set (except the first, which is the
control). To graph these data, go to the graph section and click the button
New graph. Choose a new graph from the summary table of the nonlinear
regression results.

First fit to linear regression to determine slope and intercept. If the
antagonist is competitive, the Schild plot ought to have a slope that is
indistinguishable from 1.0. You can check this assumption by seeing
whether the confidence interval for the slope includes 1.0.

If the confidence interval for the slope does not include 1.0, your
antagonist is probably not a simple competitive antagonist. For suggestions
of further analyses, see T. Kenakin, Pharmacologic Analysis of Drug-
Receptor Interaction, 3rd Ed. Lippincott-Raven Press, 1997.

If the confidence interval does include 1.0, refit the line constraining the
slope to equal 1.0. You cannot do this with Prism's linear regression
analysis. However, you can use Prism's nonlinear regression to fit a line
with a constant slope. Use this equation:

Y = X – pA2

When X=pA2, Y=0. As X increases above pA2, Y increases as well the
same amount. Fit this equation to determine the pA2 of the antagonist.

An alternative to Schild plots
Analyzing a Schild plot with linear regression of dose-ratios is not the best
way to determine the Kd of the antagonist from functional data. The
problem is that the EC50 of the control curve is used to compute dose ratios
for all other curves. Any error in that control value shows up in all the data
points. The Schild plot was developed in an era when nonlinear regression
was unavailable, so it was necessary to transform data to a linear form. This
is no longer an advantage, and Schild plots can be thought of in the same
category as Scatchard plots. See "Avoid Scatchard, Lineweaver-Burke and
similar transforms" on page 142.

Lew and Angus (Trends Pharmacol. Sci., 16:328-337, 1995) have presented
an alternative method for analyzing Schild experiments using nonlinear
regression instead of the linear regression method of standard Schild
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analysis. This alternative method also avoids the need to calculate dose
ratios.

Start with the Gaddum equation for occupancy as a function of agonist and
antagonist concentrations:

f [A]

[A] K 1 [B]
Ka

b

=
+ +LNM

O
QP

Simple algebra expresses the equation this way:

f 1

1 K
K
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Thus you can obtain any particular occupancy f, with any concentration of
antagonist ([B]) so long as you adjust A to keep the quantity in the
parentheses constant (C).

[ ]
[ ]

B K
A

Cb+
=

Rearrange to show how you must change the agonist concentration to have
the same response in the presence of an antagonist.

[ ]
[ ]

A
B K

C
b=

+

The EC50 is the concentration needed to obtain 50% of the maximal
response. You don't know the fraction of receptors occupied at that
concentration of agonist, but can assume that the same fractional
occupancy by agonist leads to the same response, regardless of the
presence of antagonist. So you can express the equation above to define
EC50 as a function of the antagonist concentration [B].

EC B K
C

b
50 =

+[ ]

You determined the EC50 at several concentrations of antagonist (including
0), so you could fit this equation to your data to determine a best-fit value
of Kb (and C, which you don't really care about). But it is better to write the
equation in terms of the logarithm of EC50, because the uncertainty is more
symmetrical on a log scale. See "Why Prism fits the logEC50 rather than
EC50" on page 301.  By tradition, we use the negative logarithm of EC50,
called the pEC50.  For similar reason, you want to determine the best-fit
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value of log(Kb) (logarithm of the dissociation constant of the antagonist)
rather than Kb itself.

pEC log([B] 10 ) log(C)50
log(K )b= − + −

Define Y to be the pEC50, X to be the antagonist concentration [B], and a
new constant P to be log(c). Now you have an equation you can use to fit
data:

Y log(X 10 ) Plog(K )b= − + −

To determine the Kb using Prism:

1. Determine the EC50 of the antagonist in the presence of several
concentrations of antagonist, including zero concentration. Enter
these values into a Prism data table. Into the X column, enter the
antagonist concentrations in micromolar. Into the Y columns, enter
the negative log of the EC50.

2. Use nonlinear regression to fit this equation.
Y=-1*log((X*1e-6)+(10^logKb))-P

The above equation may also be extended to allow for an assessment of the
conformity of the data to a model of simple competition. This is analogous
to testing the slope of a Schild plot for deviation from a value of one, and
simply requires the inclusion of a Schild slope parameter in the equation,
as follows:

pEC log([B] 10 ) log(c)50
slope logK= − + −

Note that the parameter logKb in the first equation has been replaced with
logK in the above equation. This is because, strictly speaking, if the value
for the slope is significantly different than one, then the antagonist fitting
parameter is not the log of the Kb!

Enter the following user-defined equation into Prism:
Y=-1*log(((X*1e-6)^slope)+(10^logK))-P

When performing this analysis, it is a good idea to use Prism to fit the data
to both equations at the same time and allow the program to decide, via
the F-test, which one is the more appropriate equation.  If the simpler
equation is the better equation, then the logKb estimate may be quoted.
Otherwise, you must conclude that your data are not consistent with a
model of simple competition.
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Analyzing enzyme kinetic data

Introduction to enzyme kinetics
Living systems depend on chemical reactions which, on their own, would
occur at extremely slow rates. Enzymes are catalysts which reduce the
needed activation energy so these reactions proceed at rates that are useful
to the cell.

Product accumulation is often linear with time
In most cases, an enzyme converts one chemical (the substrate), into
another (the product). A graph of product concentration vs. time follows
three phases as shown in the following graph.

Time

 

[P
ro

du
ct

]

1. At very early time points, the rate of product accumulation increases
over time. Special techniques are needed to study the early kinetics
of enzyme action, since this transient phase usually lasts less than a
second (the figure greatly exaggerates the first phase).

2. For an extended period of time, the product concentration increases
linearly with time.

3. At later times, the substrate is depleted, so the curve starts to level off.
Eventually the concentration of product reaches a plateau and doesn't
change with time.

It is difficult to fit a curve to a graph of product as a function of time, even if
you use a simplified model that ignores the transient phase and assumes
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that the reaction is irreversible. The model simply cannot be solved to an
equation that expresses product concentration as a function of time. To fit
these kind of data (called an enzyme progress curve) you need to use a
program that can fit data to a model defined by differential equations or by
an implicit equation. Prism cannot do this. For more details, see RG
Duggleby, "Analysis of Enzyme Reaction Progress Curves by Nonlinear
Regression", Methods in Enzymology, 249: 61-60, 1995.

Rather than fit the enzyme progress curve, most analyses of enzyme
kinetics fit the initial velocity of the enzyme reaction as a function of
substrate concentration. The velocity of the enzyme reaction is the slope of
the linear phase, expressed as amount of product formed per time. If the
initial transient phase is very short, you can simply measure product
formed at a single time, and define the velocity to be the concentration
divided by the time interval.

This chapter considers data collected only in the second phase. The
terminology describing these phases can be confusing. The second phase is
often called the "initial rate", ignoring the short transient phase that
precedes it. It is also called "steady state", because the concentration of
enzyme-substrate complex doesn't change. However, the concentration of
product accumulates, so the system is not truly at steady state until, much
later, the concentration of product truly doesn't change over time.

Enzyme velocity as a function of substrate
concentration
If you measure enzyme velocity at many different concentrations of
substrate, the graph generally looks like this:
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Enzyme velocity as a function of substrate concentration often follows the
Michaelis-Menten equation:

Velocity V V S
S KM

= =
+
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Vmax is the limiting velocity as substrate concentrations get very large. Vmax

(and V) are expressed in units of product formed per time. If you know the
molar concentration of enzyme, you can divide the observed velocity by
the concentration of enzyme sites in the assay, and express Vmax as units of
moles of product formed per second per mole of enzyme sites. This is the
turnover number, the number of molecules of substrate converted to
product by one enzyme site per second. In defining enzyme concentration,
distinguish the concentration of enzyme molecules and concentration of
enzyme sites (if the enzyme is a dimer with two active sites, the molar
concentration of sites is twice the molar concentration of enzyme).

KM is expressed in units of concentration, usually in Molar units. KM is the
concentration of substrate that leads to half-maximal velocity. To prove
this, set [S] equal to KM in the equation above. Cancel terms and you'll see
that V=Vmax/2.

The meaning of KM

To understand the meaning of Km, you need to have a model of enzyme
action. The simplest model is the classic model of Michaelis and Menten,
which has proven useful with many kinds of enzymes.

E S ES E P
k

k

k
+

⎯ →⎯

← ⎯⎯⎯
⎯ →⎯ +

−

1

1

2

The substrate (S) binds reversibly to the enzyme (E) in the first reaction. In
most cases, you can't measure this step. What you measure is production of
product (P), created by the second reaction.

From the model, we want to derive an equation that describes the rate of
enzyme activity (amount of product formed per time interval) as a function
of substrate concentration.

The rate of product formation equals the rate at which ES turns into E+P,
which equals k2 times [ES]. This equation isn't helpful, because we don't
know ES. We need to solve for ES in terms of the other quantities. This
calculation can be greatly simplified by making two reasonable
assumptions. First, we assume that the concentration of ES is steady during
the time intervals used for enzyme kinetic work. That means that the rate of
ES formation, equals the rate of ES dissociation (either back to E+S or
forward to E+P). Second, we assume that the reverse reaction (formation of
ES from E+P) is negligible, because we are working at early time points
where the concentration of product is very low.

Rate of ES formation =  Rate of ES dissolution
k S E k ES k ESfree1 1 2⋅ ⋅ = ⋅ + ⋅−[ ] [ ] [ ] [ ]
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We also know that the total concentration of enzyme, Etotal, equals ES plus
E. So the equation can be rewritten.

k S E ES k ES k EStotal1 1 2⋅ ⋅ − = ⋅ + ⋅−[ ] ([ ] [ ]) [ ] [ ]

Solving for ES:

[ ] [ ][ ]
[ ]

[ ][ ]

[ ]
ES k E S

k S k k
E S

S k k
k

total total=
⋅

⋅ + +
=

+
+− −

1

1 2 1 2 1

1

The velocity of the enzyme reaction therefore is:

Velocity k ES k E S

S k k
k

total= ⋅ =
⋅

+
+ −

2
2

2 1

1

[ ] [ ][ ]

[ ]

Finally, define Vmax (the velocity at maximal concentrations of substrate) as
k2 times Etotal, and KM, the Michaelis-Menten constant, as (k2+k-1)/k1.
Substituting:

Velocity V V S
S KM

= =
+

max[ ]
[ ]

Note that Km is not a binding constant that measures the strength of binding
between the enzyme and substrate. Its value includes the affinity of
substrate for enzyme, but also the rate at which the substrate bound to the
enzyme is converted to product. Only if k2 is much smaller than k-1 will KM

equal a binding affinity.

The Michaelis-Menten model is too simple for many purposes. The Briggs-
Haldane model has proven more useful:

E S ES EP E P+ ⎯ →⎯
← ⎯⎯

⎯ →⎯
← ⎯⎯

⎯ →⎯ +

Under the Briggs-Haldane model, the graph of enzyme velocity vs.
substrate looks the same as under the Michaelis-Menten model, but KM is
defined as a combination of all five of the rate constants in the model.

Assumptions of enzyme kinetic analyses
Standard analyses of enzyme kinetics (the only kind discussed here)
assume:
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• The production of product is linear with time during the time interval
used.

• The concentration of substrate vastly exceeds the concentration of
enzyme. This means that the free concentration of substrate is very
close to the concentration you added, and that substrate
concentration is constant throughout the assay.

• A single enzyme forms the product.

• There is negligible spontaneous creation of product without enzyme

• No cooperativity. Binding of substrate to one enzyme binding site
doesn't influence the affinity or activity of an adjacent site.

• Neither substrate nor product acts as an allosteric modulator to alter
the enzyme velocity.

How to determine Vmax and KM

To determine Vmax and KM with Prism:

1. Enter substrate concentrations into the X column and velocity into the
Y column (entering replicates if you have them).

2. Click Analyze and choose built-in analyses. Pick nonlinear regression
from the list of curves and regressions.

3. Choose more equations. Enter this equation as a new equation, or
choose from the enzyme kinetics equation library.

Y = (Vmax * X)/(Km + X)

Variable Comment
X Substrate concentration. Usually expressed in µM or mM.

Y Enzyme velocity in units of concentration of product per time. It is
sometimes normalized to enzyme concentration, so concentration
of product per time per concentration of enzyme.

Vmax The maximum enzyme velocity. A reasonable rule for choosing an
initial value might be that Vmax equals 1.0 times YMAX. Vmax is
expressed in the same units as the Y values.

Km The Michaelis-Menten constant. A reasonable rule for choosing an
initial value might be 0.2*XMAX

Checklist for enzyme kinetics
When evaluating results of enzyme kinetics, ask yourself these questions:
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Question Comment
Was only a small fraction
of the substrate converted
to product?

The analysis assumes that the free concentration
of substrate is almost identical to the
concentration you added during the time course
of the assay. You can test this by comparing the
lowest concentration of substrate used in the
assay with the concentration of product created
at that concentration.

Is the production of
product linear with time?

Check the concentration of product at several
times to test this assumption.

Did you use high enough
concentrations of
substrate?

Calculate the ratio of the highest substrate
concentration you used divided by the best-fit
value of KM (both in the same concentration
units). Ideally, the highest concentration should
be at least 10 times the KM.

Are the standard errors too
large? Are the confidence
intervals too wide?

Divide the SE of the Vmax by the Vmax, and divide
the SE of the KM by the KM. If either ratio is much
larger than about 20%, look further to try to find
out why.

Is product produced in the
absence of enzyme?

The analysis assumes that all product formation
is due to the enzyme. If some product is
produced spontaneously, you'll need to do a
fancier analysis to account for this.

Did you pick a time point
at which enzyme velocity
is constant.

Measure product formation at several time
points straddling the time used for the assay. The
graph of product concentration vs. time should
be linear.

Is there any evidence of
cooperativity?

The standard analysis assumes no cooperativity.
This means that binding of substrate to one
binding site does not alter binding of substrate to
another binding pocket. Since many enzymes
are multimeric, this assumption is often not true.
If the graph of V vs. [S] looks sigmoidal, see
"Allosteric enzymes" on page 325.

Comparison of enzyme kinetics with radioligand
binding

The Michaelis-Menten equation for enzyme activity has a form similar to
the equation describing equilibrium binding.
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Enzyme Velocity V V S
S K

Specific Binding B B L
L K

M

D

= =
+

= =
+

max

max

[ ]
[ ]

[ ]
[ ]

Note these differences between binding experiments and enzyme kinetics.

• It usually takes many minutes or hours for a receptor incubation to
equilibrate. It is common (and informative) to measure the kinetics
prior to equilibrium. Enzyme assays reach steady state (defined as
constant rate of product accumulation) typically in a few seconds. It is
uncommon to measure the kinetics of the transient phase before that,
although you can learn a lot by studying those transient kinetics (see
an advanced text of enzyme kinetics for details).

• The equation used to analyze binding data is valid at equilibrium -
when the rate of receptor-ligand complex formation equals the rate of
dissociation. The equation used to analyze enzyme kinetic data is
valid when the rate of product formation is constant, so product
accumulates at a constant rate. But the overall system in not at
equilibrium in enzyme reactions, as the concentration of product is
continually increasing.

• KD is a dissociation constant that measures the strength of binding
between receptor and ligand. KM is not a binding constant. Its value
includes the affinity of substrate for enzyme, but also the kinetics by
which the substrate bound to the enzyme is converted to product

• Bmax is measured as the number of binding sites normalized to
amount of tissue, often fmol per milligram, or sites/cell. Vmax is
measured as moles of product produced per minute.

Displaying enzyme kinetic data on a Lineweaver-
Burke plot

The best way to analyze enzyme kinetic data is to fit the data directly to the
Michaelis-Menten equation using nonlinear regression. Before nonlinear
regression was available, investigators had to transform curved data into
straight lines, so they could analyze with linear regression.

One way to do this is with a Lineweaver-Burke plot. Take the inverse of the
Michaelis-Menten equation and simplify:

1 1 1
V

S K
V S

S
V S

K
V S V

K
V S

M M M=
+

= + = + ⋅
[ ]

[ ]
[ ]

[ ] [ ] [ ]max max max max max
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Ignoring experimental error, a plot of 1/V vs. 1/S will be linear, with a Y-
intercept of 1/Vmax and a slope equal to Km/Vmax. The X-intercept equals
-1/Km.

1/[Substrate]

1/
Ve

lo
ci

ty

1
Vmax

Slope K
V

M=
max

−
1

KM

Use the Lineweaver-Burke plot only to display your data. Don't use the
slope and intercept of a linear regression line to determine values for Vmax

and KM. If you do this, you won't get the most accurate values for Vmax and
KM. The problem is that the transformations (reciprocals) distort the
experimental error, so the double-reciprocal plot does not obey the
assumptions of linear regression. Use nonlinear regression to obtain the
most accurate values of KM and Vmax (see "Avoid Scatchard, Lineweaver-
Burke and similar transforms" on page 142).

Tip. You should analyze enzyme kinetic data with nonlinear
regression, not with Lineweaver-Burke plots. Use Lineweaver-
Burke plots to display data, not to analyze data.

To create a Lineweaver-Burke plot with Prism, start from a table where X is
substrate concentration and Y is velocity. Click Analyze, and choose a
built-in analysis. Then choose Transformations from the list of data
manipulations. Check the option boxes to transform both X to be 1/X, and
Y to be 1/Y. Be sure to check the option to create a new graph of the
results.

From that graph, click Analyze and choose linear regression to
superimpose the regression line. This linear regression line should NOT be
used to obtain values for Vmax and Km. The X-intercept of the regression line
will be near –1/KM, and the negative inverse of the slope will be near the
Vmax. However, the Vmax and KM values determined directly with nonlinear
regression will be more accurate. It is better to draw the line that
corresponds to the nonlinear regression fit.

To create a Lineweaver-Burke line corresponding to the nonlinear
regression fit, follow these steps:
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1. Create a new data table, with numerical X values and single Y values.

2. Into row 1 enter X=0, Y=-1/KM   (previously determined by
nonlinear regression).

3. Into row 2 enter X=1/Smax  (Smax is the largest value of [substrate] you
want to include on the graph) and Y=(1/Vmax)(1.0 + KM/Smax).

4. Note the name of this data table. Perhaps rename it to something
appropriate.

5. Go to the Lineweaver-Burke graph.

6. Press Change, then Data on graph.

7. Add the new data table to the graph.

8. Press Change, then Symbols and lines.

9. Drop down the list of data sets, and select the one you noted in step
4.

10. Choose to plot no symbols, but to connect with a line.

Allosteric enzymes
One of the assumptions of Michaelis-Menten kinetics is that there is no
cooperativity. If the enzyme is multimeric, then binding of a substrate to
one binding site should have no effect on the activity of neighboring sites.
This assumption is often not true.

If binding of substrate to one binding site increases the activity of
neighboring sites, the term positive cooperativity is used. Activity is related
to substrate concentration by this equation:

Velocity V V S
S K

h

h h= =
+

max

.

[ ]
[ ] 0 5

When the variable h equals 1.0, this equation is the same as the Michaelis-
Menten equation. With positive cooperativity, h will have a value greater
than 1.0. If there are two interacting binding sites, h will equal two (or less,
depending on the strength of the cooperativity). If there are three
interacting binding sites, h will equal 3 (or less). Note that the denominator
has the new variable K0.5 instead of KM.
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To fit data to the equation for enzyme activity with positive cooperativity,
use the equation below. For initial values, try these rules: Vmax=Ymax,
K=.5*Xmid, and h=1.0
Y=Vmax*X^h/(K^h + X^h)

The variable h does not always equal the number of interacting binding
sites (although h can not exceed the number of interacting sites). Think of h
as an empirical measure of the steepness of the curve and the presence of
cooperativity.

Enzyme kinetics in the presence of an inhibitor

Competitive inhibitors
If an inhibitor binds reversibly to the same site as the substrate, the
inhibition will be competitive. Competitive inhibitors are common in
nature.

One way to measure the effect of an inhibitor is to measure enzyme
velocity at a variety of substrate concentrations in the presence and
absence of an inhibitor. As the graph below shows, the inhibitor
substantially reduces enzyme velocity at low concentrations of substrate,
but doesn't alter velocity very much at very high concentrations of
substrate.
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As the graph above shows, the inhibitor does not alter Vmax, but increases
the observed KM (concentration of substrate that produces half-maximal
velocity, in the presence of a competitive inhibitor). The observed KM is
defined by the following equation, where Ki is the dissociation constant for
inhibitor binding (in the same concentration units as [Inhibitor]):

K K Inhibitor
KM obs M

i
,

[ ]
= ⋅ +
L
NM

O
QP

1

If you have determined the Km plus and minus a single concentration of
inhibitor, you can rearrange that equation to determine the Ki.

K Inhibitor
K

K

i
M obs

M

=
−

[ ]

., 10

You'll get a more reliable determination of Ki if you determine the
observed Km at a variety of concentrations of inhibitor. Fit each curve to
determine the observed Km. Enter the results onto a new table, where X is
the concentration of inhibitor, and Y is the observed Km. If the inhibitor is
competitive, the graph will be linear. Use linear regression to determine
the X- and Y-intercepts. The Y-axis intercept equals the KM  and the X-axis
intercept equals the negative Ki.
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K M
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Another experimental design is to measure enzyme velocity at a single
concentration of substrate with varying concentrations of a competitive
inhibitor. The results will look like this.
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The concentration of competitor that reduces enzyme velocity by half is
called the EC50 or IC50. Its value is determined by three factors:

• The dissociation constant for binding of inhibitor to enzyme, the Ki. If
the Ki is low (the affinity is high), the EC50 will be low. The subscript i
is used to indicate that the competitor inhibited enzyme activity. It is
the concentration of the competitor that will bind to half the enzyme
sites at equilibrium in the absence of substrate or other competitors.

• The concentration of the substrate. If you choose to use a higher
concentration of substrate, it will take a larger concentration of
inhibitor to compete for 50% of the activity.

• The KM. It takes more inhibitor to compete for a substrate with a low
KM than for a substrate with a high KM.

Prism calculates the Ki, using the equation of Cheng and Prusoff (Cheng Y.,
Prusoff W. H., Biochem. Pharmacol. 22: 3099-3108, 1973).

K IC
Substrate

K

i

M

=
+

50

1 [ ]

To determine the Ki with Prism (from data collected with a single
concentration of substrate):

1. Enter data with X equal to logarithm of inhibitor concentration and Y
equal to velocity.

2. Press Analyze, and choose built-in analyses. From the curves section,
choose nonlinear regression.

3. Choose the one-site competitive binding equation.

4. If you want to fix the top and bottom plateaus to constant values,
click the Constants button and enter the values. Most often, you will
fix the bottom plateau to zero, assuming that there is no enzyme
velocity at maximum concentrations of inhibitor.
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5. On the nonlinear regression dialog, choose the option "Ki from IC50".
This option is usually used for radioligand binding studies, so enter
the KM where it asks for the Kd, and enter substrate concentration
where it asks for radioligand concentration. Enter both in mM (or any
concentration units; only the ratio matters). Enter concentrations, not
the logarithm of concentrations.

Inhibitors that are not competitive
If an inhibitor binds to a site on the enzyme distinct from the site that binds
substrate, the inhibition cannot be overcome by increasing the
concentration of substrate. The inhibition is not competitive, and the
inhibitor decreases the observed Vmax (and may also increase the observed
KM). Consult an advanced text on enzyme kinetics for information about
non-competitive, uncompetitive, and mixed inhibition.

Competitive and non-competitive inhibitors bind reversibly. An inhibitor
that binds covalently to irreversibly inactivate the enzyme is called an
irreversible inhibitor or inactivator.
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Reading unknowns from
standard curves

Introduction to standard curves
Standard curves are used to determine the concentration of substances.
First you perform an assay with various known concentrations of a
substance you are trying to measure. The response might be optical
density, luminescence, fluorescence, radioactivity or something else. Graph
these data to make a standard curve – concentration on the X axis, and
assay measurement on the Y axis.

Also perform the same assay with your unknown samples. You want to
know the concentration of the substance in each of these unknown
samples.

To analyze the data, fit a line or curve through the standards. For each
unknown, read across the graph from the spot on the Y-axis that
corresponds to the assay measurement of the unknown until you intersect
the standard curve. Read down the graph until you intersect the X-axis. The
concentration of substance in the unknown sample is the value on the X-
axis.

In the example below, the unknown sample had 1208 counts per minute,
so the concentration of the hormone is 0.236 micromolar.
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Prism makes it very easy to fit your standard curve, and to read (interpolate)
the concentration of unknown samples.

How to fit standard curves
Before you can read unknown values, you first must fit a line or curve
through your standard points. Prism lets you fit a standard curve with one
of these methods:

Creating a standard curve with linear regression
Standard curves are often nearly linear, at least within a certain range of
concentrations. If you restrict you standard curve values to a linear region,
you can analyze the curve with linear regression. This will be a useful
analysis, even if the overall standard curve is not quite straight, so long as
you choose a reasonable range. The standard curve should start a little
below your lowest unknown value and extend to a little beyond your
highest unknown value. There is no benefit to continuing the standard
curve far above or below the range of your unknowns.

See "Linear regression" on page 141.

Creating a standard curve with cubic spline (or lowess)
The easiest way to fit a curve is to create a cubic spline or lowess curve.
They are easier than nonlinear regression, because you don't have to
choose an equation. Spline and lowess curves tend to wiggle too much, so
are not often used as standard curves.

See "Fitting a curve without choosing a model" on page 167.

Creating a standard curve with polynomial regression
Polynomial regression is a convenient method to create a smooth curve.
With Prism, you perform polynomial regression by choosing a polynomial
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equation from the nonlinear regression dialog. Try a second, third or fourth
order polynomial equation. The higher order polynomial equations
generate standard curves with more inflection points.

See "Polynomial regression" on page 166.

Creating a standard curve with nonlinear regression
Nonlinear regression is often used to fit standard curves generated by
radioimmunoassay (RIA) or similar assays (ELISA). These assays are based
on competitive binding. The compound you are assaying competes for
binding to an enzyme or antibody with a labeled compound. Therefore the
standard curve is described by equations for competitive binding. Try the
one-site competitive binding curve. If that doesn't fit your data well, try the
sigmoid dose response curve with variable slope. When fitting sigmoid
curves, enter the X values as the logarithms of concentrations, not
concentrations.

Ordinarily, the choice of an equation is very important when using
nonlinear regression. If the equation does not describe a model that makes
scientific sense, the results of nonlinear regression won’t make sense either.
With standard curve calculations, the choice of an equation is less
important because you are not interested in the best-fit values of the
variables in the equation. All you have to do is assess visually that the
curve nicely fits the standard points.

See "Fitting curves with nonlinear regression" on page 195.

Determining unknown concentrations from standard
curves

To read values off the standard curve:

1. Enter the unknown values on the same table as your standard curve.
Just below the standard curve values, enter your unknowns as Y
without X. This example shows X and Y values for five standards, and
Y values for four unknowns.
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2. Click on the Graphs button, and look at a graph of your standard
curve.

3. Click the analyze button, and choose how to fit the standard curve.
Choose either linear or nonlinear regression, or create a LOWESS,
Spline, or Point-to-point curve.

4. On the Parameters dialog, check the option to perform standard
curve calculations.

5. Click on the Results button to see the tabular results. Drop down the
View list and pick the standard curve.

6. Look at the table of X and Y values. The Y column contains values
you entered, and the X column shows the calculated concentrations
in the same units as you used for the X axis.

7. If necessary, transform the results to anitlogs. Click the Analyze
button. On the New Analysis dialog, choose Transforms and choose
to analyze the data you are looking at.

Standard curves with replicate unknown values
Prism’s nonlinear regression analysis can interpolate from a standard curve,
even if you have replicate unknown values.

Enter the data with all the replicates as shown below. The top part of the
table is the standard curve. Below that are the unknown values. The
standards and the unknowns do not need to have the same number of
replicate determinations.
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When you fit the standard curve, select the standard curve option (X from
unpaired Y). If you fit the curve with nonlinear regression, this is on the
Output options dialog. The example was fit using nonlinear regression with
a sigmoidal dose-response curve with variable slope.

The standard curve results are shown on two output views.

The Y column in “standard curve X from Y”  shows the average of the
replicate unknown Y values you entered. The X values are the
concentrations that correspond to the mean Y values.

Each value in “unknown X values” is a concentration corresponding to one
of the replicate values you entered, and is expressed in the same units as
the X axis of your standard curve. Because Prism cannot deal with replicate
X values, Prism places these unknown X values in a Y column on the
results table. Think of them as X values on your standard curve. But think of
them as Y values when you want to do further analyses (such as a
transform).

To calculate the mean and SD (or SEM) of the replicate values, press
Analyze and choose row statistics.
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Problems with standard curves
Reading unknown values from a linear regression line is completely
straightforward. Reading unknown values from a curve is subject to the
following potential problems:

• Prism can only read unknowns off the standard curve within the
range of the standard curve. If you enter an unknown value that is
larger than the highest standard or smaller than the lowest standard,
Prism will not try to determine the concentration unless you fit the
standard curve with linear regression. You should interpret these
extrapolations cautiously. With nonlinear regression, Prism only will
perform standard curve calculations within the limits that the curve is
defined. But you can extend the curve in both directions, to include
lower and higher X values. Do this from the Output options dialog –
press Output from the nonlinear regression parameters dialog.

• If you calculate X from Y, beware of a possible ambiguity. It is pos-
sible that two or more points on the curve have identical Y values but
different X values. In this situation, Prism will report the lowest of the
X values within the range of the standard curve, and will not warn
you that other answers exist.

Unknown Y

Reported X

• You will get more accurate results if you define the curve with more
line segments. Prism defines a curve as a large number of points. To
find unknown values, Prism linearly interpolates between the two
points on either side of the unknown value. If you define the curve
with more line segments, the interpolation will be more accurate. To
increase the number of line segments, click Output from the
nonlinear regression parameters dialog.
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Preprocessing data

General
Before analyzing and graphing your data, you may need to preprocess the
data by transforming, normalizing, pruning, subtracting baseline
(nonspecific) values, or transposing rows and columns. These are all
choices on the Analyze dialog.

These calculations do not change the original data. The results appear on a
table in the results section of your project. You may analyze these
processed data further.

Select the check box “Create new graph” on the Parameters dialog to create
a new graph of the processed data. The default selection (whether or not to
create a new graph) is set in the Analysis options dialog (Tools menu).

Transforming data

The advantages of transforming data
You'll often find it useful to transform data before performing analyses for
the following reasons:

• To change units.

• To make scatter more Gaussian (see "Advantages of transforming the
data first" on page 40.

• To avoid using huge or tiny numbers, that can cause numerical
problems with some analyses. In general you should avoid analyzing
numbers less than 0.000001 or so, or numbers greater than 1000000
or so.

• To convert a curve into a line. This can be useful for displaying data,
but should usually be avoided when analyzing data. See "Avoid
Scatchard, Lineweaver-Burke and similar transforms" on page 142.
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How to transform data
Click Analyze and choose Transform from the list of data manipulations to
bring up the dialog.

Prism can interchange X and Y values, and can transform either X or Y
values. Prism’s transform analysis cannot combine columns, for example
creating a new column from the sum of two other columns. Prism has
limited ability to combine columns. See "Subtracting (or dividing by)
baseline values" on page 341. For more choices, enter your data into Excel
or another spreadsheet, use Excel to combine columns, and then link or
embed the results into Prism.

Interchange X and Y values
If you choose to interchange X and Y values, Prism can only handle one
data set, since there is only one X column. If you entered replicate Y values
or mean with SD or SEM, Prism puts the mean Y value into the X column
and ignores the other information. If you also selected X or Y transforms,
Prism applies these to the data after interchanging.  -- it applies the Y
transform to the data that were originally in the X column, and the X
transform to the data originally in the Y column.
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Built-in transforms
Choose from one of these functions for transforming Y values (analogous
functions are available for X):

Function Comments
Y= Y * K
Y = Y + K
Y = Y – K
Y = Y / K
Y = Y squared
Y = Y ^ K
Y = log(Y)
Y = -1*log(Y)
Y = ln(Y)
Y = 10 ^ Y
Y = exp(Y)
Y = 1/Y
Y = SQRT(Y)
Y = LOGIT(y)
Y = sin(Y)
Y = cos(Y)
Y = tan(Y)
Y = arcsin(Y)
Y = ABS(Y)
Y = Y + Random
Y = X / Y
Y = Y / X
Y = Y – X
Y = Y + X
Y = Y * X
Y = X – Y

Enter K in the box provided.
"
"
"

Enter K in the box provided.
Log base 10

Natural logarithm (base e)
Ten to the Yth power (inverse of log).
eY  (inverse of ln)

Square root.
ln(Y/1-Y)
Y is in radians.
"
"
Result is in radians.
Absolute value. If Y is negative, multiply by -1.
Gaussian. Mean=0. SD=K (you enter).
(Not available when transforming X.)
"
"
"
"
"

Many of the functions include the variable “K”. Enter a value for K on the
dialog. When transforming Y values, you can enter one value of K for all
data sets or a separate value of K for each data set. To enter different K
values for each data set, choose a data set, enter K, choose another data set,
enter its K, and so on.
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Use this option to transform different data sets with different
values of K. If you don't want to transform some data sets at all,
don't select them for the analysis. See "Changing an analysis"
on page 353.

User-defined functions
At the top of the Parameters dialog for transforms, switch between built-in
transforms and user-defined transformations of X or Y. Select a user-defined
transform you have used before or enter a new one.

Note: If you are transforming X values, you may not use Y in
the function (because there might be several Ys for each X). If
you are transforming Y, you may not use X.

When you enter your equations, you can use any of the functions listed in
"Available functions" on page 184.

Transferring transforms with data files
Prism maintains a list of user-defined transformations. Whenever you
transform data, you can choose from transformations you used before.

What happens when you want to transfer a file to another computer? There
are no explicit commands to import or export transforms. Prism handles the
situation automatically by including the transform in the project file. When
you open the file, Prism uses these rules:

1. Prism first reads the name of the transform from the file.

2. If a transform with exactly the same name already exists in the
equation list on that computer, the equation is read from the list even
if it is different than the one saved on the file. Prism will not use the
transform saved with the file, but will instead use the transform with
the same name already stored on the computer. This allows you to
use a revised function with stored data.

3. If the list does not contain a transform with the same name, then
Prism reads the transform from the file and adds it to the list stored on
the computer.

Replicates and error bars
If you entered replicate Y values, Prism can transform each replicate or the
means of the replicates.

If you entered data as mean, SD (or SEM) and N, Prism tries to transform
the error bar as well as the mean. When a transform is intrinsically
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asymmetrical (i.e. logarithms), it is mathematically impossible to transform
a SD and end up with a SD. You have two choices. You may either trans-
form the mean only or erase the error bars. Or you may convert the error
bars to 95% confidence intervals, and then transform both ends of the
confidence interval. The resulting 95% CI will be asymmetrical.

Normalizing data
Normalize the data to convert Y values from different data sets to a
common scale. This is useful when the want to compare the shape or
position (EC50) of two or more curves, and don't want to be distracted by
different maximum and minimum values.

Investigators who analyze dose-response curves commonly normalize the
data so all curves begin at 0% and plateau at 100%. If you then fit a
sigmoid dose-response curve to the normalized data, be sure to set the top
and bottom plateaus to constant values. If you've defined the top and
bottom of the curves by normalizing, you shouldn't ask Prism to fit those
parameters.

To normalize, click Analyze and choose built-in analyses. Then select
Normalize from the list of data manipulations to bring up this dialog. .

To normalize between 0 and 100%, you must define these baselines.
Define zero as the smallest value in each data set, the value in the first row
in each data set, or to a value you enter. Define one hundred as the largest
value in each data set, the value in the last row in each data set, or a value
you enter. Prism can express the results as fractions or percentages.
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Notes:

• If you have entered replicate values, zero and one hundred percent
are defined by the mean of the replicates. It is not possible to
normalize each subcolumn separately.

• The X values are copied to the results table. They are not normalized.

• Each SD or SEM is normalized appropriately.

• If you normalize to the smallest and largest value in the data set, you
can remove those values (which would become 0.000 and 1.000)
from the results.

Tip: The Remove Baseline analysis lets you subtract (or divide)
all values by the mean of the first few rows. With some
experimental designs, this is the best way to normalize.

Pruning rows
This analysis reduces the size of large data sets to speed curve fitting and
graphing. Use it to preprocess large data sets imported from an instrument.
The pruning analysis starts with a large data table, and generates a shorter
results table. Another way to deal with large data sets is to decimate data
while importing, so Prism only reads every tenth (or some other number)
row. See the chapter in importing data in the Prism User's Guide.

Note: After pruning, the project contains both the original data
and the pruned data. Therefore pruning increases the size of
the project file. If you don't want the original data any more, you
should go to that data table and use the Delete Sheet
command (on the Tools menu)  to remove it.

To prune, click Analyze and choose built-in analyses. Then choose Prune
from the list of data manipulations to bring up this dialog.
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One way to prune data is to remove all rows where X is too low or too
high, and keep only rows where X is between limits you enter. The other
way to prune is to average every K rows to produce one output row (you
enter K). First Prism sorts the table by X (if not already sorted). Then it av-
erages every K rows to produce one output row. For example, if K=3, the
first X value in the results table is the average of the X values of the first
three rows. The first Y value of each data set is the average of the Y values
in the first three rows. The second row in the results table is the average of
rows 4 to 6, and so on. Optionally average only rows after a threshold X
value. When X is lower than that threshold, keep all data intact. After that
threshold, reduce the number of rows by a factor of K. This is useful if your
experiment reaches a plateau value, and you only want to prune the values
near the plateau.

Subtracting (or dividing by) baseline values
Many kinds of data combine a measurement (signal) you care about with a
baseline or background (noise) you don't care about. You can analyze
these data using two approaches. One approach is to perform analysis on
the total signal. The other approach is to subtract or divide by a baseline or
nonspecific value and then analyze and graph the results.

Click Analyze and choose built-in analyses. Then choose Remove Baseline
from the list of data manipulations to bring up this dialog.
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Where are the baseline values?

Pick one of the first two choices when you have measured a baseline value
at every value of X, and have placed baseline or nonspecific values in
datasets adjacent to the main data. Prism can then subtract column B from
column A, and column D from C, etc. The results table will have half as
many data sets (Y columns) as the original table, but the same number of
rows.

Pick one of the last two choices when you have collected data over time,
and the first or last few points define the baseline. The results table has the
same number of data sets as the original table. If you check the option box
to erase the values that define the baseline, the results table will have fewer
rows than the data table. You enter the number of rows to average to define
the baseline. If you want to use just the first or last row, tell Prism to
"average" the first 1 row.

Subtract or divide? Choose to subtract the baseline values from the total
values, or to divide the total values by the baseline values. If you divide,
express the results as a fraction of baseline or as a percent of baseline.

Calculations. If the baseline or nonspecific values are in separate data sets
(columns), there are three ways to perform the calculations:

• For each row, calculate the mean of the baseline replicates and
subtract (divide) this value from each total replicate. If you entered



 Preprocessing data 355 www.graphpad.com

triplicate values, Prism subtracts the mean of the three baseline
values from each of the three total values.

• Assume that the baseline is linear with X. Prism performs linear
regression with the background (nonspecific) values and then
subtracts (or divides) the Y value predicted from that line. This
method is appropriate when you know that the nonspecific or
background values must be linear with the X values (for example
nonspecific binding is often linear with ligand concentration). It is
particularly useful when you have not collected baseline or
nonspecific measurements at every value of X, as Prism will fill in the
missing nonspecific values from linear regression. When Prism fits
linear regression, it does not assume that the line goes through the
origin and does not display its results.

• For each row, calculate the mean of the total values and the mean of
the nonspecific values. Prism reports the difference and its standard
error. This option is not available if you choose to divide (rather than
subtract).

Transposing rows and columns
Transpose rows and columns to change the appearance of bar graphs. Click
Analyze and choose Transpose from the list of data manipulations to bring
up this dialog. See “Fitting a curve without choosing a model” on page
167.
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Each row of Y values becomes one column (data set) in the results table.
The first row becomes the first data set, the second row becomes the
second data set, etc. You may not transpose a data table with more than 52
rows, because Prism cannot create a table with more than 52 columns.

The column and row titles in the results table are determined by your
choices in the dialog.
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Analyzing continuous data

Smooth, differentiate or integrate a curve
Prism can compute numerical integrals or derivatives, and smooth the
results. It can also smooth a curve directly, without computing its derivative
or integral.

From a graph of the curve or a data table, click Analyze and choose built-in
analyses. Then select "Smooth, differentiate or integrate a curve" to bring
up this dialog.

Prism can only smooth data sets (and compute derivatives and integrals)
where the X values are equally spaced. The X values in the table may be
formatted either as individual numbers or as a sequence (you define the
first value and the interval, and Prism fills in the rest).

Computing derivatives and integrals is new to Prism 3. If you
open a file in Prism 2, these analyses will be lost unless you
freeze the results sheets (Tools menu).
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The derivative of a curve
The derivative is the steepness of the curve at every X value. The derivative
is positive when the curve heads uphill and is negative when the curve
heads downhill. The derivative equals zero at peaks and troughs in the
curve. Prism first calculates a simple numerical derivative. For every row i,
the resulting X and Y values are:
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After calculating the numerical derivative, Prism can smooth the results, if
you choose.

Prism does not do any symbolic algebra, and cannot compute analytical
derivatives. If you give Prism a series of XY points that define a curve, it can
compute the derivative of that curve. If you give Prism an equation, it
cannot compute a new equation that defines the derivative.

The integral of a curve
The integral is the cumulative area under the curve. The integral at any
value X equals the area of the curve for all values less than X.

Prism uses the trapezoid rule to integrate curves (see "How Prism calculates
the area under a curve" on page 349). The X values of the results are the
same as the X values of the data you are analyzing. The first Y value of the
results equals a value you specify (usually 0.0). For other rows, the resulting
Y value equals the previous result plus the area added to the curve by
adding this point. This area equals the difference between X values times
the average of the previous and this Y value. Prism uses this equation (i
refers to row number):
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After doing a simple integration, Prism can then smooth the results, if you
choose.

Prism does not do any symbolic calculus, and cannot compute analytical
integrals.

Smoothing a curve
If you import a curve from an instrument, smooth the data to improve the
appearance of a graph. The purpose of smoothing is solely to improve the
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appearance of a graph. Since you lose data when you smooth a curve, you
should not smooth a curve prior to nonlinear regression or other analyses.

There is no point trying to smooth curves created by nonlinear regression,
since they are already smooth. It only makes sense to smooth curves
collected from an instrument. In can make sense to compute the derivative
or integral of a perfect (smooth) when X is time.

Smoothing is not a method of curve fitting. If your goal is to
draw a smooth curve through your data, see "Fitting a curve
without choosing a model" on page 167.

Each point in the curve is replaced by the weighted average of its nearest
five, nine or thirteen neighbors by the method of Savitsky and Golay
(Analytical Chemistry, 36:1627-1639, 1964) using a cubic equation.  The
results table has a few less rows than the original data.

Original Data Smoothed Data

Area under the curve
The area under the curve is an integrated measure of an effect. It is used as
a cumulative measure of drug effect in pharmacokinetics, and as a way to
compare peaks in chromatography.

Note the difference between integrating a curve and computing
area under the curve. When you integrate a curve, the result is
another curve showing cumulative area. When you ask Prism
to compute area under the curve, it gives you one value for the
area under the entire curve as well as the area under well-
defined peaks.

If your data come from chromatography or spectroscopy, Prism can break
the data into separate regions and find the highest point (the peak) of each.
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It can only do this if the regions are clearly defined, with the signal going
below the baseline between regions. It cannot separate overlapping peaks.

Click Analyze and choose built-in analyses. Then choose Area under the
curve from the list of curve analyses to bring up the parameters dialog.

Parameters for area under curve
• Define the baseline by entering a Y value (usually Y=0) or calculate

the baseline as the mean of the first and last few values (you define
how many). If you want to use the first value as the baseline, tell
Prism you want to use the “mean of the first 1 rows”.  Prism always
assumes the baseline is horizontal (parallel to the X axis).

• If your data are noisy, Prism may find too many regions, with some
being tiny and irrelevant. In order to avoid finding many “peaks” in
noisy data, define the minimum height that you consider worth
finding. Enter either the height measured in units of the Y axis, or as a
percentage of the distance between the minimum and maximum Y
values.

• Optionally define the minimum width of a region worth considering.
Give the width as the number of adjacent rows in the data table. Do
not use X units.

• Choose whether values below the baseline should be considered to
be “negative peaks” or ignored.
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If all values are above the baseline, then the dialog choices (except for
definition of baseline) are irrelevant. Prism finds one peak, which is the
area under the entire curve. This is useful in analysis of pharmacokinetic
data.

Interpreting area under the curve
For each region, Prism shows its area in units of the X axis times the units
of the Y axis and as a fraction of the area under all regions. Prism also
identifies the peak of each region by reporting the X and Y coordinates of
the highest point and the X coordinates of the beginning and end of the
region.

Note the limitations of this analysis:

• The baseline must be horizontal.

• There is no smoothing or curve fitting.

• Prism cannot separate overlapping peaks. It will not be able to
distinguish two peaks unless the signal descends all the way to the
baseline between peaks. It is not able to find a peak within a shoulder
of another peak.

• If the signal starts (or ends) above the baseline, the first (or last) peak
will be incomplete. Prism reports the area under the tails it sees.

If Prism reports finding more regions than you care about, go back to the
parameters dialog and define a larger value for the minimum width or
height of a peak.

How Prism calculates the area under a curve
Prism computes the area under the curve using the trapezoid rule,
illustrated in the figure below.
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In Prism, a curve is simply a series of connected XY points, with equally
spaced X values. The left part of the figure below shows two of these points
and the baseline as a dotted line. The area under that portion of the curve,
a trapezoid, is shaded. The middle portion of the figure shows how Prism
computes the area. The two triangles in the middle panel have the same
area, so the area of the trapezoid on the left is the same as the area of the
rectangle on the right (whose area is easier to calculate). The area,
therefore, is ΔX*(Y1+Y2)/2. Prism uses this formula repeatedly for each
adjacent pair of points defining the curve.
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Appendix. Using GraphPad
Prism to analyze data

The Prism User's Guide
This book explains each analysis that Prism can perform. A separate
volume, The Prism User's Guide, explains how to use Prism. This appendix
summarizes the basic operation of Prism, so you can use it to analyze and
graph your data.

The full text of both volumes is present in the online Help system.

Projects, sections and sheets
To use Prism effectively, you need to understand how it is organized.

When you work with Prism, you work on a project. A project contains all
the data, analyses, and graphs that you want to keep together. You decide
its scope. A project can contain a single data table with graph. A project
can contain all parts of a complicated experiment. A project can contain all
data and graphs from a series of repeated experiments.

Each Prism project is divided into five sections: data tables, results of
analyses, graphs, page layouts (containing one or more graphs), and notes.
Some of the sections may be empty.

Prism uses the term “sheet” to refer to each individual data table, each set
of results, each graph, each page layout, and each page of notes. Each
section may contain up to 100 sheets. At any one time, you can only view
a single sheet.

Prism’s data tables are very structured. Each data table has one column for
X and many columns for Y values. You choose a format for each set of Y
values: single values, up to sixteen replicate values, or mean with SD or
SEM (and N). For example, here is a piece of a table formatted for entry of
duplicate Y values in each data set.
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Each set of Y values (with its X values) is called a data set. A data table can
hold up to 52 data sets. In most cases, each data set represents one
experimental condition. Within a data set, you may enter replicate
(duplicate, triplicate, etc.) values.

How to analyze data with Prism
To analyze a data table, click the Analyze button. You can use a built-in
analysis, apply a stored analysis method (a sequence of Prism analyses), or
analyze and graph this data table exactly as you have already analyzed and
graphed another table.

You can perform linear and nonlinear regression directly from a graph.
While looking at the graph, click Analyze, You can also click Analyze from
a results table to chain two analyses. You may chain as many analyses as
you want. When you edit or replace the original data, Prism will update the
entire chain in order.

The analyze button isn't just for statistics and regression, but
also for data manipulations such as transforming and
normalizing. Prism doesn't alter the original data, but creates a
new results table that you can graph or analyze further.

If you analyze from a table, Prism will take you right to the results.
Depending on which analysis you choose, your results will be shown on
one or more pages, which Prism calls “output views”. For example, linear
regression can produce one view that tabulates results, another that con-
tains the XY coordinates of the regression line, another with residuals, and
another with standard curve calculations. Drop down the list box in the
bottom row of the toolbar to select a view.

If you analyze from a graph, Prism will superimpose the regression line or
curve on that graph. Click on the yellow results folder tab to see the
numerical results.
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Changing an analysis
After reviewing the results of an analysis, you may realize that you made
invalid choices. If this happens, don't repeat the entire analysis. Fix the
problem instead. While looking at the results sheet, press the Change
Params. button to bring up the Parameters dialog with your previous
choices. Change settings as needed (for example, pick a different equation
for nonlinear regression). Press ok to recalculate the analysis.

You can also change parameters directly from a graph. Press the Change
button and choose Analysis parameters.

You can also change which data table and data sets are analyzed. From the
results table,  press Change and select Data Analyzed.

Analyzing repeated experiments
Science is repetitive by its very nature. Prism provides several approaches
to analyzing and graphing repetitive data. You'll use a different approach
depending on whether you simply want to repeat analysis and graphing
steps within the same project, repeat those analyses and graphs in different
projects, or automate analysis of a large number of data files at once.

Repetition within a project
You can easily instruct Prism to analyze and graph data from a repeat
experiment exactly as you analyzed and graphed data from the first
experiment. From the data table of the second experiment, press Analyze,
then choose Method by Example and select the data set to use as an
example (which must be in the same project).

An alternative approach is to start from the data table of a representative
experiment, and duplicate the data along with all of its linked graphs and
results. To do this, go to the data table and click the New Table button.
Choose to duplicate the current table and its analyses and graphs. Then go
to the new table, and replace the data. Because the new data table is linked
to new results and analyses, simply go to these new sheets to see the
analyses and graphs of the second experiment.

There are advantages to each approach. If you apply a method by example,
you don't have to format all the data tables the same way. For example,
you could format the first experiment with triplicate values, but the second
experiment with quadruplicates. One advantage of duplicating is that you
don't have to choose column formats for the second experiment – you
simply get a copy of the first data table. Another advantage is that the
duplicated table will have column titles (and perhaps X values) that you can
keep for the second experiment.
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Repetition in ongoing experiments, involving several
projects
If you frequently analyze and graph data using the same steps, Prism offers
two approaches: methods and templates.  Methods and templates both let
you analyze and graph a new data table using steps stored in a file. The
difference is in how you use them. You apply a method to an existing data
table, but insert a template (which includes an empty data table) into an
existing project.

To save a method file go to a data table of a representative experiment
(already linked to analyses and graphs), pull down the file menu and
choose Save Method. To apply the method, go to data table (which can be
in a different file) and click Analyze. Choose to apply a method, and then
choose a category and method. Prism will analyze and graph the data using
the steps stored in the method file.

To create a template file, make a project containing nothing but data for a
representative experiment, and all necessary analyses and graphs. Then
select Save Template from the File menu. You can choose a template to
begin a new project (from the Welcome dialog), and can insert a template
into an existing project (from the New table dialog). Enter the new data
onto the data table from the template, then go to other new sheets to see
the new graphs and results.

There are advantages to each approach. If you apply a method, you don't
have to format all the data tables the same way. For example, you could
define the method using data formatted with triplicate values, but apply it
to a table formatted with quadruplicates. The advantage of inserting a
template is that you don't have to choose column formats, and don't have
to reenter column titles and X values. Another advantage of templates is
that they can contain more than one data table. You can create a template
with two (or more) tables to analyze and graph an experiment with several
parts.

Analyzing a large series of experiments
Methods and templates automate analyses and graphing. If you want to
analyze a large series of experiments at once, you will also want to
automate data importing. To do this, run a Prism script. Prism scripts tend
to be very short, and easy to write since you only need to write script
commands to import data, and export results and graphs. The analysis and
graphing steps are performed automatically by your Prism project, so don't
require scripting commands. See the chapter on scripts in the Prism User's
Guide.
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Intuitive Biostatistics (book)
If you like the style of this book, you'll probably also like Intuitive
Biostatistics, by Harvey Motulsky, president of GraphPad software and
author of this manual. Here is the publisher's description:

"Intuitive Biostatistics provides a nonmathematical introduction to
biostatistics for medical and health sciences students, graduate students
in biological sciences, physicians and researchers. Using nontechnical
language, this text focuses on explaining the proper scientific
interpretation of statistical tests rather than on the mathematical logic of
the tests themselves. Intuitive Biostatistics covers all the topics typically
found in an introductory statistics text, but with the emphasis on
confidence intervals rather than P values, making it easier for students
to understand both. Additionally, it introduces a broad range of topics
left out of most other introductory texts but used frequently in
biomedical publications, including survival curves, multiple
comparisons, sensitivity and specificity of lab tests, Bayesian thinking,
lod scores, and logistic, proportional hazards and nonlinear regression.
By emphasizing interpretation rather than calculation, Intuitive
Biostatistics provides a clear and virtually painless introduction to
statistical principles, enabling readers to understand statistical results
published in biological and medical journals."

You can see the table of contents and read five complete chapters at
www.graphpad.com. You may order the book from GraphPad Software
with software purchases only. To order from a bookstore or the publisher
(Oxford University Press), cite this number: ISBN 0-19-508607-4. Intuitive
Biostatistics is also available from the online bookstore www.amazon.com.

Technical support
If you need help using Prism, and can’t find the answers in this manual,
please visit our web site first at www.graphpad.com. We will post updated
versions of the program there, along with frequently asked questions and
technical notes about using Prism.

If you need personal help, GraphPad Software offers free technical support.
While we reserve the right to charge for support in the future, we do
promise that you’ll receive free support for at least one year. Don’t hesitate
to contact us.
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Email: support@graphpad.com

Web Site: www.graphpad.com

Telephone: 858-457-3909   (619-457-3909  before June 12, 1999)

Fax: 858-457-8141   (619-457-8141 before June 12, 1999)

Mail: 5755 Oberlin Drive #110
San Diego CA 92121

While GraphPad’s technical support staff cannot provide any
statistical advice, you may email simple questions about data
analysis to me. Your Prism license does not include free statistical
consulting, but I’ll try to answer straightforward questions.

Dr. Harvey Motulsky, President GraphPad Software
hmotulsky@graphpad.com
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